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Abstract— This paper considers the problem of constrained
stabilization of a two-input buck-boost DC/DC converter by
linear state-feedback. It is demonstrated that, via an appro-
priate change of coordinates, a recent synthesis technique
for constrained bilinear discrete-time systems can be applied
to an averaged nonlinear model of the converter. Moreover,
it is proven that the synthesis method yields a polyhedral
constrained control invariant set for the converter model
in the original coordinate system. The synthesis algorithm
requires solving a single linear program off-line. An extensive
simulation case study along with a preliminary, successful real-
time experiment, demonstrate the effectiveness of the proposed
methodology.

Index Terms— DC/DC converters, Bilinear systems, Invari-
ance, Polyhedral Lyapunov functions, Constraints.

I. INTRODUCTION

Buck-boost DC/DC converters are switching devices that

have strong nonlinear dynamics and are subject to hard con-

straints on inputs and states. A very fast switching frequency

and small sampling time (ranging from µs to ns) pose a

serious challenge to controller synthesis and implementation.

That is why simple control solutions, such as PID and Fuzzy

controllers, are dominant in PWM controlled low-cost power

converters, see, e.g., [1] and [2]. The main issues with

this type of controllers are a lack of an a priori stability

guarantee and inability to cope with constraints in a non-

conservative way. As far as stability is concerned, a direct

switching Lyapunov approach was proposed for stabilization

of DC/DC converters, see, e.g., [3]. However, this approach

can lead to arbitrarily fast switching and does not handle

constraints. Recently, model predictive control was proposed

as a viable alternative to deal with constraints in control

of power converters, see, e.g., [4]–[8] and the references

therein. However, due to the bilinear nature of the typical

averaged model of a buck-boost converter, these algorithms

are computationally intensive and not suitable for low-end

converters. Tractable solutions can only be obtained for linear

or piecewise affine approximations, which introduce errors

and lack an a priori stability guarantee as well. For such

classes of systems, an explicit piecewise affine predictive

control law can be obtained and stability can be checked a

posteriori, see, e.g., [9]. As such, it would be desirable to

obtain a tractable synthesis method that is applicable to the
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full bilinear model of a buck-boost converter, results in a low

complexity feedback law and which also offers an a priori

guarantee of stability and constraint satisfaction.

This paper indicates that a recent synthesis technique [10]

developed for constrained stabilization of general discrete-

time bilinear systems with zero as equilibrium can be applied

to DC/DC converters. The method of [10] employs invariance

conditions [11] for a polyhedral set and yields a stabi-

lizing linear static state-feedback control law that satisfies

constraints. The method is computationally advantageous as

it requires solving a single linear program off-line. Along

with the controller synthesis it yields a polyhedral Lyapunov

function for the closed-loop system. Notice that polyhedral

Lyapunov functions are preferable to quadratic ones, as they

induce polyhedral constrained control invariant (CCI) sets.

Moreover, for bilinear systems, quadratic Lyapunov functions

lead to fourth order matrix inequalities, which are hardly

solvable. However, the results in [10] cannot be applied

directly to DC/DC converters, as the corresponding averaged

converter model, although bilinear, does not have zero as an

equilibrium point. Notice that a simple shift of coordinates

does not preserve invariance of a polyhedral set, when the

system model is bilinear.

The main contribution of this paper consists of a set of

sufficient conditions that render the results of [10] appli-

cable to a standard two-input buck-boost DC/DC converter

averaged model. It is shown that if these conditions hold

for an auxiliary bilinear model obtained via an appropriate,

specific coordinate change, then the resulting control law is

stabilizing and satisfies constraints for the original converter

model with a non-zero equilibrium. Moreover, it is indicated

how a polyhedral CCI set can be obtained for the original

model via a suitable Minkowski translation. Such a set,

besides providing a region of attraction for the closed-

loop system, is very useful for model predictive control

algorithms, i.e., it can be employed as a terminal set, see

[12] for more details on this topic. The polyhedral CCI set,

obtained with the method proposed in this paper, is much

larger than the region where the linear approximation of the

bilinear model is reasonable and it virtually covers the entire

desired range of operation.

II. PRELIMINARIES

A. Mathematical notation and definitions

Let R, R+, Z, Z+ denote the set of real numbers, the set

of non-negative reals, the set of integer numbers and non-

negative integers, respectively. Given two sets P and S, PS :=
P∩S. For a λ ∈ R and a set P ⊂ R

n, let λP := {λx|x ∈ P}.
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R
n×m denotes the set of real n×m matrices. For a matrix

Z ∈ R
n×m, [Z]ij ∈ R denotes the element on the i-th row

and the j-th column of Z, [Z]i• ∈ R
1×m denotes the i-th row

of Z and [Z]•j ∈ R
n×1 denotes the j-th column of Z. Given

a vector x ∈ R
n, ‖x‖∞ := max

i=1,...,n
|[x]i| denotes the infinity

norm, where [x]i is the i-th element of x and | · | denotes the

absolute value. In ∈ R
n×n denotes n-th dimensional identity

matrix. Given a matrix A ∈ R
n×m, A+ ∈ R

n×m denotes a

matrix where [A+]ij = max{0, [A]ij} and A− ∈ R
n×m

denotes a matrix where [A−]ij = max{0,−[A]ij}. Thus,

A+−A− = A. Given a matrix D ∈ R
n×n, Dδ ∈ R

n×n is a

matrix with [Dδ]ii = [D]ii and [Dδ]ij = 0 for i 6= j. Given

a matrix D ∈ R
n×n the matrix Dµ ∈ R

n×n is defined by

Dµ := D −Dδ . For two matrices A,B ∈ R
n×m, A⊙B =

n
∑

i=1

m
∑

j=1

[A]ij [B]ij denotes the Frobenius inner product. Given

two arbitrary sets P,X ⊂ R
n, P⊕X = {p+x|p ∈ P, x ∈ X}

denotes their Minkowski sum. Define the set valued map

Ψ : Rr×n × R
r × R

r
⇉ R

n, with Ψ(G,w1, w2) := {x ∈
R| − w2 ≤ Gx ≤ w1}. Given matrices Ci ∈ R

n×m with

i ∈ Z[1,n], we define C : Rn → R
n×m with C(a) =

[

a⊤C1

...
a⊤Cn

]

and C⊤ : Rm → R
n×n with C⊤(b) :=





(C1b)
⊤

...
(Cnb)

⊤



. Notice

that C(a)b = C⊤(b)a.

Consider the closed-loop nonlinear discrete time system

x(k + 1) = f(x(k), u(k)) (1a)

u(k) = g(x(k)) (1b)

where x(k) ∈ X ⊂ R
n is the state and u(k) ∈ U ⊂ R

m is

the input at time instant k ∈ Z+, and f : X × U → X and

g : X → U are arbitrary maps. It is assumed that the sets X

and U are bounded.

Definition II.1 A state xs ∈ X with us := g(xs) ∈ U is

called an equilibrium state for system (1) if f(xs, us) = xs.

Definition II.2 Let ε ∈ R[0,1). A subset P of X is said to be

ε-constrained control contractive (or shortly, ε-contractive)

for an equilibrium state xs of system (1), if for all x ∈ P it

holds that g(x) ∈ U and f(x, g(x)) − xs ∈ ε (P⊕ {−xs}).
A set P ⊆ X is said to be constrained control invariant (or

shortly, invariant) for the system (1) if for all x ∈ P it holds

that g(x) ∈ U and f(x, g(x)) ∈ P.

B. Constrained stabilization of bilinear systems

This subsection reproduces the main result on constrained

stabilization of bilinear systems with a static linear state-

feedback presented in [10]. The synthesis method developed

in [10] is applicable to a special case of system (1), i.e.,

x(k + 1) = f(x(k), u(k))

: = Ax(k) +Bu(k) + C(x(k))u(k), (2a)

u(k) = g(x(k)) := Kx(k), k ∈ Z+, (2b)

where Ci ∈ R
n×m for all i ∈ Z[1,n], A ∈ R

n×n, B ∈ R
n×m

and K ∈ R
m×n. Let a subset of initial conditions be given,

i.e., Q := Ψ(G,w1, w2) ⊆ X, for some G,w1, w2 and let

the input constraints set be defined as U := Ψ(Im, uM , um)
for some um, uM ∈ R

m.

Theorem II.3 [10] Suppose there exist matrices Dj , H ∈
R

p×p, j ∈ Z[1,p], K ∈ R
n×m, a non-negative matrix L ∈

R
2m×2p and ε ∈ R[0,1] that satisfy

G(A+BK) = HG, (3)
n
∑

i=1

[G]jiCiK = G⊤DjG, j ∈ Z[1,p] (4)

[

H+ H−

H− H+

] [

w1

w2

]

+ (5)





















Dδ+
1 ⊙WM +D

µ+
1 ⊙WM +D

µ−
1 ⊙Wm

...

Dδ+
p ⊙WM +Dµ+

p ⊙WM +Dµ−
p ⊙Wm

Dδ−
1 ⊙WM +D

µ−
1 ⊙WM +D

µ+
1 ⊙Wm

...

Dδ−
p ⊙WM +Dµ−

p ⊙WM +Dµ+
p ⊙Wm





















≤ ε

[

w1

w2

]

,

L

[

G

−G

]

=

[

K

−K

]

, L

[

w1

w2

]

≤

[

uM

um

]

, (6)

where,

[WM ]ij = max{[w1]i[w1]j , [w2]i[w2]j},

[Wm]ij = max{[w1]i[w2]j , [w2]i[w1]j}.

Then the set Q is invariant for the system (2a) in closed-loop

with the control law (2b).

For the proof of Theorem II.3, we refer to [10]. If the sign

of each element of the matrices H and Dj , respectively,

is fixed a priori, then the matrix K can be determined by

solving a single linear program (LP), as it is summarized in

the following problem.

Problem II.4 For a given system (2), matrix G, vectors w1,

w2, um, uM , and a fixed sign of each element of the matrices

H and Dj , j ∈ Z[1,p], respectively, solve

min
ε,H, L,Dj , K

ε (7)

subject to the linear constraints (3)-(6).

Corollary II.5 [10] Suppose that Problem II.4 has a feasible

solution with ε ∈ R[0,1). Then the set-induced function

V̂ (x) := max
j∈Z[1,p]

{

[G]j•x

[w1]j
,
[−G]j•x

[w2]j

}

(8)

is a Lyapunov function for the closed-loop system (2).

For a formal definition of a Lyapunov function for discrete-

time systems, the interested reader is referred to [11].
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Fig. 1. A schematic representation of the non-inverting buck-boost
converter.

To summarize, in order to synthesize a stabilizing state-

feedback law, one has to impose a candidate ε-contractive

set Q, which satisfies the state constraints and has the origin

in its interior, and solve the Problem II.4. If ε < 1 then the

resulting state-feedback is stabilizing and the set Q is indeed

ε-contractive, otherwise one has to chose another candidate

set and repeat the procedure.

III. PLANT DESCRIPTION AND PROBLEM FORMULATION

The non-inverting buck-boost converter is essentially one

buck and one boost converter connected in series. This type

of converter can produce lower as well as higher output

voltages than the supplied one. For more information on

the subject of power conversion, see [1], [13], [14]. The

converter topology employed in this paper has a separate

control input for each stage. The control signal is a PWM

waveform with a constant frequency and controlled duty-

cycle. The schematic representation of such a converter is

shown in Fig. 1.

A. Nonlinear averaged model

No dead-time nor other nonlinear behavior of circuitry

components were considered during the mathematical mod-

eling of the converter. The only parasitic elements taken

into account are the resistances of power transistors, output

capacitor and inductor, which are lumped into RL and RC .

Thus, the resulting average discrete-time model of the system

is bilinear in input and states, i.e.,

x(k + 1) = φ(x(k), u(k)) (9)

:= Ax(k) +Bu(k) +

[

x(k)⊤C1

x(k)⊤C2

]

u(k) + w

where x(k) :=
[

vC(k) iL(k)
]⊤

∈ R
2 is the system state

(i.e., the capacitor voltage and the inductor current) and

u(k) :=
[

d1(k) d2(k)
]⊤

is the system input (i.e., the duty

cycles) at the time instant k ∈ Z+, respectively. In this paper,

a constant current source is considered as load. Notice that

other load types can be accommodated in a similar fashion.

The matrix coefficients from (9) are specific to the circuitry

implementation and they are described in terms of system

parameters such as inductance, capacitance and resistance,

i.e.,

A = I2 + Ts

[

0 0
0 −RL

L

]

, B = Ts

[

0 0
vs

L
− iload

C

]

, (10)

w = Ts

[

− iload

C

0

]

, C1 = Ts

[

0 0
0 1

C

]

, C2 = Ts

[

0 − 1
L

0 RC

L

]

,

where vs is the supply voltage, iload is the load current

and Ts is the sampling time. The sampling time and the

PWM period are assumed to be equal throughout this paper.

The system is subject to hard constraints, i.e., u(k) ∈ U :=
Ψ(I2, u

M ,−um) and x(k) ∈ X := Ψ(I2, x
M ,−xm), for all

k ∈ Z+, where um, uM , xm, xM ∈ R
2 are suitable vectors.

The constraints on the states can be softened within certain

limits in most situations.

Remark III.1 In (10), it can be observed that some of

the system matrices are functions of the supply voltage vs
and the load current iload. In this paper their values are

considered constant and known a priori. In practice, they

are either measured or estimated. Further work deals with

parametrization of the control law with respect to vs and

iload. 2

B. Control problem formulation

The goal of the controller is to maintain the output voltage

of the converter at a prescribed value while maintaining the

system state and input within specified limits. The stationary

value of the inductor current can vary in certain limits

without affecting the value of the output voltage. Generally,

a low value of the stationary inductor current is preferred to

minimize the power dissipation of the converter.

Throughout the paper it is assumed that a specific refer-

ence is provided for both the output voltage Vref and the

inductor current Iref . The notation xs :=
[

Vref Iref
]⊤

will be employed throughout the rest of the paper.

In conclusion, the controller synthesization problem has

the following formulation.

Problem III.2 Given the system (9), sets U, X and P ⊆ X,

and desired equilibrium state xs (along with corresponding

control input us), construct an affine state-feedback control

law such that P is ε-contractive for the resulting closed-loop

system. 2

IV. MAIN RESULTS

As mentioned in Section II-B, the algorithm described in

[10] is applicable only to systems with zero as equilibrium.

Thus, system (9) must be transformed in order to render the

results from [10] applicable. Moreover, this transformation

must be such that its corresponding reverse transformation

preserves stability and invariance and thus, constraint satis-

faction.

To this end, let us begin with the analysis of a coordinate

change problem for affine systems. Consider an affine system

x(k + 1) = Ax(k) +Bu(k) + w (11)
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and the coordinate transformation

z(k) = x(k)− xs, (12a)

s(k) = u(k)− us, (12b)

where xs is the desired equilibrium point for the closed-loop

system and us is selected such that Bus = xs − w − Axs.

Then, one obtains

z(k + 1) = Az(k) +Bs(k), (13)

which has exactly the same form as the linear part of (11).

Next, a separate linear feedback law is considered for each

of the systems (11) and (13), i.e.,

u(k) = K(x(k)− xs) + us, (14a)

s(k) = Kz(k), (14b)

for all k ∈ Z+. For some sets P ⊂ R
n and U ⊂ R

m let

P̂ := P⊕ {−xs} and Û := U⊕ {−us}. Let ε ∈ Z[0,1].

Theorem IV.1 The set P is ε-contractive for the equilibrium

state xs of the system (11) in closed-loop with the state-

feedback (14a) and input constraints set U if and only if the

set P̂ is ε-contractive for the zero equilibrium of the system

(13) in closed-loop with the state-feedback (14b) and input

constraints set Û.

Proof: The proof of this theorem follows straightfor-

ward from the equivalence of the two closed-loop systems.

Let k ∈ Z+ be arbitrary. More precisely, by construction,

for any x(k) ∈ P, z(k) = x(k) − xs ∈ P̂ it holds that

z(k + 1) ∈ εP̂ = ε(P⊕ {−xs}) and thus, x(k + 1)− xs =
z(k + 1) ∈ ε(P ⊕ {−xs}) with s(k) ∈ Û and u(k) ∈ U,

respectively. The same reasoning applies when starting with

any z(k) ∈ P̂, which yields z(k + 1) ∈ εP̂ with s(k) ∈ Û.

Theorem IV.1 shows that if a set is ε-contractive for the

zero equilibrium of the dynamics (A,B), i.e., the linear part

of system (11), with translated input constraints set Û, then

the same set translated back to the original coordinates is

ε-contractive for the non-zero equilibrium of the original

affine system. Unfortunately, this result does not apply to

the considered buck-boost DC/DC converter model, due to

the bilinear nature of (9). In what follows, an auxiliary

bilinear system that enables a result similar to Theorem IV.1

is constructed.

Consider a bilinear system with a non-zero equilibrium

point

x(k + 1) = Ax(k) +Bu(k) + C(x(k))u(k) + w, (15)

where w ∈ R
n, A ∈ R

n×n and B, C⊤
i ∈ R

n×m for all

i ∈ Z[1,n]. By applying the coordinate transformation (12)

with us obtained as a solution of

(B + xsC)us = xs − w −Axs, (16)

one obtains the following auxiliary bilinear system with zero

as equilibrium:

z(k + 1) = Âz(k) + B̂s(k) + C(z(k))s(k), (17)

where

Â := A+ C⊤(us), B̂ := B + C(xs). (18)

Next, the main result is stated.

Theorem IV.2 The set P is ε-contractive for the equilibrium

state xs of the system (15) in closed-loop with the state-

feedback (14a) and input constraints set U if and only if the

set P̂ is ε-contractive for the zero equilibrium of the auxiliary

system (17) in closed-loop with the state-feedback (14b) and

input constraints set Û.

Proof: By substituting (14a) in (15), adding and sub-

tracting several terms, and subtracting from both parts xs

one obtains

x(k + 1)− xs = A(x(k)− xs) +Axs +BK(x(k)− xs)

+Bus + C(x(k)− xs)K(x(k)− xs)

+ CxsK(x(k)− xs) + Cus (19)

+ C(xs)us + w − xs.

Using the fact that C(x)u = C⊤(u)x and substituting (12)

in (19) with us a solution of (16), the equation (19) can be

rewritten as follows:

z(k + 1) =
(

A+ C⊤(us)
)

z(k)+ (20)

(B + C(xs))Kz(k) + C(z(k))Kz(k).

Observing that system (20) is system (17) in closed-loop

with the state-feedback (14b) yields that for any x(k) ∈ P,

z(k) = x(k) − xs ∈ P̂ and s(k) = Kz(k) ∈ Û. As such, it

holds that z(k + 1) = x(k + 1)− xs ∈ εP̂ = ε(P⊕ {−xs})
and u(k) = s(k) + us ∈ U. Then, the proof readily follows

via the same reasoning used to prove Theorem IV.1.

Using Theorem IV.2 and [10], the existence of a poly-

hedral Lyapunov function can be established for a bilinear

system with a non-zero equilibrium, as stated next.

Corollary IV.3 Suppose that the set P̂ is ε-contractive with

ε ∈ R[0,1) for the zero equilibrium of the auxiliary system

(17) in closed-loop with the state-feedback (14b) and input

constraints set Û. Then the set-induced function

V (x) := max
j∈Z[1,p]

{

[G]j•(x− xs)

[w1]j
,
[−G]j•(x− xs)

[w2]j

}

(21)

is a Lyapunov function for the system (15) in closed-loop with

the state-feedback (14a) and input constraints set U.

The proof follows directly from the equivalence of the

two closed-loop systems established in Theorem IV.2 and

Corollary II.5.

Using the methodology described above, an auxiliary

bilinear system can be constructed for the converter model

(9). The auxiliary system has zero as equilibrium. Thus,

a solution to the constrained stabilization problem can be

obtained by solving Problem II.4. Based on the resulting

control law and ε-contractive set, a suitable, stabilizing

control law and ε-contractive set can be calculated for the

original converter model (9) with a non-zero equilibrium.
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TABLE I

PARAMETERS OF THE SIMULATED PLANT

Name Value Name Value

RC 0.05Ω iload 0.2A
RL 0.3Ω vs 10V
C 0.05µF Vref 20V
L 220µH Ts 10µs

V. ILLUSTRATIVE CASE STUDY

In this section, we consider the buck-boost converter

model (9)-(10) with the parameter values as summarized in

Table I. The constraint sets on states and inputs are X :=
Ψ (I2, [ 223 ] , [ 00 ]) and U := Ψ (I2, [ 11 ] , [

0
0 ]). Two different

linear state-feedback controllers were constructed for a pre-

specified, candidate ε-contractive set using Problem II.4.

One of the controllers was synthesized using the average

nonlinear model (9) of the system and the coordinate trans-

formation proposed in Theorem IV.2. The other controller

was obtained using a linearized model around the desired

equilibrium state xs and the coordinate transformation pro-

posed in Theorem IV.1, i.e.,

zl(k + 1) := Alzl(k) +Blsl(k), (22)

Al =
[

1.0000 0.1818
−0.0182 0.9855

]

, Bl =
[

0 0.2273
0.4545 −0.9098

]

,

where the index l denotes the fact that the matrices Al, Bl

and vectors zl, sl correspond to the linearization of (9).

Notice that matrices Al and Bl in (22) are different from

A and B in (9).

The first step in controller design is to define the coordi-

nate transformations. Note that the us for both the linear and

bilinear system is not uniquely defined in Section IV. For

the particular case of the considered buck-boost converter,

the matrices Bl and B̂ are invertible. Thus, a unique us

can be calculated for the chosen xs. Next, the candidate ε-

contractive set P̂ for the zero equilibrium auxiliary bilinear

system is imposed and Problem II.4 is solved. For this

particular case study, the elements of the matrices H and Dj

were restricted to take only positive values. The correspond-

ing Problem II.4 has 65 optimization variables, 26 equality

and 70 inequality constraints, and yields the solution K =
[

0.0037 −0.2965
0 0

]

and ε = 0.9875. This solution was obtained

for the candidate ε-contractive set P̂ = Ψ(G,w1, w2) with

G =
[

0 −1
0.8 1.16
1 0

]

, w1 =
[

0.5
1.8
2.5

]

, w2 =
[

2.5
14
20

]

. (23a)

The steady state input us = [ 0.81570.4 ] was computed us-

ing (16). The control input is computed at each time instant

using (14a). The trajectories of closed-loop system starting

from the vertices of the ε-contractive set P are shown in

Fig. 2.

A similar technique, as described in Section IV, was

applied to obtain a linear state-feedback controller for the

linearized system model around xs. The same candidate ε-

contractive set was imposed as for the auxiliary bilinear

system. Note that the uniqueness of the steady-state input

for a specified xs requires the same us for both linearized

0 5 10 15 20
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3

x
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x
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Fig. 2. Closed loop trajectories with linear state-feedback synthesized using
average bilinear model of the converter - black circle; range of operation -
white box with black borders; P - cyan; equilibrium state - red disk.
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Fig. 3. Closed loop trajectories with linear state-feedback synthesized using
linearized model of the converter - black circle; range of operation - white
box with black borders; P - cyan; S - yellow box; equilibrium state - red
disk.

and bilinear models. Problem II.4 in this setup has 38 opti-

mization variables, 14 equality and 43 inequality constraints,

and yields the solution Kl =
[

−0.0091 −0.0635
−0.0135 0.1324

]

and εl =
0.9823. Note that in this case the feasibility of the controller

synthesis methodology does not guarantee the stability of the

closed-loop system due to differences between linearized and

bilinear models. For example, to illustrate the significance of

these differences, consider the set S := Ψ (I2, [ 0.50.5 ] , [
0.5
0.5 ]) .

The average one-step prediction error of a linearized system

model, in comparison with the bilinear model, turned out to

be higher than 12% within S. In Fig. 3, the yellow rectangle

represents the set S⊕ {xs}.

The trajectories of the closed-loop system with the con-

troller designed using a linear model, for all vertices of P,

are plotted in Fig. 3. These trajectories clearly violate the

state constraints. The results shown in Fig. 2 and Fig. 3

clearly illustrate the advantages of a synthesis method that

is applicable to the full bilinear averaged model.

As it can be seen from Fig. 2, the ε-contractive set P does

not contain the origin, which is a regular starting point for

the converter. One possible solution is to apply a constant

input u(k) = uct until x(k) ∈ P, k ∈ Z+. After the system

state reaches the ε-contractive set the affine state-feedback

control law (14a) can be applied. In this specific case it is also

sufficient to clamp the control input, which is illustrated by

the simulation result in Fig. 4. In any case, the satisfaction
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Fig. 4. Closed-loop trajectories for startup in x(0) = [0, 0]⊤ (d1-red,

d2-blue). Simulation performed using the continuous time switched model
of the converter (PWM frequency - 200kHz).
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Fig. 5. Waveforms of output voltage and inductor current as measured by
an oscilloscope.

of the constraint vC ≥ 0 is not guaranteed for the startup

from the origin and under a constant load current.

The proposed design method of an affine state-feedback

control law was tested in real-time on a real-life hardware

platform. A circuit with the same parameters as the ones

employed in the previous simulations was used for the

experiments. A hardware implementation of the controller

was obtained and executed on the Virtex 5 FPGA device

on board of the NI PXI-7852R multifunction DAQ from

National Instruments. The evolution of output voltage of the

converter at startup is shown in Fig. 5.

VI. CONCLUSIONS

This paper proposed a novel, set-theoretic method for

constrained stabilization of DC/DC power converters. The

developed method makes use of a recent result [10] on

the stabilization of bilinear discrete-time systems with zero

as equilibrium. The main contribution was to design a

coordinate transformation that renders this result applicable

to buck-boost DC/DC power converters, which typically have

a non-zero equilibrium. The resulting synthesis has several

advantages, which include low computational complexity, an

a priori guarantee of stability and constraints satisfaction

and applicability to the full bilinear averaged model of the

converter.

Future research deals with further enlarging the region of

attraction via alternative synthesis methods for constrained

discrete-time bilinear systems and optimizing the speed of

convergence.
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