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Abstract— This paper mainly concentrates on extracting
dominant frequency estimates from sinusoidal signals corrupted
with low frequency disturbances perturbation by means of a
synthetic identifier in a real-time manner. It is assumed that the
frequencies of such signals are unknown, and the magnitudes of
the dominant signals are sufficiently large compared with those
of disturbances. A state space based model for such sinusoidal
signal is presented. The proposed frequency identifier consists
of a high-gain observer and a gradient based estimator. The
utilization of the observer is for effectively attenuating the
low frequency disturbances so that the dominant frequency
components can be isolated. The gradient estimators can then
operate on the estimated states from the observer to generate
frequency estimation.

I. INTRODUCTION

The online estimation of frequency and amplitude of

sinusoidal signals is an important and classical problem,

which has received much attention from the systems and

controls community. In [1], a globally convergent frequency

estimator was proposed based on adaptive notch filter design

for a sinusoidal signal with single frequency. By using a

state space realization of the sinusoidal signal, the frequency

estimation problem can be converted to combined state and

parameter estimation problem, a well-known yet challenging

problem in controls. Adaptive observers based global fre-

quency estimator was then developed, [2],[3]. By considering

white noise and time-varying frequencies, a modified Kalman

filter was designed for frequency estimation, [4]. Reference

[5] provides a disturbance observer incorporating adaptive

parameter dynamics based on the least-mean-square (LMS)

and recursive least square (RLS) method and positive result

on a discrete signal with white noise. Reference [6] and

[7] uses robust adaptive modified Newton optimization to

accomplish frequency estimation on discrete sinusoids with

white noise, where instant changes on frequencies are tol-

erant. Recently, the approach was extended to simultaneous

reconstruction of multiple frequencies and amplitudes for a

signal containing n unknown sinusoids, [8]. Although the

convergence and boundedness of the estimator can be proved

analytically, [9] tunes parameters analytically by analyzing

the convergence of the frequency estimator with the non-

linear contraction theory, in order to guarantee satisfactory

estimation results.
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It is noticeable that the current research results of fre-

quency estimation generally deal with purely sinusoids or

sinusoids corrupted with white noise. In contrast, this paper

focuses on a type of signals with unknown but bounded low

frequency disturbances, technically hardly to be removed

by the methods above. A state space model of the signal

is formed so that each frequency component is represented

by two state. Due to the lack of information, the pertur-

bations can only be attenuated rather than removed. Based

on this model, a synthetic frequency identifier is proposed,

which consists of a high-gain observer and a gradient based

estimator. The utilization of the observer is for effectively

attenuating the low frequency disturbances so that the dom-

inant frequency components can be isolated. The gradient

estimators can then operate on the estimated states from

the observer to generate frequency estimation. An output

transformation is applied that can help compress the range of

the observation error. The synthetic identifier has provided

more satisfactory simulation results on perturbed signals,

compared with those from [8].

The remainder of this paper is organized as follows:

Modeling of the signal and the problem formulation are

given in section II; The real-time estimation of perturbed

sinusoids are presented in section III, where a high-gain

observer based on [10],[11] is introduced and an adaptive

frequency estimator is developed; The section IV includes

the simulation results that demonstrates the effectiveness of

the proposed identifier. Finally section V concludes the paper.

II. MODELING & FORMULATION

Consider a sinusoidal signal with n nominal frequency

components and the disturbance:

y(t) =

n
∑

i=1

(Ai sin(wit+ φi)) + d(t). (1)

It is assumed that only y(t) is measurable and the num-

ber of nominal (main) frequency components n is known,

whereas all the parameters are unknown, including wi, φi

and Ai, i = 1, 2, . . . , n. d(t) is the bounded disturbance

containing perturbation components other wi, whose magni-

tudes are minor ones compared with {Ai}.

Define sinusoidal states x =
[

x1, x2, · · · , x2n

]T

with
{

x2i−1(t) = Ai sin(wit+ φi)
x2i(t) = Ai cos(wit+ φi),

(2)
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= Ax = A0x+ f . (3)

Here we define A0 and f considering that the system matrix

A , A(w) contains the unknown frequency w. Give an

initial guess of w, denoted as w0, and define A0 = A(w0),
then the estimation deviation ∆A(w,w0) = A − A0, and

f(t) = ∆Ax(t).
Having proposed a state equation with known coefficients

and uncertainties, we start to focus on the establishment

of an output equation. Define an augmented output vector

ȳ =
[

y, ẏ, · · · , y(2n−1)
]T

and similarly an augmented

disturbance vector d̄ =
[

d, ḋ, · · · , d(2n−1)
]T

by in-

cluding the measurement of the signal and its derivatives

up to (2n − 1)th order. Similarly, the output matrix C can

be written as C = C0 + ∆C, where C0 = C(w0) as

C = C(w). Here we have formed the output equation (4)

with v(t) = ∆Cx(t) + d̄(t).
A state space model is now established for the sinusoidal

signal corrupted with the disturbance:
{

ẋ = A0x+ f

ȳ = C0x+ v.
(5)

Remark 1: Note that the derivatives of the output up to

(2n−1)th order are computed in this model for the proposed

state estimator to work properly. It will be shown later

that absence of the derivatives will lead to the infeasible

solutions of the observer. The reasons will be explained in

detail in Remark 2. In other words, the measurement of the

signal itself alone cannot provide sufficient information about

the unknown frequencies, which appear as the unknown

parameters in the state space model.

The state space models for sinusoidal signals are not

unique, and different models (linear or nonlinear) have been

presented in previous work for frequency estimation using

model based techniques, e.g. [3],[8]. The model presented in

this paper is one of the linear models and it highlights the

treatment of the disturbances.

III. REAL-TIME ESTIMATION OF PERTURBED SINUSOIDS

Based on the model in (3-4), our goal is to design a

frequency identifier that can identify and estimate in real

time the dominant frequencies of the sinusoidal signals,

despite the existence of frequency perturbations in the low

or medium spectrum range. This design can find important

applications in machine condition monitoring and diagnosis,

for instance, trending and monitoring non-stationary vibra-

tion signals of the rotating machine. Reference [8] provided a

complete coverage on frequency identification and amplitude

estimation for pure sinusoidal signals without noise or dis-

turbances, whereas it fails to converge to the desired values

in the case of obvious disturbances. On the contrary, this

paper has provided restriction on these disturbance frequency

components, as long as their magnitudes are minor compared

with those of the main frequency components.

The proposed frequency identifier contains an observer

and a frequency estimator. The observer estimates every state

as each one contains one main frequency, while the frequency

estimator generates the real-time frequency estimates {ŵi}
from the state estimates. Fig. 1 shows the design scheme.
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Fig. 1. The Scheme of the Synthetic Identifier

A. High-gain observer based state estimation

Note that the unknown frequency information of the signal

are treated as modeling uncertainties and the disturbance

as unknown input terms, the objective for the observer is

to reduce the effects of the uncertainties and disturbance

as much as possible in the first step of the identification

process. In this case, a typical solution is to adopt a robust

observer. Hereby a high gain observer is selected for this

purpose. A high gain observer may have great improvement

on state estimation for systems with modeling errors or

external disturbances, in which their effects can be effectively

compressed within a bounded zone that can be made “small”

by proper tuning of the design. Reference [10],[11] have

provided such a high gain observer for a descriptor system,

based on which our research has been developed. For the

model given in (3-4), one can augment the states as: x̄ ,
[

xT fT vT
]T ∈ R6n. As a result, an augmented 6nth

order descriptor state space expression can be obtained:
{

Ē ˙̄x = Āx̄+ H̄ḟ + N̄v

ȳ = C̄x̄.
(6)

where Ē, Ā, H̄, N̄ are exactly in the same form as in [10],

and C̄ ,
[

C0 0 I2n
]

.

Define

S̄ ,





I2n 0 0

0 I2n 0

MC0 0 M



 , L̄ =
[

02n 02n MT
]T

; (7)

M ∈ Rn×n is a nonsingular matrix to be selected. It provides

C̄S̄−1L̄ = I2n, ĀS̄−1L̄ = −N̄.

By adopting the high-gain observer structure in [10], the

observer based on the signal model given in (3-4) is given

as follows with the estimate error dynamics:

S̄ ˙̄̂x = Āˆ̄x+ K̄(ȳ − C̄ˆ̄x) + L̄ ˙̄y, (8)

˙̄e = S̄−1(Ā− K̄C̄)ē+ N̄M−1v + H̄ḟ , (9)
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= Cx+ d̄ = C0x+ v (4)

K̄, L̄ are the observer matrices. Reference [10] has shown a

stabilizing K̄ can be obtained for the error dynamic equation,

i.e.

K̄ = S̄P̄−1C̄T , (10)

where P̄ is the solution of the Lyapunov equation

ÃT P̄+ P̄Ã = −C̄T C̄. (11)

Ã , −(µI + S̄−1Ā), and µ is a positive scalar satisfying

ℜ[λi(S̄
−1Ā)] > −µ to make Ã Hurwitz. Lemma 1 pro-

vides a sufficient and necessary condition for the Lyapunov

equation to have a unique positive definite solution P̄:

Lemma 1: The Lyapunov equation in (11) has a unique

positive definite solution P̄ if and only if rank(C0) = 2n.

The proof is included in the appendix.

The high-gain observer and the above lemma can guaran-

tee the the estimation error ē converges to a range with finite

bounds. Select the Lyapunov function as V (t) = ēT P̄ē.

Reference [10],[11] has shown that ē will be finally bounded

in a range given as follows,

‖ē(t)‖ ≤ 1

µ

λmax[P̄
1/2]

λmin[P̄1/2]
(‖ḟ‖+ ‖M−1‖‖v‖)

, α‖ḟ‖+ β‖v‖ (12)

≤ α‖∆A‖‖ẋ‖+ β(‖∆C‖‖x‖+ ‖d̄‖) (13)

where

α ,
λmax[P̄

1/2]

µλmin[P̄1/2]
, β ,

λmax[P̄
1/2]

µλmin[P̄1/2]
‖M−1‖ (14)

Remark 2: In the right hand of the inequality above, the

state vector x and the disturbance d are bounded; ‖∆A‖
and ‖∆C‖ depend on the initial frequency estimation errors,

wi−w0i. Hence, it is clear that the coefficients α and β play

an important role in determining the size of the estimation

error bounds. One way to reduce α and β as suggested

in [10] is to select a large µ value. However, unlike what

was initially claimed in [10], larger µ value may not always

guarantee smaller α or β because of the relationship between

µ and the eigenvalues of the matrix P; one way to reduce α
and β is demonstrated in Part III-B. Furthermore, according

to Lemma 1, (13), and (14), it is necessary to include the

derivatives of y up to the (2n − 1)th order in the extended

output vector so that a finite estimation error bound exists.

B. Output Transformation

In this section, an output transformation is proposed in or-

der to improve the observation performance of the high-gain

observer. Define T as the transformation matrix operated on

the output matrix, i.e., CT , TC0. The modified output

equation becomes:

ȳT = TC0x+T(∆Cx+ d̄) = CTx+Tv. (15)

With the redefinition C̄ =
[

CT 0 I
]

, the expression of

α remains unchanged, whereas the expression of β becomes

β , λmax[P̄
1/2]‖M‖−1‖T‖/(µλmin[P̄

1/2]) so that ‖ē‖ ≤
α‖ḟ‖+ β‖v‖ still holds.

One intuition on pursuing a convenient T appears as the

reduction of the ratio λmax[P̄]/λmin[P̄], whose square root

is a factor in α and β; now we start to figure out the relation

between this ratio and T. As P̄ is strictly positive definite in

the case that (Ã, C̄) is observable, a positive lower bound

of λmin[P̄] exists, so does a finite upper bound of the ratio.

Reference [13] takes advantage of the observability of and

separates a positive definite matrix G, which is only decided

by Ã:

λmin[G]λmax[OTO] ≤ λmax[P̄] ≤ λmax[G]λmax[OTO],

λmin[G]λmin[OTO] ≤ λmin[P̄] ≤ λmax[G]λmin[OTO].

We then achieve

λmin[G]λmax[OTO]

λmax[G]λmin[OTO]
≤ λmax[P̄]

λmin[P̄]
≤ λmax[G]λmax[OTO]

λmin[G]λmin[OTO]
,

(16)

where O is the observability matrix of (Ã, C̄), i.e.,

O ,
[

C̄T , ÃT C̄T , · · · , (Ã6n−1)T C̄T
]T

.

Equation (16) implies that an output transformation matrix

T tends to reduce the ratio λmax[P̄]/λmin[P̄] if it is able to

bring down λmax[OTO]/λmin[OTO], which is proportional

to both the upper and the lower bounds of that ratio.

C. Gradient Based Frequency Estimator

The model above has shown the 2n real states x are

respectively corresponding to n frequencies. As the high gain

observer generates 2n observed states x̂ are the counterpart

of x, we may define n gradient-based identifiers following

the general concept of gradient algorithms for parameter

identification [14], in order to provide convergent or bounded

estimation of n main frequencies. Each estimator will use the

ith pair of the estimated states
[

x̂2i−1, x̂2i

]T
as its input.
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Define the identifier dynamics

˙̂wi = gix̂2i( ˙̂x2i−1 − ŵix̂2i), (17)

where gi is a selected positive gain.

As (13) has shown that the state observation error ē

is bounded, e2i, e2i−1 are bounded, also resulting in the

boundedness of ė2i−1 (see (9)). Since x2i−1 has the property

that ẋ2i−1 = wix2i, the estimate error dynamics is:

˙̃wi = − ˙̂wi = −gix̂2i( ˙̂x2i−1 − ŵix̂2i)

= −gix̂2i(wix2i − ė2i−1 − wix̂2i + w̃ix̂2i)

= −gix̂
2
2iw̃i + gix̂2i(ė2i−1 − wie2i). (18)

which is actually a linear time-varying (LTV) system with a

BIBS dynamics and a bounded input. The following lemma

provides the feasibility of such a gradient frequency-based

estimator, for which the proof is in Appendix 2.

Lemma 2: The gradient frequency-based estimator as

in (30) generates bounded w̃i, ∀i = 1, 2, · · · , n, when
[

x̂2i−1, x̂2i

]T
is the corresponding estimated state of

the high gain observer discussed in Subsection III-A and

x̂2i satisfies the persistency of excitation condition, i.e.

∃ constant Ti > 0, ki > k0i > 0, ∀t, s.t.
∫ t+Ti

t
x̂2
2i(τ)dτ ≥

kiTi > k0iTi > 0.

Lemma 2 can be proved in the following theoretic struc-

ture: find positive constants bi < b′i, while proving the

following steps in order:

1) ∀t, ∃ε > 0, s.t. |w̃i(t+ Ti)| − |w̃i(t)| < −2giε < 0, if

|w̃i(τ)| ≥ bi, ∀τ ∈ [t, t+ Ti].
2) Assume at arbitrary t0, |w̃i(t0)| > bi, then ∃n ∈ N,

t1 ∈ [t0, t0 + (n+ 1)Ti], s.t. |w̃i(t1)| = bi.
3) Assume at arbitrary t1, |w̃i(t1)| = bi, then

maxt≥t1 |w̃i(t)| ≤ b′i < ∞.

Proof:

1) Proof of Step 1: Define the Lyapunov function Vi(t) ,
w̃2

i /(2gi). We have

V̇i(t) = −x̂2
2iw̃

2
i + x̂2iw̃i(ė2i−1 − wie2i). (19)

As e2i, e2i−1 and ė2i−1 are bounded, x̂2i = x2i − e2i is

also bounded. Hence, we may define

bi = ‖x̂2i(ė2i−1 − wie2i)‖/k0i , (20)

where k0i is the positive constant defined in the assumption

of PE condition. As a result, (19) can be transformed into

V̇ ≤ −x̂2
2iw̃

2
i + |w̃i(t)|bik0i .

Define Vsi(t) ,
√

Vi/2gi = |w̃i(t)|/(2gi). Then

V̇si(t) =
V −1/2

√
2gi

V̇ =
V̇

|w̃i(t)|
≤ −x̂2

2i(t)|w̃i(t)|+ bik0i .

(21)

When |w̃i(τ)| ≥ bi, ∀τ ∈ [t, t+ Ti], it is deduced that

Vsi(t+ Ti)− Vsi(t) ≤
∫ t+Ti

t

(−x̂2
2i(τ)|w̃i(τ)|+ bik0i)dτ

≤ −bi

∫ t+Ti

t

x̂2
2i(τ)dτ + bik0iTi ≤ bi(−ki + k0i)Ti < 0.

Define ε , (ki − k0i)biTi, then

Vsi(t+ Ti)− Vsi(t) ≤ −ε < 0 (22)

⇒ |w̃i(t+ Ti)| − |w̃i(t)| ≤ −2giε < 0 (23)

Step 1 is thus proved.

2) Proof of Step 2: As Vsi(t0) = |w̃i(t0)|/(2gi) >
bi/(2gi), we define

ni =

[

Vsi(t0)− bi
2gi

ε

]

+ 1 >
Vsi(t0)− bi

2gi

ε
. (24)

Here we begin to prove that ∃t1 ∈ [t0, t0 + (ni + 1)Ti],
s.t. |w̃i(t)| = bi, by showing that its negative proposition,

i.e. ∀t ∈ [t0, t0 + (ni + 1)Ti], s.t. |w̃i(t)| > bi, is false. The

following analysis is carried out in a cycle-by-cycle manner,

and only the worst cases (as defined in the following para-

graphs) are considered, since any other case automatically

provides the reality of Step 2.

Assume that the worst case happens in the first cycle

[t0, t0 + Ti], i.e. ∀t ∈ [t0, t0 + Ti], |w̃i(t)| > bi. Then

according to Step 1, we have Vsi(t0+Ti)−Vsi(t0) ≤ −ε <
0. Repeat this deduction for (ni + 1) cycles in total under

the assumption of the accumulation of the worst cases, i.e.

the occurrence of the negative proposition of Step 2, then we

have Vsi(t0 + (ni + 1)Ti)− Vsi(t0) ≤ −niε < 0. However,

(24) ⇒ Vsi(t0 + (ni + 1)Ti) ≤ Vsi(t0)− niε < bi/(2gi)

⇒ |w̃i(t0 + (ni + 1)Ti)| < bi,

which is contradict to the negative proposition of Step 2. In

other words, ∃t1 ∈ [t0, t0 + (ni + 1)Ti], s.t. |w̃i(t)| = bi.
3) Proof of Step 3: Define

b′i = (1 + 2gik0iTi)bi. (25)

Here we begin to prove that maxt≥t1 |w̃i(t)| ≤ b′i, by

showing that its negative proposition, i.e. ∃t2 > t1, s.t.

|w̃i(t2)| > b′i, is false.

Assume the negative proposition holds. Without loss of

generality, assume t1 as the last time instant before t2 that w̃i

escapes from the bounded zone, i.e., |w̃i(t1)| = bi and ∀t ∈
[t1, t2], |w̃i(t)| ≥ bi (equality only applies at the two ends).

Obviously, t2 < t1 + Ti, otherwise Vsi(t1 + Ti) ≥ Vsi(t1),
which is contradict to Step 1. Then it can be deduced that

Vsi(t2) = Vsi(t1) +

∫ t2

t1

V̇si(τ)dτ

< Vsi(t1) +

∫ t1+Ti

t1

bik0idτ (from (21))

=
bi
2gi

+ bik0iTi =
b′i
2gi

⇒ |w̃i(t2)| < b′i,

which is contradict to the negative proposition under the

condition ∀t ∈ [t1, t2], |w̃i(t)| > bi, i.e., such t2 does not

exist after the nearest hitting time t1.

The proof above actually covers all the time pieces during

which |w̃i(t)| ≥ bi (equality only applies at the two ends),

as well as the period after the last hitting time in which
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Fig. 2. Curves of frequency estimate by synthetic identifier and Hou’s
identifier. Nominal value of the main frequency: w = 3.6.

|w̃i(t)| > bi. For all uncovered ones, during which |w̃i(t)| ≤
bi, |w̃i(t)| is naturally in the zone bounded by ±b′i. Hence

|w̃i(t)| ≤ b′i from t1, i.e., Step 3 is proved.

IV. SIMULATION

Two different simulations1, respectively regarding one and

more main frequencies, have been carried out. Our synthetic

identifier has presented more convincing performance than

Hou’s real-time identifier [8].

A. One Useful Frequency

Consider the case with one useful frequency and two

sinusoidal perturbations. Select the useful frequency w =
3.6, two perturbation frequencies wd1 = 1, wd2 = 5,

corresponding magnitudes A1 = 1, Ad1 = 0.18, Ad2 = 0.25
and phases φ1 = 0, φd1 = π/6, φd2 = −π/5.

Take an initial guess of useful frequency: w0 = 3, which

determines the system model for high gain observer and

some coefficient matrices. Now we start to evaluate the

two important parameters—µ and M: for simplicity, M is

selected as a diagonal matrix with identical elements valued

m. Select m = 20 and µ = 0.4 to keep both α, β, and

thus ‖ē(t)‖ relatively small. Select the gradient coefficient

of our gradient estimator g = 0.4 and that of Hou’s identifier

γ = 10. Use the input given above respectively on the

synthetic identifier (integrating the high gain observer and

the gradient identifier) and Hou’s identifier [8], then both

curves are generated as in Fig. 2. The synthetic identifier

has generally reached the estimate objective, reflecting the

obvious static error in Hou’s result.

B. Two Useful Frequencies: Output Transformation

Consider the case with two useful frequencies and two

sinusoidal perturbations. Select the useful frequency w1 =
3.6, w2 = 10, two perturbation frequencies wd1 = 1, wd2 =

1ODE 45 is adopted as the solver through the simulation. Each first-order
derivative is replaced by a differential filter D(s) = 500s/(s + 500) to
prevent non-causality. The input in the two-main-frequency test is screened
in the first 2 seconds in order to dodge the huge spike due to the differential
filter based computation.
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Fig. 3. Curves of frequency estimate by synthetic identifier and Hou’s
identifier. Nominal Values of the main frequencies: w1 = 3.6, w2 = 10.

5, corresponding magnitudes A1 = 1, A2 = 1, Ad1 = 0.18,

Ad2 = 0.25, and corresponding phases φ1 = 0, φ2 = 4π/7,

φd1 = π/6, φd2 = −π/5.

Take an initial guess of useful frequency: w10 = 3 and

w20 = 12. For simplicity, M is formed as a diagonal matrix

with identical elements valued m. Computational results have

shown that α and β are much larger so that the boundary

of observation errors are rather loose, and thus the observed

states may be relatively inappropriate as inputs of gradient

identifiers. For instance, select µ = 0.7 and M = 8I,
then the ratio λmax[P̄

1/2]/(µλmin[P̄
1/2]), a factor in both

α and β, is 2.9977 × 105, which is even a small value

among those generated by various selections of µ and M.

It reflects the necessity of output transformation: when the

output transformation gain T = C−1
0 is exerted, the ratio is

reduced to 229.0673, only weighting about 0.1 percent of

that without output transformation.

Select the two gradient coefficients of our gradient es-

timators g1 = 0.3, g2 = 5, and the gradient coefficients

of Hou’s identifier γ1 = 2000, γ2 = 50. When µ = 0.7
and M = 8I, the curves in Fig. 3 are generated by the

synthetic identifier (with T = C−1
0 applied) and Hou’s

estimator. Fig. 3 has shown both identifiers have performed

satisfactorily with a static error around 0.1 regarding the

estimate of w1. However, Hou’s identifier cannot converge

ŵ2 to the nominal value 10 or anywhere nearby, whereas

the synthetic identifier has provided a convergent result. In

summary, the estimation result of the synthetic estimator has

obvious advantage on that from Hou’s identifier.

V. CONCLUSION

In this paper, we have investigated the problem of estimat-

ing unknown frequencies of a given sinusoidal signal with

sinusoid perturbation(s). The error convergence property of

high gain observer and the Lyapunov stability are selected as

the basic guiding theory. Accordingly, a synthetic identifica-

tion framework integrating high gain observer and gradient

estimation components has been formed as the specific tool

for solution. The high gain observer provides observed states

corresponding to individual frequencies, and the observation
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error is limited within certain bounds, which can also be

tightened with output transformation. Gradient estimation

components extract frequency estimates from the high gain

observer states. Compared with previous research results,

the synthetic identifier presents improved performance in

numerical simulations, demonstrating its advantages.

APPENDIX: PROOF OF LEMMA 1

A. Proof of “⇐”

The following part has demonstrated that such C0 with

rank < 2n will lead to a P̄ which is not strictly positive

definite. Firstly we deduce the infeasibility caused by any

q × 2n (q < 2n) dimensional C0. For n frequencies to be

estimated, when q × 2n dimensional C and C0 apply, the

dimension of output equation becomes

ȳq×1 =
[

y ẏ ÿ · · · y(q−1)
]T

= Cq×2nx2n×1 + d̄q×1 = (C0)q×2nx+ vq×1.

It also leads to the variation on the dimension of the

augmented states x̂(4n+q)×1 ,
[

xT fT vT
]T

, as well as

most high gain observer matrices, including Ē(4n+q)×(4n+q),

Ā(4n+q)×(4n+q), N̄(4n+q)×q , C̄q×(4n+q), S̄(4n+q)×(4n+q),

Mq×q , and L̄(4n+q)×q . Note the modification is limited to

the sense of dimension; all the matrix block expressions

concerning the observer, including the Lyapunov equation,

remain unchanged.

At this stage the observability of the coefficient pair

consisting the Lyapunov equation is used for proving P̄ ≯ 0.

Now we start to briefly show the observability pair (Ã, C̄)
is unobservable when q < 2n. S̄−1Ā can be rewritten into

S̄−1Ā =





A0 I2n 02n×q

02n×2n 02n×2n 02n×q

−(C0A0)q×2n −(C0)q×2n −M−1
q×q



 ,

which is not of full rank; its rank is at most 2n+q. Besides,

it has been figured out that −µ is one eigenvalue of Ã, as

rank(S̄−1Ā) < 4n+ q ⇒ ∃z ∈ R4n+q, z 6= 0, S̄−1Āz = 0

⇒ (−µI− Ã)z = (−µI+ µI+ S̄−1Ā)z = S̄−1Āz = 0.
A PBH test is then carried out to detect the observability

of (Ã, C̄), using −µ as the eigenvalue:
[

C̄

−µI− Ã

]

(4n+2q)×(4n+q)

=

[

C̄

S̄−1Ā

]

.

Obviously, the possible maximum rank of the matrix 4n+ q
only depending on its dimension, whereas the actual rank

is at most 2n + 2q, which is less than 4n + q under the

assumption q < 2n. In other words, when q < 2n, (Ã, C̄)
is not observable.

Theorem 6.O1 in [12] states that with Hurwitz Ã, ob-

servable (Ã, C̄) exists if P̄ is positive definite. Equivalently,

when Ã is Hurwitz and (Ã, C̄) is unobservable, P̄ is not

positive definite. In other words, any C0 with q < 2n cannot

generate a positive definite P̄.

Note that the PBH test also applies to C0 with row

number q ≥ 2n but rank = qreal < 2n, as in these cases

rank(
[

C̄T (S̄−1Ā)T
]T

) ≤ 2n + q + qreal < 4n + q so

that (Ã, C̄) is still unobservable. In sum, any C0 with rank

< 2n cannot provide a positive definite P̄, i.e., each positive

definite P̄ with Hurwitz Ã means a C0 with rank 2n.

B. Proof of “⇒”

Firstly we consider the case q = 2n and rank(C0) =
2n, i.e. C0 is invertible. The PBH test with an arbitrary

eigenvalue λ of Ã becomes

[

C̄

λI− Ã

]

=









C0 0 I2n
(λ+ µ)I+A0 I2n 0

02n×2n (λ+ µ)I 02n×2n

−C0A0 −C0 (λ+ µ)I−M−1









.

A 6n×6n submatrix is then formed with the (4n+1)th to

6nth rows removed. It can be decomposed into the product

of two invertible matrix, indicating its full rank and thus the

observability of (Ã, C̄). The detailed decomposition is not

listed here. Provided observable (Ã, C̄) and stable Ã, [12]

shows the Lyapunov equation ÃT P̄+ P̄Ã = −C̄T C̄ has a

positive definite solution P̄.

As for the cases that q > 2n and rank(C0) = 2n, C0 has

2n irrelevant rows. The 2n × 2n square matrix formed by

cascading these rows will pass the PBH test as proved above,

so will C0 itself. Hence, (Ã, C̄) is observable, and all the

subsequent results can be proved following the procedures

above. In sum, any C0 with rank = 2n can provide a unique

positive definite P̄ as the solution of the Lyapunov equation.

REFERENCES

[1] L. Hsu, R. Ortega, and G. Damm, “A Global Convergent Frequency
Estimator,” IEEE Trans. Automat. Contr., 44(4), 1999, pp. 698-713.

[2] R. Marino and P. Tomei, “Global Estimation of n Unknown Frequen-
cies,” IEEE Trans. Automat. Contr., 47(8), 2008, pp. 1324-1328.

[3] M. Hou, “Amplitude and Frequency Estimator of a Sinusoid,” IEEE

Trans. Automat. Contr., 50(6), 2005, pp. 855-858.
[4] S.W. Lee, J.S. Lim, S.J. Baek, and K.M. Sung, “Time-varying Fre-

quency Estimation by VFF Kalman Filtering,” Signal Processing,
77(3), 1999, pp. 343-347.

[5] Q.W. Jia, “Disturbance Rejection Through Disturbance Observer with
Adaptive Frequency Estimation,” IEEE Trans. Magn., 45(6), 2009, pp.
2675-2678.

[6] J. Yang, H. Xi, and W. Guo, “Robust Modified Newton Algorithm
for Adaptive Frequency Estimation,” IEEE Signal Process. Letters,
14(11), 2007, pp. 879-882.

[7] J. Yang, H. Xi, and F. Yang, “Adaptive Modified Newton Algorithm
for Multiple Frequencies Estimation,” in Seventh World Congress on

Intelligent Control and Automation, 2008, pp. 2992-2995.
[8] M. Hou, “Estimation of Sinusoidal Frequencies and Amplitudes Using

Adaptive Identifier and Observer,” IEEE Trans. Automat. Contr., 52(3),
2007, pp. 493-499.

[9] B.B. Sharma and I.N. Kar, “Design of Asymptotically Convergent Fre-
quency Estimation Using Contraction Theory,” IEEE Trans. Automat.

Contr., 53(8), 2008. pp. 1932-1937.
[10] Z. Gao, X. Dai, T. Breikin, and H. Wang, “Novel Parameter Iden-

tification by Using a High-gain Observer with Application to a Gas
Turbine Engine,” IEEE Trans. on Industrial Informatics, 4(4), 2008,
pp. 271-279.

[11] Z. Gao, T. Breikin, and H. Wang, “High-gain Estimator and Fault-
tolerant Design with Application to a Gas Turbine Dynamic System,”
IEEE Trans. Control. Sys. Tech., 15(4), 2007, pp. 740-753.

[12] C.-T. Chen, Linear System Theory and Design, 3rd ed., Oxford
University Press: New York, 1999. pp. 156.

[13] T. Mori, N. Fukuma, and M. Kuwahara, “Explicit Solution and
Eigenvalue Bounds in the Lyapunov Matrix Equation,” IEEE Trans.

Automat. Contr., 31(7), 1986, pp. 656-658.
[14] S. Sastry and M. Bodson, Adaptive Control: Stability, Convergence,

and Robustness. Prentice-Hall, Englewood Cliffs, NJ, 1989.

4280


