
Coordinated Decentralized Estimation Over Random Networks

Marsh Nabi-Abdolyousefi and Mehran Mesbahi

Abstract— In this paper, we consider three representative
problems on observability and estimation over networks in
presence of randomness. The aim of this work is to highlight
that these problems, among many others, can be approached
via a unified formulation, that can be subsequently be utilized
for proving almost sure stability and convergence of filtering
algorithms over distinct classes of random networks. More
specifically, we show stability and convergence properties of
random variations on the coordinated decentralized estimation
using this approach.

Index Terms— Decentralized information filter; contractive
maps; Random Riccati equation; random networks

I. INTRODUCTION

Consider a network of N spatially distributed autonomous
sensors, in which each sensor collects measurements in
some modality of interest, e.g., temperature, sound, vibration,
pressure, motion, or pollutant. Each sensor in the network is
equipped with small storage, a radio transceiver, a micro-
controller, and a battery power source on a single chip.
Some engineering sensor networks consist of large numbers
of sensors, from hundreds to even hundred thousand nodes
[1]–[3]. Sending large amounts of raw measurements to
the fusion center requires large bandwidth for transferring
data, which in turn has adverse effect on power usage
for sensor networks. Specially in some cases, for instance
habitat monitoring, non-rechargeable batteries are employed
to observe the evolution of a particular phenomenon in nature
for a few consecutive months [4]. In some other applica-
tions, “reactive” sample rates for the sensing application is
important. For example in soil moisture sensor networks
[5], sensors observe a dynamics which changes rapidly
during certain intervals and slowly during others. Moreover,
considering a large wireless multi-hop sensor network, there
is generally a large amount of data and insufficient bandwidth
for transferring the data in its entirety between the sensors
and a centralized fusion center. Moreover, in such networks,
data travels along unreliable communication channels and
the effect of communication delays and loss of information
cannot be neglected.

The subject of decentralized estimation is studied in [10]–
[13]. Estimation over stochastic systems has also been ex-
plored in [6], [8], [15], [21]–[23]
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Fig. 1. The communication link between each sensor and the coordinator
switches on with a probability 0 < p < 1.

II. PROBLEMS CONSIDERED

In this work, we examine coordinated decentralized es-
timator design over networks in three different scenarios
involving randomness:
(a) A sensor network is observing a dynamic process. A

coordinated decentralized filter is considered that uses
the local computational capability of each sensor while
also utilizing the presence of a coordinator. Each sensor
calculates, based on the partial information available to
it, an estimate of the state of the dynamic process. A
partitioned information filter in a simple hierarchical
estimation architecture, shown on Fig. 1, provides a de-
centralized estimation architecture for this problem [9].
Meanwhile, the proposed architecture implicitly requires
that the sensors communicate with the coordinator at
every time step. However, this assumption might be
unrealistic within the operational constraints. For more
economical energy usage and/or in presence of unreliable
communication links and packet drop-outs, a random
communication scheme between the sensors and the
coordinator is thus assumed. Hence at every time step,
the link between each sensor and the coordinator be-
comes active with probability p ∈ (0, 1). A natural
question is thereby whether this randomized coordinated
decentralized estimation still has convergence properties
that parallel the original deterministic decentralized es-
timation scheme.

(b) A group of dynamic agents are running a formation task
based on the consensus protocol over a static network.
The consensus algorithm is corrupted by Gaussian noise
on the interaction/communication links between these
agents. Estimating the states of agents in this setup is
facilitated by interfacing with a group of nodes called
”output ports” and observing their states over time; see
Fig. 2. The observability condition requires us to find
a set of nodes that led to an “observable” process.
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Fig. 2. The communication architecture; each link switches on with a
probability 0 < p < 1.

While finding the set of output nodes for guaranteeing an
observable network is challenging, in Rahmani et al. [20]
it is shown that, for example, the symmetric structure
of network with respect to the observation ports has to
be broken to avoid an unobservable dynamics. In our
setup, we assume that at every time step, with probability
p ∈ (0, 1], each node is selected as the observation port;
see Fig. 2. It is of interest to determine whether the
subsequent coordinated decentralized estimation on such
a process has the desired (albeit, probabilistic) stability
and convergence properties.

(c) In this case, the static formation network described in
the previous scenario also randomly changes at every
time step, according to the Erdös-Renyi model, as is
demonstrated in Fig. 3. Thus both the underlying dy-
namics and the measurement scheme evolve randomly
over time. The main focus of this research is designing

time: t0 to t0 + ∆ t0 + ∆ to t0 + 2∆

t0 + 2∆ to t0 + 3∆ t0 + 3∆ to t0 + 4∆
Fig. 3. Behavior of a random network in some time intervals

stable decentralized estimator in the stochastic setup.

A. Deterministic Setup
Consider a sensor network that is employed to observe the

evolution of the dynamical process described

x(k + 1) = Ax(k) + w(k), (1)

where x(k) ∈ Rn is the state vector with initial condition
x(0) distributed as zero mean Gaussian with covariance Σ0

and w(k) is an uncorrelated zero mean Gaussian sequence
with covariance Q(k). The N sensors have a measurement
map of the form zi(k) = Hix(k) + vi(k), i = 1, 2, . . . , N ,
which when combined together, can be represented as

z(k) = H(k)x(k) + v(k), (2)

H =

 H1

...
HN

 , and

 v1(k)
...

vN (k)

 . (3)

Under the hypothesis of stabilizability of the pair (A,Q)
and detectability of the pair (A,H), the estimation error
covariance, Σ(k|k), using a Kalman filter converges to a
unique value from any initial condition [15]. The Kalman
filter updates the state according to

x̂(k|k) = x̂(k|k − 1) +K(z(k)−Hx̂(k|k − 1)), (4)

with Kalman gain K = Σ(k|k)H , where Σ(k|k) is the
covariance matrix of the error vector x̂(k|k)− x(k). Thus

Σ(k|k) = E{(x(k)− x̂(k|k))(x(k)− x̂(k|k))T }
= (Σ(k|k − 1)−1 +HTH)−1, (5)

where Σ(k|k−1) = AΣ(k−1|k−1)AT+Q. The information
filter, which proves to be advantages in distributed formula-
tion of Kalman filtering, is an alternative representation of the
filter in terms of the information-state vector and information
matrix [15] defined via y(k) = HT z(k) and Y = HTH . In
this venue,

ŷ(k|k) = I(k|k)x̂(k|k), ŷ(k|k − 1) = I(k|k − 1)x̂(k|k − 1),

where the information matrix I(k|k) = Σ(k|k)−1 and
I(k|k − 1) = Σ(k|k − 1)−1. The linear Kalman filter may
now be written in terms of the information state vector and
the information matrix as

I(k|k) = I(k|k − 1) + Y (k)
ŷ(k|k) = ŷ(k|k − 1) + y(k) (6)

or in additive form,

I(k|k) = I(k|k − 1) +
N∑
i=1

Yi(k)

ŷ(k|k) = ŷ(k|k − 1) +
N∑
i=1

yi(k) (7)

where Yi = HT
i Hi and yi(k) = HT

i zi(k). The inter-
pretation of this additive form of the information filter
is as follows: each sensor performs a local Kalman filter
based on local sensor measurements; in this case we have
HT
i Hi = Ii(k|k) − Ii(k|k − 1). The information matrix

can then be updated at each sensor node by receiving the
difference Ii(k|k) − Ii(k|k − 1), summing them up across
all sensors, and then adding them to obtain I(k|k). Similarly,
the information vector can be updated by summing up the
received yi(k) from each sensor. The above scheme can then
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be considered in terms of the state and covariance update
by including a coordinator. The global update assumes
the form x̂(k|k) = (I − K(k)H)x̂(k|k − 1) + K(k)z(k),
with K(k)z(k) = Σ(k|k)HT z(k) = Σ(k|k)

∑
iH

T
i zi, and

I − K(k)H = Σ(k|k)Σ(k|k − 1)−1. In the meantime,
HT
i zi = Ii(k|k)x̂i(k|k) − Ii(k|k)(I − KiHi)x̂i(k|k − 1)

and therefore

x̂(k|k)=Σ(k|k)(I(k|k − 1)x̂(k|k − 1)

+
∑
i

Ii(k|k)x̂i(k|k − 1)− Ii(k|k − 1)x̂i(k|k − 1)).

(8)

More details on this section are presented in [9], [16].
We note that the error covariance matrix update in (5) can

be written as

Σ(k|k) =(AΣ(k − 1|k − 1)AT +Q)
(I +R(k)Q+R(k)AΣ(k − 1|k − 1)AT )−1,(9)

where R(k) = HT (k)H(k).

III. COORDINATED DECENTRALIZED ESTIMATION OVER
RANDOM NETWORKS

Now consider the sensor network and the coordinator
displayed in Figs. 1, 2, and 3. Note that in reference to the
deterministic setup, in all these cases the measurement matrix
H is a random matrix. That is when the ith sensor sends its
estimate to the coordinator, Hi becomes “active” in the ith

row, which happens with probability 0 < p < 1 at every
time step. Note that {H(k), k ≥ 1} is a strictly stationary
ergodic process and that there is a σ-algebra F generated by
all measurements z1, z2, . . . , zk for all k ≥ 1.

This sensor network can be modeled by a star graph with
N + 1 nodes that has the coordinator at its center. Let us
denote the coordinator as node with label 1. Hence, at every
time step, sensor i communicates with the coordinator with
probability p, i.e., the edge set E contains the edge (i, 1) with
probability p. The graph, Gk(N + 1, E , p), at the kth time
step can then be represented in terms of its (N+1)×(N+1)
symmetric adjacency matrix A as

Ai1 =
{

1 if (i, 1) ∈ E
0 otherwise (10)

Define the setM as the resulting set of all possible adjacency
matrices as well as the symmetric stochastic

Ā = E[A(k)] =
∫
M
A dD(A), (11)

where D is the probability distribution on the space M. It
follows that Ā for the considered random graph model is
irreducible.

We will subsequently assume that the following conditions
hold:

Hypothesis 3.1: . (1) The matrix A in the dynamic pro-
cess (1) is invertible, and (2) log+ ||A||, log+ ||A−1||, and
log+ ||Q|| are integrable, where log+ x = max{0, log x}.
We now to explore conditions on the pair (A,H) in the
scenarios (a), (b), and (c) discussed in §II that would allow

a randomized estimation scheme with guaranteed (probabilis-
tic) stability and convergence. A key technical construct that
proves to be instrumental in this direction is that of weak
detectability [7], [18], [19]. To get a general model for cases
(a), (b), and (c), assume the matrix in (1) is time varying
and is denoted by A(k).

Definition 3.2: Let R(k) = HT (k)H(k). The sequence
{(A(k), H(k)), k ∈ N} is said to be weakly observable if,
for some k ≥ 1, P{det[Ω(k)] 6= 0} 6= 0, where

Ω(k) = R(1) +AT (1)R(2)A(1) + . . .

+ AT (k − 1) . . . AT (1)R(k)A(k − 1) . . . A(1)

=
k∑
i=1

AT (i− 1) . . . AT (1)R(i)A(i− 1) . . . A(1).

(12)
The weak observability condition holds if the matrices A(k)
and

∑k
i=1R(i) are invertible. In the same manner, the

stabilizability assumption of the pair (A(k), Q(k)) can be
explored.

The key observations is now that weak detectability is a
generic property for all three scenarios discussed in §II.
As such, the main results of [18], [19], in the context of
estimation over random networks become directly applicable.
We now briefly review relevant results that are instrumental
for proving stability and convergence of the corresponding
coordinated distributed estimators over random networks
pertaining to these three scenarios.

Let us start by first describing the asymptotic behavior of
the error covariance matrix Σ(k|k) in (9). In this venue, let
P (respectively, P0) denote the set of N × N nonnegative
(respectively, positive) symmetric matrices. It can be shown
that almost surely, for any solution Σ(k|k) of (5), there is
a constant covariance matrix Σ̄ such that ||Σ(k|k) − Σ̄||
converges to zero as k → ∞. The main result in the next
section is that the error covariance matrices Σ(k|k) are
contractions on P0 with respect to the Riemannian metric
to be defined shortly.

Define the symplectic group Sp(N,R) as the set of all
the matrices M of order 2N such that MTJM = J where
J =

(
0 I
−I 0

)
. If we now write

M =
(
A B
C D

)
∈ Sp(N,R), (13)

where the entries are N × N , then BAT and ATC are
symmetric and ATD−CTB = I. We associate to the system
(1) and (2) the so-called Hamiltonian matrices M(k) of order
2N written in block form as

M(k) =
(

A(k) Q(k)A(k)−T

R(k)A(k) (I +R(k)Q(k))A(k)−T )

)
.

(14)
Therefore, the set of all Hamiltonian matrices can be repre-
sented as

H =
{(

A B
C D

) ∈ Sp(d,R);A is invertible;

BAT ∈ P, ATC ∈ P }. (15)

We define three subsets H1, H2, and H0 of H by
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H1 =
{(

A B
C D

) ∈ Sp(d,R); BAT ∈ P, ATC ∈ P0

}
,

H2 =
{(

A B
C D

) ∈ Sp(d,R); BAT ∈ P0, A
TC ∈ P} ,

H0 = H1 ∩ H2. (16)

The Riemannian metric δ, and the Euclidean norm ||.||, are
used in this paper with the following definitions.

Definition 3.3: The Riemannian metric δ on P0 is defined,
for any P, Q ∈ P0, as

δ(P,Q) =

{
N∑
i=1

log2 λi

}1/2

, (17)

where λ1, . . . , λN are the eigenvalues of the matrix PQ−1.
On the other hand, the Euclidean norm on RN×N is defined
as ||M || = sup{||Mx||;x ∈ RN , ||x|| = 1}.
For any matrix M ∈ H (13), we associate the map ΦM :
P0 → P0 by

ΦM (T ) = (AT +B)(CT +D)−1, T ∈ P0. (18)

Moreover, let us define Φ(T ) for the Hamiltonian matrices
(14) as

Φ(T (k)) =(A(k)T (k) +Q(k)A(k)−T )

(R(k)A(k)T (k) + (I +R(k)Q(k))A(k)−T )−1.

Therefore, by a straightforward modification of (9), the error
covariance matrix Σ(k|k) satisfies

Σ(k + 1|k + 1) = ΦM(k)(Σ(k|k)), (19)

which is the discrete Riccati equation.
The following properties hold for deterministic system

matrices in (1) and (2):
(a) For any M in H, and T, S in P0,

δ(ΦM (T ),ΦM (S)) ≤ δ(T, S).

(b) For any M in H1 or in H2, and T, S in P0,

δ(ΦM (T ),ΦM (S)) < δ(T, S).

(c) For any M in H0, there exists ρ(M), 0 < ρ(M) < 1,
such that, for all T, S in P0,

δ(ΦM (T ),ΦM (S)) ≤ ρ(M)δ(T, S).

In the random setup, M(k), k ∈ N, as defined in
(14) is the sequence of Hamiltonian matrices associated
to the linear system (1) and (2). If the system is weakly
detectable (respectively, weakly controllable), then, almost
surely, M(k) . . .M(1) is in H1 (respectively, H2) for large
enough values k ∈ N. The main result of this section implies
that the conditional error covariance matrix Σ(k|k) does not
diverge. In fact, the error is asymptotically stationary and is
independent of the initial conditions. To prove this statement,
let (E, δ) be a complete separable metric space. A Lipschitz
map Ψ : E → E is one for which

ρ(Ψ) := sup{δ(Ψ(x),Ψ(y))
δ(x, y)

;x, y ∈ E, x 6= y} (20)

is finite. Now consider the process {X(k), k ∈ N} generated
by the following difference equation

X(k) = Ψ(X(k − 1)). (21)

The following theorem explores the ergodic stationary solu-
tion of (21) and its almost sure convergence properties.

Theorem 3.4: [19] Let {Ψ(k), k ∈ N} be a stationary
ergodic sequence of Lipschitz maps from E into E. Suppose
the following conditions hold:
(a) For some x in E, E[log+ δ(Ψ(x), x)] is finite.
(b) The random variable log+ ρ(Ψ(1)) is integrable, and for

some integer k̄ > 0, the real number

α =
1
k̄

E[log ρ(Ψ(k̄) o . . . oΨ(1))]

is strictly negative.
Then there exists an ergodic stationary process {X̄(k), k ∈
N} with values in E, generated by (21), such that almost
surely,

lim
k→∞

1
k

log δ(X(k), X̄(k)) ≤ α < 0.
The next theorem proves the almost surely contraction prop-
erty of the discrete Riccati equation defined in (19).

Theorem 3.5: Consider the linear system (1) and (2)
with stochastic measurement matrix H(k), that is weakly
detectable and controllable. Then there exists an ergodic
stationary P0-valued process {Σ̄(k|k), k ∈ N} that is the
solution of (19). Furthermore, there is a negative real number
α < 0 such that, almost surely, for any solution of (19) for
which the initial covariance error is in P0,

lim
k→∞

1
k

log δ(Σ(k|k), Σ̄(k|k)) ≤ α < 0. (22)

Proof: Consider the random contractions {Φ(k), k ∈
N} on the metric space (P0, δ) defined in (19). To apply
Theorem 3.4, we first need to check the conditions of
this theorem. Ccondition (a) is that for some P ∈ P0,
E[log δ(Φ(P ), P )] is finite. Let us choose P to be the identity
matrix and define T = AAT + Q. Therefore, we obtain
Φ(I) = T (I +R(1)T )−1 = (T−1 +R(1))−1. Consider the
definition of the Riemannian metric δ and the smallest and
the largest eigenvalues of the positive definite matrix Φ(I)
as λ1 = 1/||Φ(I)−1|| and λN = ||Φ(I)||. Hence,

δ(Φ(I), I)2 ≤ N max(log2 ||Φ(I)||, log2 ||Φ−1(I)||) (23)

where

||Φ−1(I)|| = ||(T−1 +R(1))−1|| ≤ ||T || ≤ ||A||2 + ||Q||.
(24)

The first inequality in (24) comes from the fact that T −
(T−1+R(1))−1 is positive definite and the second inequality
is the conseqence of the definition of T . We also have

||Φ−1(I)|| ≤ ||(T−1 +R(1))|| ≤ ||T−1||+ ||R(1)||
≤ ||A−1||2 + ||H(1)||2. (25)

From the assumptions of the Theorem 3.5 and inequal-
ities in (24) and (25), we see that E[log δ(Φ(I), I)] is
finite. Regarding condition (b) in Theorem 3.4, we know
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that Φ(k) is a contraction.Thus, it suffices to show that
ρ(Φ(k) o . . . o Φ(1)) is smaller than one for some k > 0
with positive probability.

Let M(k) be the sequence of Hamiltonian matrices as-
sociated to the system (1) and (2). It now follows that for
all k ∈ N large enough P{M(k) . . .M(1) ∈ H0} 6= 0 since
H0 = H1 ∩ H2. And therefore, P{ρ(Φ(k) o . . . o Φ(1)) <
1} 6= 0. Since both conditions of Theorem 3.4 satisfy, the
theorem implies the result in (22).
We now show that the evolution of the estimation error
x(k) − x̂(k) is exponentially stable by the stochastic Lya-
punov theory. In order to prove this, we need some prelim-
inary results and introducing of a few new variables. First,
define B(k) = A(k) −K(k)H(k), T (k) = K(k)KT (k) +
Q(k) and let Σ(k|k) = B(k)Σ(k − 1|k − 1)BT (k) + T (k).

It is proved in [19] that if G(k) = T (k) + B(k)T (k −
1)BT (k) + . . .+B(k) . . . B(2)T (1)BT (2) . . . BT (k), under
the main Hypothesis 3.1, there exists k ∈ N such that
P{det(G(k)) 6= 0} > 0.

Theorem 3.6: Consider the system (1) and (2) with the
stochastic parameters for which the system is weakly de-
tectable and controllable while Hypothesis (3.1) holds. Then
the estimation error x(k)− x̂(k) is almost surely asymptot-
ically stable.

Proof: For notational simplicity suppose that
P{det(G(1)) 6= 0} > 0. To prove the exponential stability
of the error x(k) − x̂(k), it suffices to show that there is a
real number γ > 0, such that almost surely

lim
k→∞

1
k

log ||(A(k)−K(k)H(k)), . . . , (A(k)−K(1)H(1))|| ≤ −γ

for any solution {Σ(k|k), k ∈ N} of (9) such that the initial
error covariance is in P0.

Assume that λ(k) = ||T (k)−1||−1, σ(k) = ||Σ(k|k)||,
and α = ||Σ−1

0 ||. For positive integer k̄, set xk̄ ∈ RN by
the backward recursion to be x(k) = BT (k + 1)x(k +
1). Consider the candidate Lyapunov function V (k) =
xT (k)Σ(k|k)x(k). We note now that

V (k + 1)− V (k) = xT (k + 1)Σ(k + 1|k + 1)x(k + 1)

− x(k)T Σ(k|k)x(k)

= xT (k + 1)(Σ(k + 1|k + 1)

−B(k + 1)Σ(k|k)BT (k + 1))x(k + 1)

= xT (k + 1)T (k + 1)x(k + 1)

≥ λ(k + 1)||x(k + 1)||2 ≥ λ(k + 1)

σ(k + 1)
V (k + 1).

Consequently, V (k+ 1)(1− λ(k+1)
σ(k+1) ) ≥ V (k). Define τ(k+

1) = 1− λ(k+1)
σ(k+1) . We also have

||x(0)||2 ≤ ||Σ−1
0 || ≤ ||Σ

−1
0 ||τ(1)τ(2) . . . τ(k̄)V (k̄)

≤ ||Σ−1
0 ||τ(1)τ(2) . . . τ(k̄)||Σ(k̄|k̄)||||x(k̄)||2.

Since x(0) = BT (1) . . . BT (k̄)x(k̄), this implies that

||x(0)|| = ||BT (1) . . . BT (p)||2||x(k̄)||2 ≤ ατ(1) . . . τ(k̄)σ(k̄).

Therefore,

1

k̄
log ||BT (1) . . . BT (k̄)||2 ≤ 1

k̄
logα+

1

k̄
log σ(k)

+
1

k̄

k̄X
i=1

log τ(i).

From the contraction property of Σ(k|k) we know that
limk̄→∞

1
k̄

log σ(k̄) ≤ 0. From Birkhoff’s ergodic theorem
it thus follows that

lim
k̄→∞

1
k̄

log ||BT (k̄) . . . BT (1)||2 ≤ E(log τ(1)).

As by assumption P{det(G(1)) 6= 0} > 0, E(log τ(1)) < 0,
thus proving the statement of the theorem.
We conclude this section with a direct consequence of
the above framework in the context of the three scenarios
introduced in §II.

Corollary 3.7: The coordinated decentralized estimators,
following the stochastic version of (8), for the models
described by (a)-(b) §II converge almost surely.

IV. AN EXAMPLE

In this example, consider a network of four sensors in
the coordinated decentralized estimator setup. The commu-
nication network between the sensors and the coordinator
is shown in Fig. 4. The dynamics of the system, and the

Coordinator, 1

54

2 3

p

1− p1− p

1− p

Fig. 4. The star communication network. The dashed line represent lack
of communication between the sensor and the coordinator which happens
with probability 1− p at every time step.

corresponding observation network are as follows:

x(k + 1)=


0.5 0 0 0 0 0
0.2 −0.5 0.1 0 0 0
0.5 0.6 0 0 0 0
0 0 0 0.5 0 0
0 0 0 0.2 −0.5 0.1
0 0 0 0 0.5 0.6

x(k)

+[1 1 1 1 1 1]Tw(k)

z(k) =


0 1 0 0 0 0
0 0 0 0 1 0
0 1 0 0 0 0
0 0 0 0 1 0

x(k) +


1
1
1
1

 v(k).

(26)
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Fig. 5. Estimation of the sixth state in different setups with p = 0.6.

It is assumed that the system and the measurement noise sig-
nals are independent zero-mean Gaussian with covariances
Q = 10−2 and the identity matrix, respectively.

In the proposed estimation setup, the first sensor estimates
the states of the system (26) as it observes the signal

z1(k) = [0 1 0 0 0 0]x(k) + v(k).

Analogously, for example, the second sensor estimates the
states of the system (26) as it observes the vector

z2(k) = [0 0 0 0 1 0]x(k) + v(k).

In the random setup, at each time step, each sensor sends
its estimate to the coordinator with probability p = 0.6.
Fig. 5 demonstrates the estimation error of the sixth state
in the centralized, decentralized, and the random estimation
setup. Note that the system matrix in (26) is not observable
by considering each measurement separately, while the weak
observability condition holds in the random setup.

V. CONCLUSION

In this paper a coordinated decentralized information filter
over certain classes of random networks has been examined.
The proposed distributed filter uses the local computational
capability of each sensor and uploads the processed mea-
surements to the coordinator in a random fashion. In order
to account for energy efficiency, as well as the presence of
potentially unreliable communication links and time delays,
a random communication scheme between the sensors and
the coordinator has been considered. We have shown that
distinct variations of this problem satisfies a generic property
of being weakly detectable, thus making it suitable for the
application of stability and convergence results on stochastic
Kalman filtering.

VI. ACKNOWLEDGMENTS

The authors thank the reviewers for their helpful comments
and suggestions.

REFERENCES

[1] Smart Dust Project Home Page. Univ. California, Berkeley. [On- line]
http://robotics.eecs.berkeley.edu/ pister/SmartDust/

[2] NEST Project at Berkeley Home Page. Univ. California, Berkeley.
[On- line] http://webs.cs.berkeley.edu/nest-index.html

[3] Dust Network Inc. Home Page, [On- line]
http://www.dustnetworks.com/about/careers

[4] A. Mainwaring, D. Culler, J. Polstre, R. Szewczyk, and J. Anderson,
Wireless sensor networks for habitat monitoring, Proceedings of the
1st ACM international workshop on wireless sensor networks and
applications-WSNA ’02, 2002.

[5] R. Cardell-Oliver, M. Kranz, K. Mayer, A reactive soil moisture
sensor network: design and field evaluation, International Journal of
Distributed Sensor Networks. Vol. 1, 2005, pp. 149-162.

[6] B. Sinopoli, L. Schenato, M. Franceschetti, K. Poolla, M. Jordan,
and S. Sastry, Kalman filtering with intermittent observations, IEEE
Transaction on Automatic Control, Vol. 49, 2004, pp. 1453-1464.

[7] S. Kar, and J. M. F. Moura, Gossip and distributed
Kalman filtering: weak consensus under weak detectability,
http://arxiv.org/abs/1004.0381v1

[8] S. Kar, B. Sinopoli, and J. M. F. Moura, A random dy-
namical systems approach to filtering in large-scale networks,
http://arxiv.org/abs/0910.0918v1

[9] S. Grime, and H.F. Durraat-Whyte, Data fusion in decentralized sensor
networks, Control Engineering Practice,Vol. 2, No.5, 1994, pp. 849-
863.

[10] A. Simonetto, T. Keviczky, and R. Babuska, Distributed nonlinear
estimation for robot localization using weighted consensus, IEEE
International Conference on Robotics and Automation, Anchorage,
Alaska, USA, 2010.

[11] P. Alriksson and A. Rantzer, Model based information fusion in sensor
networks, Proceedings of the 17th IFAC World Congress, Seoul, Korea,
July 2008.

[12] R. Carli, A. Chiuso, L. Schenato, and S. Zampieri, Distributed Kalman
filtering using consensus strategies, Proceedings of the 46th Confer-
ence on Decision and Control, New Orleans, LA, USA, December,
2007.

[13] R. Olfati-Saber, Kalman-consensus filter: optimality, stability, and
performance, Proceedings of the 46th IEEE Conference on Decision
and Control, 2009.

[14] A. Speranzon, C. Fischione, and K. H. Johansson, Distributed and
collaborative estimation over wireless sensor networks, Proceedings
of the 45th IEEE Conference on Decision and Control, San Diego,
CA, USA, 2006.

[15] P.S. Maybeck, Stochastic Models, Estimation and Control, Vol. I.
Academic Press, 1979.

[16] M. Mesbahi and M. Egerstedt. Graph Theoretic Methods for Multia-
gent Networks. Princeton University Press, 2010.

[17] M. Nabi, M. Mesbahi, N. Fathpour, F. Y. Hadaegh. Local Estimators
for Multiple Spacecraft Formation Flying. GNC, 2008.

[18] P. Bougerol, Almost sure stabilizability and Riccati equation of linear
systems with random parameters, SIAM Journal on Control and
Optimization, Vol. 33, No. 3, 1995, pp. 702-717.

[19] P. Bougerol, Kalman filtering with random coefficients and contrac-
tions, SIAM Journal on Control and Optimization, Vol. 31, No. 4,
1993, pp. 942-959.

[20] A. Rahmani, M. Ji, M. Egerstedt, and M. Mesbahi, Controllability
of Multi-agent Systems from a Graph-theoretic Perspective, SIAM
Journal on Control and Optimization, 48 (1): 162-186, 2009.

[21] A.S. Willsky, M.G. Bello, D.A. Castanon, B.C. Levy, and G.C.
Verghese. ”Combining and updating of local estimates and regional
maps along sets of one-dimensional tracks. ” IEEE Transactions on
Automatic Control, 27(4), 1982.

[22] V. Gupta, N. C. Martins, and J. S. Baras. ”Stabilization over erasure
channels using multiple sensors.” IEEE Transactions on Automatic
Automatic Control, 57(7), July 2009.

[23] A. Chiuso, L. Schenato. ”Information fusion strategies and perfor-
mance bounds in packet-drop networks.” submitted to Automatica.

2818


