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Abstract— In this paper we propose a novel distributed algorithm to
solve degenerate linear programs on asynchronous networks. Namely,
we propose a distributed version of the well known simplex algorithm.
We prove its convergence to the global lexicographic minimum for
possibly fully degenerate problems and provide simulations supporting
the conjecture that the completion time scales linearly with the diameter
of the graph. The algorithm can be interpreted as a dual version of
the constraints consensus algorithm proposed in [1] to solve abstract
programs when the last is applied to linear programs. Finally, we study
a multi-agent task assignment problem and show that it can be solved
by means of our distributed simplex algorithm.

I. INTRODUCTION

The increasing interest in performing complex tasks via multi-

agent systems (e.g. sensor and robotic networks) has raised the

interest in solving distributed optimization problems. The funda-

mental paradigms in distributed computation are that: (i) infor-

mation, relevant for the solution of the problem, is distributed all

over a network of processors with limited memory and computation

capability, and (ii) the overall computation relies only on local com-

putation and information exchange amongst neighboring processors.

Optimizing linear objectives over linear constraints takes a central

role in the optimization literature and thus deserves particular

attention also in distributed computation. In this paper we consider

a distributed version of linear programs. In particular, we consider

linear programs in standard form where the number of decision

variables is much larger than the number of equality constraints.

Each processor in the network is assigned only the information

relative to a subset of the decision variables. The objective is to

agree on a global minimum of the problem, if it exists, or agree that

the problem is either unbounded or infeasible. Particular attention

is given to degenerate linear programs, in which more than one

solution is optimal and a mutual agreement of all agents on one

solution is required.

Although distributed and parallelized optimization algorithms

have been studied for a long time, see e.g. [2], the multi-agent

perspective has recently become subject of renewed interest in the

control and optimization theory community. While several interior

point algorithms were proposed to solve quadratic programs and

other convex programs [3], [4], [5], [6], to the best of our knowledge

a theory for distributed linear programming is missing. The idea

of parallelizing and distributing the computation of the simplex
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algorithm has been exploited in the computer science literature

for a while, see e.g. [7], [8]. An alternative contribution in this

area, focusing in particular on the multi-agent requirements, is

given in [1], see also [9], where distributed abstract programs are

introduced as a general class of optimization problems including

linear programs and a constraints consensus algorithm is proposed

to solve them. Following the trail opened in [1], in this paper we

propose a distributed version of the well known and widely used

simplex method [10] to solve linear programming in a distributed

way.

The contributions of this paper are threefold. First, we introduce

a distributed version of the well known simplex algorithm to

solve degenerate linear programs in asynchronous networks with

time-varying directed communication topology. Each agent has a

candidate basis that it exchanges with its neighbors and updates

by iteratively performing pivot operations on a subset of columns

given by its basis, its neighbors’ candidate bases and its original

columns it has been assigned. The new algorithm relies only on the

two step procedure of exchanging information and performing the

pivot operation. This can be done by each agent on its own speed,

and does not require network-wide coordination by consensus-

type algorithms between the update steps. This distinguishes our

algorithm form other distributed simplex algorithms. Second, we

characterize the main properties of the algorithm. In detail, we show

that our proposed algorithm can deal with fully degenerate linear

programs. This is obtained by modifying the local solver at each

node so that the pivot steps implement a lexicographic ratio test. As

a consequence of using lexicographic ordering, we prove that each

candidate basis converges to the unique lexicographic minimum

of the problem. The main idea behind the proposed distributed

simplex algorithm is inspired by the constraints consensus algorithm

proposed in [1]. In fact, in this paper we show that, if constraints

consensus is implemented for linear programs in standard dual

form by using a lexicographic test, then the proposed distributed

simplex turns to be its dual implementation. Third and final, we

show how to apply the proposed algorithm to the multi-agent

assignment problem which is known to be highly primal degenerate.

We show that, thanks to the special structure of the problem,

if N is the number of agents and, thus, N2 the number of

decision variables, the algorithm can be efficiently implemented by

storing and exchanging O(N log2 N) bytes. We provide numerical

computations supporting our conjecture that the distributed simplex

algorithm scales linearly with the diameter of the graph in networks

with fixed topologies.

The remainder of the paper is organized as follows. Section II

reviews some fundamental principles of linear programming and

introduces a non-standard version of the simplex algorithm that

will be used as local solver in the distributed set-up. Section III

introduces the multi-agent system and the communication network.

The main results of the paper are presented in Section IV, where

a distributed simplex algorithm for degenerate linear programs

is proposed and analyzed. The usefulness of the algorithm is

illustrated in Section V, where the application to the class of multi-

agent assignment problems is discussed and simulation results are

provided for a time complexity analysis of the algorithm.
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II. CENTRALIZED LINEAR PROGRAMMING

Some preliminaries concerning linear programming are reviewed

in this section. The goal is to lay the ground for the remainder of

the paper.

A. Problem formulation and optimality conditions

Throughout this paper, we consider linear programs in the

standard equality form

min cT x

s.t. Ax = b x ≥ 0,
(1)

where A ∈ R
d×n, b ∈ R

d and c ∈ R
n, are the problem data and

x ∈ R
n is the vector of decision variables. In this paper, we are

interested in problems where the number of decision variables n is

significantly larger than the number of constraints d. Without loss

of generality, it can be assumed that rank(A) = d, since otherwise

constraints are redundant and can be ignored. A problem in form

(1) is called the primal problem. The dual problem of the standard

linear program (1) is

max bT y s.t. AT y ≤ c. (2)

While the primal problem has n decision variables and d con-

straints, this relation is just reversed in the dual. In the following

we will be working with the primal problem, but will sometimes

explicitly refer to the dual formulation. We call a column of problem

(1), a vector hi ∈ R
1+d defined as

[

cT

A

]

=

[

c1, . . . , cn

A1, . . . , An

]

=: [h1, . . . , hn], (3)

where ci ∈ R are the coefficients of the vector c and Ai ∈ R
d×1 are

the columns of A. Note that the name column refers to the primal

problem formulation and that a column in the primal corresponds

to an inequality constraint in the dual. The set of all columns is

denoted by H = {hi}i∈{1,...,n}. For any subset G ⊂ H, the

notation cG and AG refers to the cost vector and the constraint

matrix, respectively constructed from the columns contained in

G. The same notation xG is used to denote the corresponding

decision variables. Using this notation, a linear program (1) is fully

characterized by the pair (H, b), that is by the set of columns and

the right-hand side vector of the equality constraints. A well known

notion in linear programming is the one of basic solution. A set

of exactly d columns B ⊆ H is called a basis if rank(AB) = d.

The fundamental theorem of linear programming [10] states that

if a linear program (H, b) has an optimal feasible solution, it has

an optimal basic feasible solution. The optimal solution of a linear

program is, in general, such that the basic variables xB 6= 0 and

the non-basic variables xN = 0. A solution for the basic variables

is determined by xB = A−1
B b. A basis is called a feasible basis

if xB ≥ 0. Two bases B1 and B2 are said to be adjacent, if there

exist columns e ∈ B2 and l ∈ B1 such that B2 = {B1 ∪ e} \ {l}.
For each feasible basis there is a value called the primal cost

zB = cT
BxB . (4)

A basis Bi is optimal if there is no other basis Bj , j 6= i, such that

zBi
> zBj

. In the following we will mark optimal values with a

star.

Suppose a basis B is known, then there is immediate need for

a criterion to check whether this basis gives rise to an optimal

solution, that is zB = z∗. Therefore, the following concept is useful.

Given a basis B and a single non-basic column h /∈ B, the reduced

cost of the column is defined as

c̄h = ch −AT
h (A−1

B )T cB =: rT
{B∪h}c{B∪h}, (5)

where ch ∈ R and Ah ∈ R
d refer to the problem data related to

column h. The reduced cost gives rise to the standard optimality

condition in linear programming.

Theorem 2.1 (Optimality Condition, [10]): If for some given ba-

sis B with basic feasible solution xB = A−1
B b the reduced cost

c̄h ≥ 0, for all columns h ∈ H, then this solution is optimal. �

B. Problem degeneracy

A difficulty in linear programming is that the optimal solution

may be not unique. In this case the linear program is called

degenerate. Commonly, two types of degeneracy are distinguished.

A linear program is said to be primal degenerate if there is more

than one basis that leads to the optimal primal solution. That is,

there exist two bases Bi and Bj such that xBi
= xBj

= x∗.

In a primal degenerate linear program, some of the optimal basic

variables xB are zero, and the corresponding basic columns can

therefore be replaced by some non-basic columns, without changing

the value zB . A linear program is said to be dual degenerate

if more than one primal solution is optimal. That is, there exist

several bases, say Bi and Bj , providing different basic solutions,

xBi
6= xBj

, while both bases admit the optimal primal cost

zBi
= zBj

= z∗. A primal linear program is dual degenerate if and

only if its dual problem is primal degenerate. A problem is said to

be fully non-degenerate, if it is neither primal nor dual degenerate.

Non-degeneracy is highly desirable from a computational point of

view, as the following results show.

Lemma 2.2 ([11]): Every fully non-degenerate linear program

has at most one optimal solution. �

Theorem 2.3 ([11]): If a linear program has an optimal solution

and is fully non-degenerate, then there exists a sequence of adjacent

bases from any basis B to the unique optimal basis B
∗. �

However, degeneracy is a very common phenomenon in linear

programs and solution methods are required to deal with highly

degenerate linear problems.

C. A simplex algorithm for degenerate linear programs

A well established procedure for solving linear programs is

the simplex algorithm introduced by Dantzig [10]. An informal

description of the simplex algorithm is as follows:

Simplex Algorithm: Let a primal feasible basis B be given.

While there exists an entering column e /∈ B such that

c̄e < 0, find a leaving basic column l(e) ∈ B such that

(B ∪ {e}) \ {l} is again a feasible basis. Exchange the

column l with e to get a new basis.

The procedure of replacing a basic column with a non-basic one

is called pivot. For a non-degenerate linear program, the primal

cost improves at each iteration, i.e. zB∪{e}\{l} < zB . Since only a

finite number of bases exist, the algorithm converges after a finite

number of steps to the optimal solution. However, non-degeneracy

is often not met and basically two problems arise in the application

of the simplex algorithm to degenerate linear programs: (i) cycling

among multiple bases (primal degeneracy), and (ii) convergence to

a non-unique minimizer (dual degeneracy). While the first problem

has received great attention in the literature, the second problem has

been rarely studied. However, problem (ii) turns to be critical in a

multi-agent setup, where several decision makers solve the problem

and, thus, have to agree on the same solution.

In order to handle degeneracy, a simplex algorithm with a unique

solution is presented in the following. We are using the algorithm

proposed in [12], relying on results in [11]. The algorithm relies

heavily on the concept of lexicographic ordering of vectors.

Definition 2.4 (Lex-positivity): If γ = (γ1, . . . , γr) is a vector,

then it is said to be lexico-positive (or lex-positive) if γ 6= 0 and

the first non-zero component of γ is positive. �

Lexico-positivity will be denoted by the symbol γ ≻ 0. Given two

vectors, v and u, we say that v ≻ u if v − u ≻ 0 and v � 0
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if −v ≻ 0 or v = 0. Given a set of vectors {v1, . . . , vr}, the

lexicographical minimum, denoted lexmin, is the element vi, such

that vj � vi for all j 6= i. For the same set of vectors, we use

lexsort{v1, . . . , vr} to refer to the lexicographically sorted set of

these vectors.

The concept of lex-positivity gives rise to a refinement of the

notion of feasible basis.

Definition 2.5 (Lex-feasibility): A feasible basis B is called lex-

icographically feasible (lex-feasible) if every row of the matrix

[A−1
B b, A−1

B ] is lex-positive. �

It is well known in the literature [10], see also [12], that the

simplex method can be refined such that after a pivot iteration the

new basis is again primal lex-feasible. This is done by choosing

the leaving columns according to the lexicographic ratio test. Let

B be a lex-feasible basis and e the entering column, then the leaving

column is chosen as

llex(e) = arg lexmin
j∈B

{[A−1
B b, A−1

B ]•j/(A−1
B Ae)•j |

(A−1
B Ae)•j > 0},

(6)

where the subscript •j denotes selection of the j-th row of the

matrix, respectively vector. It is well known that the lexicographic

ratio test is equivalent to a perturbation making the problem primal

non-degenerate [10]. Such a selection rule prevents the simplex

algorithm from cycling.

In a multi-agent setting, we want the algorithm to converge

to a unique optimal solution. This is usually not required in

centralized linear programming, where all optimal solutions are

equally desirable. However, distributed algorithms have to ensure

that all computation nodes end up with the same solution. In order

to guarantee convergence of the algorithm to a unique solution,

the optimization criterion can be suitably modified. We change

the minimization objective from the primal cost z = cT x to the

lexicographically perturbed cost

φ(x) = cT x + δ0x1 + δ2
0x2 + . . . + δn

0 xn, (7)

where xi represents the i-th component of the vector x. For a

sufficiently small constant δ0, the optimizer x∗=arg minx φ(x)
corresponds to the unique optimal solution of (1) which is minimal

in a lexicographic sense. Now let δ = [δ0, . . . , δ
n
0 ]T and write

φ = (cT + δT )x. A column becomes admissible with respect to

the perturbed cost φ if c̄e = rT
{B∪e}c{B∪e} + rT

{B∪e}δ < 0. This

in turn is equivalent to requiring

[rT
{B∪e}c{B∪e}, r

T
{B∪e}] ≺ 0. (8)

Remark 2.6: The perturbation used in (7) and (8) requires an

ordering of the decision variables, respectively columns. We will

discuss a suitable perturbation for distributed linear programming

later on. �

Next, we give a pseudo code description of the lexico-

graphically modified Pivot algorithm and, consistently, of the

Simplex algorithm. The Pivot in this form is proposed in [12].

Algorithm 1 Pivot (B, e)

Require: A lex-feasible basis B, a non-basic column e /∈ B

if [rT
{B∪e}c{B∪e}, rT

{B∪e}] ≺ 0 then

select the leaving column llex(e) via lex ratio test (6)

if llex(e) 6= ⊘ then

B← (B ∪ {e}) \ {llex(e)} % make the pivot

else

B← null % problem is unbounded

end if

end if

Return B

Algorithm 2 Simplex (H, B)

Require: A set of columns H, a lex-feasible basis B ⊆ H

while ∃e ∈ H such that [rT
{B∪e}c{B∪e}, r

T
{B∪e}] ≺ 0 do

B← Pivot (B, e)

end while

The proposed simplex algorithm requires a lex-feasible basis for

the initialization. Several procedures are known in the literature

to initialize a simplex algorithm. In this paper we use the big-

M method. We assume without loss of generality that each entry

of the vector b is non-negative. Then, artificial decision variables,

x̂1, . . . x̂d, are introduced. Corresponding to the artificial decision

variables, an initial basis BM is defined as follows. Choose ABM
=

Iq and cBM
= M ·1, where Iq is the d×d identity matrix, and 1 is a

d-dimensional vector of ones. The cost coefficients are all given the

value M > 0, which is chosen larger than any cost coefficient that

possibly occurs in the original problem, i.e. M ≫ maxi=1,...,n(ci).

In the following, the columns corresponding to the initial basis

are denoted by ĥi. An initial basis defined in this way is primal lex-

feasible, since every row of [I−1b, I−1] is lexicographic positive.

III. NETWORK MODEL

Before introducing the network model we need some definitions

from graph theory. Let Gc = ({1, . . . , N}, Ec) denote a directed,

static graph (digraph). The set {1, . . . , N} are the nodes of the

graph, corresponding to unique identifiers of the agents. The set

Ec ⊂ {1, . . . , N}2 denotes the set of edges connecting two nodes.

The number of edges going out from (coming into) node i is called

the outdegree (indegree). A digraph is said to be strongly connected

if, for every pair of nodes (i, j) ∈ {1, . . . , N}×{1, . . . , N}, there

exists a path of directed edges that goes from i to j. In a directed

graph, the minimum number of edges between node i and j is

called the distance from i to j and is denoted by dist(i, j). The

maximum dist(i, j) taken over all pairs (i, j) is the diameter of the

graph Gc and is denoted by diam(Gc). We allow the communication

network to be time-varying and therefore to be described by a time-

dependent digraph of the form Gc(t) = (V, E(t)), t ∈ R≥0, where

t represents the universal time. The set of outgoing (incoming)

neighbors of node i at time t are the set of nodes to (from) which

there are edges from (to) i at time t. They are denoted by Nout(i, t)
and Nin(i, t), respectively.

A graph Gc(t) models the communication in the network in the

sense that at time t there is an edge from node i to node j if and

only if agent i transmits information to agent j at time t. In the

rest of the paper we use the following assumption.

Assumption 3.1 (Periodically Strong Connectivity): There exists

a positive and bounded constant Tc such that for every time instant

t ∈ R≥0, the digraph GTc
c (t) := ∪Tc

τ=tGc(τ) is strongly connected.

�

The agents in the network perform a distributed algorithm [13] to

solve the optimization problem. In what follows, the superscript [i]
denotes that a quantity belongs to agent i. A distributed algorithm

consists of: (1) the set W , called the set of states w[i], (2) the set

Σ, called the communication alphabet including the null element,

(3) the map MSG : W × (1, . . . , N)→ Σ, called message function,

and (4) the map STF : W × ΣN → W , called the state transition

function. In addition to the universal time t, we denote t
[i]
k the

time instants at which agent i updates its internal state. In this

sense k is a counter for updates performed by an agent. Between

two discrete updates, the state is constant w[i](t) = w(t
[i]
k ) for all

t
[i]
k ≤ t < t

[i]
k+1. The evolution of the distributed algorithm is then

as follows. The algorithm starts at t = 0 and each agent initializes

its state to w[i](0). Each agent performs two actions repeatedly:

(i) the ith agent sends to each of its outgoing neighbors in the
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communication graph a message computed as MSG(w[i](t
[i]
k )); (ii)

whenever it receives information from its in-neighbors, it updates

its state w[i](t
[i]
k+1) according to the state transition function. Each

agent performs these two actions at its own speed and independent

of the speed of the other agents. In this sense, no synchronization

is required in the network. Following [2], we say that the algorithm

is partially asynchronous since it performs asynchronously, but

Tc imposes a global bound on the time allowed to pass between

consecutive state updates.

IV. DISTRIBUTED LINEAR PROGRAMMING

In this section we describe our distributed simplex algorithm to

solve linear programs of the form (1).

First, we present the notion of distributed linear program.

Definition 4.1 (Distributed linear program): A distributed linear

program is a tuple (Gc, (H, b),P) that consists of

(i) a time-varying communication graph Gc(t) =
({1, . . . , N}, Ec(t));

(ii) a linear program (H, b);

(iii) a unique partitioning P = {P[i], i = 1, . . . , N} of the

problem columns, with H = ∪N
i=1P

[i]. �

A solution of the distributed linear program is attained when all

agents have computed the same basis solving (H, b).

Defining a distributed linear program in this way, implies the

following properties. An entry of the decision vector x belongs to

only one agent and each agent i supervises ni decision variables,

with
∑N

i=1 ni = n. We write xiκ to refer to the κ-th decision

variable supervised by agent i, with κ = 1, . . . , ni. We assume that

the problem information is initially distributed all over the network

of agents. That is, the each column hik, consisting of the coefficient

ciκ ∈ R and the vector Aiκ ∈ R
d, is initially only available to the

agent i. The information, that is permanently available to an agent,

is defined by the partition P , i.e. P
[i] = {hiκ : κ = 1, . . . , ni}.

We will use the big-M method to locally initialize the optimiza-

tion problem at every agent in the network. To do that, we need

the following assumption.

Assumption 4.2: An upper bound M on the cost coefficients cik

is known to every agent. �

A. Distributed Simplex Algorithm

The Pivot iteration, presented in Section II, is at the basis of the

distributed algorithm presented below. Let us first informally outline

the underlying idea of the algorithm, performing on a partially

asynchronous network.

Distributed Simplex Algorithm: Let Gc(t) be a time-

varying communication graph. The state of every agent

i is a lex-feasible basis, w[i](t) = B
[i](t). Each agent

initializes a lex-feasible basis using the big-M method.

Each agent performs consecutively the following tasks:

(i) it transmits irregularly, but at least after a time

interval of maximal length Tc, its basis to all its

out-neighbors;

(ii) whenever it acquires a basis from one of its in-

neighbors, it sorts all columns in its memory - its

permanent columns P
[i], its local basis B

[i] and the

columns received from its neighbors h[j], j ∈ NI -

according to a lexicographic ordering and performs

the Simplex ;

(iii) it updates its local basis with the optimal basis

computed in step (ii).

Next, we analyze the technical properties of the proposed

algorithm. The following theorem summarizes the convergence

properties of the Distributed Simplex algorithm. The proof of the

algorithm is inspired to the proof of Theorem IV.4 in [1].

Problem data: ((H, b),Gc,P)

Algorithm: Distributed Simplex

Message alphabet: Σ = H
d ∪ {null}

Processor state: B
[i] ⊂ H with card(B) = d

Initialization: B
[i] := BM

function MSG(B[i], j)

return all h[i] contained in B
[i] but not in BM .

function STF(B[i], y)
% executed by agent i, with yj := MSG(B[j], i) = B

[j]

if yj 6= null for all j ∈ NI(i) then

H
tmp ← lexsort{P[i] ∪ B

[i] ∪
(

∪j∈NI (i) yj

)

}

B
[i] ← Simplex (Htmp, B

[i])
else

B
[i] ← null

end if

Theorem 4.3: Consider a distributed linear program

(Gc(t), (H, b),P) with periodically strongly connected

network Gc(t), t ∈ R≥0. Let the agents run the

Distributed Simplex algorithm. Then there exists a finite time

Tf such that

(i) if the centralized problem (H, b) has a finite optimal solution,

the candidate bases B
[i] of all agents have converged to the

same lex-optimal basis;

(ii) if the centralized problem (H, b) is unbounded, all agents

have detected unboundedness, in the sense that all bases are

the null symbol;

(iii) if the centralized problem (H, b) is infeasible, all agents

can detect infeasibility, in the sense that all bases B
[i] have

converged, but still contain artificial columns. �

For space constrains the proof omitted in this paper and will be

provided in a forthcoming document.

Having established the convergence properties of the Dis-

tributed Simplex algorithm, we also provide a Halting Condition.

We provide here, without proof, the Halting Condition proposed in

[1].

Theorem 4.4 ([1]): Consider a network described by a time-

independent, strongly connected digraph Gc implementing a Dis-

tributed Simplex algorithm. Each agent can halt the algorithm

execution if the value of the basis has not changed in a time interval

of length (2 diam(Gc) + 1)Tc. �

B. Duality to Constraints Consensus Algorithm

Distributed linear programs, as they are introduced in this note,

are strongly related to distributed abstract programs introduced in

[1].

Abstract programs are a generalization of linear programs [14],

usually presented in the dual form (2). They are defined by a

pair (H, w), where H is a finite set with the elements called

constraints, and w : 2H → W is a function taking values in

a linearly ordered set (W,≤). In distributed abstract programs,

[1] , the constraints in H are distributed throughout a network

of agents, similar to the column distribution considered in this

note. In the Constraints Consensus algorithm agents transmit con-

tinuously constraints taken from the set H . The next proposition

clarifies the relation between the Constraints Consensus algorithm,

when applied to linear programs in standard dual form, and the

Distributed Simplex algorithm.

Proposition 4.5: The Constraints Consensus algorithm of [1] ap-

plied to a fully non-degenerate linear program of the form (2) is

dual to the Distributed Simplex algorithm. �
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Proof: The linear program (2) is shown to be an abstract

program in [1]. Each constraint of the dual problem (2) corresponds

to a column of the primal problem. Since strong duality holds, for

a given set of columns, respectively constraints, both algorithms

compute the same primal and dual feasible solution.

V. THE DISTRIBUTED ASSIGNMENT PROBLEM

One of the most fundamental resource allocation problems

(and one of the most relevant benchmark problems for linear

programming) is the matching of N agents to N tasks on a

one-to-one basis, while minimizing the overall cost.

A distributed assignment problem consists of N agents that

(i) communicate over a time-varying directed communication

network Gc(t); (ii) aim to find a one-to-one assignment to N
tasks; while (iii) initially each agent i only knows the cost ciκ

it takes it to perform the tasks κ ∈ {1, . . . , N}. A distributed

assignment problem is solved, when all agents know the same

optimal assignment.

A popular method to illustrate assignment problems is by bipar-

tite assignment graphs Ga = {V, W ; Ea}, where V is the set of all

agents and W is the set of tasks. Figure 1 illustrates the assignment

graph.

Note that now two different graphs are connected to the problem:

(i) the assignment graph Ga, representing the agent-task assignment,

and (ii) the communication graph Gc representing the inter agent

communication structure. According to the notation introduced for

the Distributed Simplex algorithm, we will use in the following

Roman letters, e.g. i, to index the agents, and Greek letters, e.g. κ,

to index the tasks. The edges of the assignment graph (i, κ) ∈ Ea

are weighted with the cost coefficients ciκ ∈ Z>0.

For each agent i and task κ a binary decision variable xiκ ∈
{0, 1} is introduced, which is 1 if agent i is assigned to task

κ and 0 otherwise. The assignment problem corresponds now to

the optimization problem minxiκ∈{0,1}

∑

i

∑

κ
ciκxiκ, with the

constraints that a full assignment is achieved. It is well known in

the literature that the convex relaxation of the previous problem

gives rise to the linear optimization problem [15], [10]:

min
∑

i

∑

κ

ciκxiκ (9)

s.t.
∑

κ

xiκ = 1, ∀i ∈ {1, . . . , N}, (10)

∑

i

xiκ = 1, ∀κ ∈ {1, . . . , N}, (11)

0 ≤ xiκ, ∀(i, κ). (12)

TABLE I

THE ASSIGNMENT PROBLEM DATA AS DISTRIBUTED LINEAR

PROGRAM.

hiκ: edge of Ga connecting agent i and task κ

H : N2 edges of Ga

b : vector of ones in R
2N−1

P
[i] : N edges of Ga connecting agent i with all N tasks

Gc : partially asynchronous communication network among agents

B : spanning tree of Ga, with 2N − 1 arcs.

This problem has always an optimal solution xiκ ∈ {0, 1},
corresponding to the optimal assignment. Note that the linear

program (9)-(12) has n = N2 decision variables and d = 2N
equality constraints. The problem is fully determined by a subset

of d = 2N − 1 equality constraints, and one constraint can be

ignored. Obviously, an edge of the assignment graph Ga is uniquely

characterized by the triplet of integers

hiκ := (ciκ, i, κ) (13)

which is the cost coefficient ciκ and the corresponding identifier of

an agent i and a task κ. Table I shows how the assignment problem

can be represented as a distributed linear program.

The decision variables xiκ in (9)-(12) determine whether the

edge hiκ will be active, and therefore whether agent i will be

assigned to task κ. As previously seen, the optimal solution x∗

must have exactly N entries equal to 1, since this provides a full

assignment. However, since a basis solution contains always 2N−1
decision variables, the assignment problem is inherently primal

degenerate. Very often (although not inherently) the assignment

problem is also dual degenerate. Consider for example the extreme,

but not unrealistic, situation where ciκ = 1, for all i, κ. Such a

multiplicity of optimal solution imposes a severe challenge in the

distributed assignment problem. It is not sufficient for an agent

to have locally available an optimal solution, but it is critically

necessary that all agents have the same optimal solution available.

The Distributed Simplex algorithm is perfectly suited to solve the

distributed assignment problem. Next, we provide a bound on the

number of bytes that agents need to transmit for the distributed

assignment problem.

Proposition 5.1: At each communication instant, every agent

transmits at most O(N log2 N) bytes.

Proof: Assume that the integers ciκ can be encoded with

2 bytes. Let the ceil operator ⌈r⌉ indicate a rounding of r to

the next larger integer. Then a column can be encoded with

2 + ⌈ 1
4
(log2(N) + 1)⌉ bytes. Thus, at each round, at max (2N −

1) · (2 + ⌈ 1
4
(log2(N) + 1)⌉) bytes are sent out by each agent.

With an increasing number of agents N in the network, the number

of bytes that has to be exchanged grows only with O(N log2 N).

In contrast, the number of decision variables n of the centralized

assignment problem (9) grows with O(N2). Therefore, while the

original problem grows quadratically, the local complexity of the

Distributed Simplex algorithm increases only almost linearly.

We use distributed assignment problems to analyze by simulation

the expected time complexity of the Distributed Simplex algorithm.

For each simulation, we generate a random assignment problem

by choosing the cost coefficients ciκ uniformly from the interval

[0, 20]. This allows a randomized analysis of the expected conver-

gence time of the Distributed Simplex algorithm.

We use the following setup: throughout all scenarios we consider

N = 40 agents. Therefore, the centralized assignment problem

has n = 1600 columns. For simulation purposes, we consider a
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Fig. 2. Communication rounds in dependence of the number of in-
neighbors on the graph. The ’x’ indicate the completion time and the black
bars indicate the 95% confidence intervals for the expected number of
communication rounds.

synchronous communication network, where all agents transmit

their information simultaneously. We call a time interval with

information exchange and local computations a communication

round. We assume that all agents are arranged in a ring structure.

Each agents communicates one-directional to a specified number of

agents, following him in the ring graph. We will vary the number

of out-neighbors, which is in this setup equivalent to the number of

in-neighbors, in order to analyze the time complexity in dependence

of the graph parameters number of in-neighbors and diameter of

the graph.

For a fixed number of neighbors, we simulate five random

assignment problems, and compute based on this information the

95% confidence intervals for the expected time complexity. For

computing the confidence intervals, we assume that the convergence

time of the random problems is normally distributed. The simulation

results in dependence of the number of in-neighbors Nin and of the

graph diameter diam(Gc) are shown in the Figures 2 and 3.

In Figure 2, which shows the required communication rounds

with respect to the in-neighbors, one can see that the time com-

plexity first quickly decreases as the number of in-neighbors grows,

but then saturates to a certain level. From Figure 3 the diameter

of the communication graph Gc appeared to be significantly more

important for the time complexity of the algorithm than the number

of in-neighbors Nin. However, the number of in-neighbors directly
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Fig. 3. Communication rounds in dependence of the diameter of the graph.
The ’x’ indicate the simulation results and the black bars the 95% confidence
intervals for the expected communication rounds.

determines the dimension of the local subproblems. While the

subproblems each agent has to solve are fairly small for few in-

neighbors, they can become very large, and in the limit even the

centralized problem, as the number of neighbors increases. We can

conclude from the Figures 2 and 3, that, in the given setup, there

is an optimal communication graph with around 15 in-neighbors,

where the expected number of communication rounds is almost

minimal, while the local subproblems are still of a moderate size.

VI. CONCLUSIONS

We have proposed the notion of Distributed Linear Programs,

as an extension of linear programs to a multi-agent setup. By

utilizing a non-standard version of the classical simplex algorithm, a

distributed algorithm, named Distributed Simplex has been derived

for solving Distributed Linear Programs. The algorithm is proven

to work in asynchronous networks and poses little requirements

on the communication structure. Additionally, we have derived a

duality relation of the new algorithm to the recently proposed Con-

straints Consensus algorithm. Finally, the multi-agent assignment

problem has been introduced exemplary as a relevant problem class

for which the algorithm is especially well suited. The multi-agent

assignment problem is also used for a randomized analysis of the

expected time complexity of the proposed algorithm. The simulation

results indicate, that the time complexity grows at least linearly with

the diameter of the communication network.
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