
 
 

 

  

Abstract— This paper considers discrete-time, uncertain 
Piecewise Affine (PWA) systems affected by both polytopic 
parameter variations and bounded disturbances. We are 
interested in the Robust Model Predictive Control (RMPC) for 
uncertain PWA systems where the uncertainty can be presented 
in polytopes framework. RMPC is known as a complex problem 
and indeed for PWA systems, the on-line computation becomes 
computationally burdensome and inapplicable. In this paper we 
develop a new algorithm that consists of three different phases, 
based on the system states location. The proposed algorithm 
gives a simple and fast sub-optimal solution which considerably 
reduces the on-line computation and guarantee to drive the 
system states to the target region in spite of the considered 
uncertainties. The proposed algorithm is applied in simulation 
to a two tanks example. 

I. INTRODUCTION 
IECEWISE Affine Systems (PWA) [1] is a powerful 
framework that can model a broad class of hybrid 
systems and nonlinear systems where nonlinearities can 

be represented by a set of linear models around different 
operating modes or different state conditions such as 
saturation or dead zones. Uncertainties could arise from 
different sources like model simplification, limited system 
knowledge, and changes of the components value. Thus, 
control robustness becomes mandatory, so that performances 
of the systems are preserved in spite of these different causes 
of uncertainty. 

Robust controls for uncertain linear systems are commonly 
used in the literature through a min-max control problem, but 
it is known that the min-max control is a complex problem 
and computationally burdensome. Also, Robust Model 
Predictive Control (RMPC) is presented in the literature as 
an affective technique for constrained uncertain discrete-time 
linear systems and for perturbed continuous PWA systems 
[2], [3], respectively, where a control technique based on 
minimizing the worst-case cost function is proposed. Some 
new techniques using parametric programming for linear 
systems are proposed in the literature to reduce the 
computation load [4], [5]. 

In [6] a RMPC for UPWA systems with polytopic 
parameter uncertainty is presented. The paper considers the 
case of unconstrained PWA systems. The authors show how 
to transfer the min-max control problem to a LMI problem. 
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The technique developed on this paper is to drive the system 
states to the origin. The developed algorithm aims at 
reducing the computational load. It consists of two different 
parts; the first based on an on-line optimization problem, and 
then in the second part, when the state enters a computed 
attraction domains [6], an explicit feedback control law is 
applied. The algorithm reduces the computational time, but 
in the first part of the algorithm an on-line heavy 
computational load still exists. An extension to drive the 
system states to a reference point different from the origin 
and to include input and output constraints is not 
straightforward and more work needs to be done. 

This paper examines a class of discrete-time Uncertain 
Piecewise Affine (UPWA) systems, where the uncertainties 
are coming from parameter variations and bounded 
disturbances. Constraints on control signals and measured 
outputs are taken into account. We consider a constant set-
point tracking problem where the set-point in general could 
be different from the origin. 

For this class of systems, solutions and analysis are 
proposed in [7]. An attainability checking that employs the 
predecessor operator is presented. Then the original min-max 
optimization problem is reduced to a linear programming 
problem. A Matlab toolbox ‘HyStar’ for this technique is 
developed and presented in [8]. The technique developed in 
[7] and programmed in [8] is aiming at driving the system 
states to the origin; however a straightforward modification 
to drive the states to a constant reference point can be done. 
A comparison between this approach and the approach 
developed on this paper shows that the developed technique 
offers a slightly better performance while reduces 
considerably the computation time. 

Based on algorithms to compute reachable regions, cyclic 
invariance and invariant sub-sets for UPWA systems that 
presented in [9], a MPC algorithm is presented in this paper 
as a simple and fast suboptimal robust controller for the 
considered systems. The proposed algorithm consists of 
three different phases, based on the state location, as will be 
explain in the next sections. It is shown that the proposed 
technique significantly reduces the on-line computational 
load since one or just few QP have to be solved at each time 
step. 

The paper is organized as follows. A brief description of 
UPWA systems and the considered class is given in section 
2. Section 3 summarizes the attainability technique 
developed in [9] with some modifications. A fast and 
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suboptimal robust MPC algorithm for the considered class is 
then developed in section 4. An application of the proposed 
technique to a two-tank example is presented in section 5. 
Finally conclusions and some remarks are given in section 6. 

II. UNCERTAIN PIECEWISE AFFINE SYSTEMS 
Piecewise affine systems are powerful tools for describing 

or approximating both nonlinear and hybrid systems, and 
represent a straightforward extension from linear to hybrid 
systems [1]. This paper focuses on the class of uncertain 
discrete-time PWA systems subject to parameter variations 
and bounded disturbances, defined as: 
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where WUuXx ∈∈∈ ttt w,,  and Dd ∈t  denote the 
system state, the control input, the uncertainty and the 
disturbance vector, respectively, at time instant t  (for the i -
th mode) with DWUX ,,,  assigned polytopes, where D  
contains the origin. { }s

ii 1=χ  is the polyhedral coverage of the 
state and input spaces UX × , s being the number of 
subsystems (modes). Each iχ  is given by: 
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where n , m  are the dimensions of state and input vectors, 
respectively. In this formalism, the existence of logical 
decision variables is taken into account by developing an 
affine model (1) with constraints (2) for each possible 
combination. 

Exact state measurement x  is supposed to be available. 
An important point has to be clarified for the dependence on 

tw  for the transition matrices in (1). In the following we 
describe this dependence through the vertices ijijij fBA ,, , 
the parameter w  playing the role of weighting between them 
leading in a mathematical sense to a convex combination: 

1,0:where
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(3) 

( )ijijij fBA ,,  is the j-th vertex of the i-th model, v  being 
the number of vertices. The matrices ( ))(),(),( www iii fBA  
represent the model subject to uncertainty, described by the 
polytopic set { }vjConvhull ijijij ,,1),,,( =fBA  for each 
mode Ii ∈ . The coefficients jw  are unknown and possibly 
time varying. In this way, for each polyhedral region iχ , the 
model is affected by polytopic uncertainty. 

III. ATTAINABILITY: A POLYHEDRAL APPROACH 

The goal of the control policy is: drive the system from an 

initial point in X  to a given target region XX ⊂f . The first 
issue is to determine the maximal subset of X  for which this 
problem is well posed. This can be answered through a 
reachability analysis. In this section we summarize, with 
some modifications, the algorithms to compute the reachable 
regions, the cyclic invariance and invariant subsets that 
presented in [9]. 

A. Reachable Set 
Let us consider the region fX , as a given target region in 

the global state space X , with the initialization fk XR = . 
The following algorithm construct the robust N -steps ahead 
reachable region Nk −R  defined as the region in the state 
space for which there exist a feasible mode (1) and an 
admissible control sequence able to drive the states from  

Nk −R into kR  in N -steps despite all allowable 
disturbances and parameter variations. 

Algorithm 3.1 ( kR  computation) 

1. Define the target region fX , the disturbance polytope 
D  and let fk XR = ,  

2. For max:1 Nz = ,  maxN : maximum number of iteration  
3. for each region ‘m’ inside kR  

3.1) For i = 1,…, s 
   3.1.1) ),(~ DCRR i

kk Difference=  
   3.1.2) Compute gF, , where: { }gFR ≤= xxk

~   
   3.1.3) Calculate the robust region under mode i : 
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In an explicit formulation this comes to: 
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Remark 1: The geometrical operations used here can be 
efficiently implemented using standard computational 
geometry software such as [10-12]. 

Remark 2: The region r
zkrzk −− = RR  , where r

zk−R are 
convex, but zk −R  is not necessary convex. 

B. Safety and Cyclic Invariance 
Considering that the system states are driven to the target 

region, the states will be retained inside the target region if 

858



 
 

 

the target region is defined as safe or invariance set. 
Safety, the set kR  is safe if and only if 1−⊆ kk RR  [13]. 
Cyclic Invariance, The control invariance (safety) of the 

region kR  often turns out to be a strong condition, hard to 
be satisfied in a robust manner with available discrete-time 
control actions. A relaxed safety condition can be defined as 
following: 

- The existence of 1≥l  such that lkk −⊆ RR , called 
safety cycle (or cyclic invariance) of length l  for region 

kR  
This means that all the states inside the target region kR , 

or inside lk−R  will be driven to kR  in l steps. 
To find the minimum cyclic invariance l , algorithm 3.1 

can be run with the following condition: 
       If zkf −⊆ RX  stop; and zl = .  

C. Invariant Subset inside the Target Region 
Starting from the hypothesis that there exists 1≥l  such 

that lkkf −⊆= RRΧ , the goal is to define the invariant 
subset inside fΧ  defined as once the system states enter this 
subset, the states will remain inside this subset while keeping 
the same mode switch sequence fixed over the l steps. Here 
the mode switching sequence seqI  includes the active mode 
i at each sampling instant over the horizon.  

The idea is to initialize a new reachability analysis with 
the nonempty target regions among the following: 

,m
lkk

m
k −= RRR   (5) 

   lkindexm −=∀ ,,2,1   (No. of regions al level k-l) 
The numerical procedure follows the following steps: 

A. For each lkindexm −= ,,2,1   ,  
compute m

lkk
m

−= RRD 0  
B. For j=1,..,l 

Compute )( 1
)( m

jk
jkI

jk

m
lseq

+−
−

− DD  
end 

C. )(
00

lkI
lk

mm
m

lseq −
−= DDD   

D. If m
0D  evolves (beyond a given tolerance) go to (B) 

E. end 

The output of this procedure is a collection of regions 
inside fΧ considered as invariant subsets, each with its fixed 
mode switch sequence m

seql
I over l steps. 

IV. ROBUST MPC ALGORITHM 
MPC has proved to efficiently control a wide range of 

applications in industry for non-hybrid systems as well as 
hybrid systems [14-16], and it is also used as robust control 
for constrained linear systems [3]. In this paper we develop a 
new algorithm based on MPC for PWA systems with 
quadratic cost function. The developed algorithm offers a 
fast suboptimal robust solution.  

In this section we develop an algorithm that benefits from 
the results of the previous section, i.e. given Nkox −∈ R  

insure that there is a feasible mode (1) and an admissible 
control sequence able to drive the states from Nk−R  into 

kR  in N -steps. Moreover the associated mode sequence 
index m

seqk
I  to each region is known. Thus, the goal for the 

closed-loop system trajectories is that starting from the given 
initial state ox inside a reachable region Nk−R  it should go 
through a finite sequence of regions kNkNk RRR ,,, 21 +−+−  
and finally reach the target region. 

The proposed control strategy consists of three different 
phases as follows:  

Phase one: variable control horizon,  
Phase two: fixed (classical) predictive control,  
Phase three: invariant control, with fixed mode switching 

sequence ( constant m
seqI ) 

In phase one, a predictive control problem with variable 
control horizon is considered. The main idea is to use the 
minimum control horizon (minimum number of steps) that 
can drive the states to the target region kf R=Χ . In this 
phase the MPC control horizon starts from rN and decreases 
to lN , where rN  is equal to the minimum horizon N  such 
that Nkx −∈ R0 , and where lNl =  the cyclic invariance 
horizon.  

Considering that the current instant is the ( Nk − ) instant, 
the following optimization problem has to be solved at each 
sampling instant: 
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where ex  is the states reference, ΓΛ,  are the weighting 
matrices xxx T Λ=Λ

2 . 
The constraints aim at the following: (7) should guarantee 

the mode and control constraints, (8) should insure the 
robustness of moving to region kR  despite the parameter 
uncertainty w , and (9-10) should improve the performance, 
where *

1+kx  is the state update according to the nominal 
model ( )*** ,, iii fBA  at mode i, as it is known that most of the 
time the uncertain system evolves around it. The nominal 
model could be for example the average or the centred 
model. The optimization problem (6-10) is solved according 
to the following algorithm: 

Algorithm 4.1 (Variable Control Horizon) 
 1- For L= 1: maxN   
  1.1 if  LkRx −∈0  
  1.2 For each Lkindexm −= ,2,1    
  1.3      If m

LkRx −∈0  
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           1.3.1 solve the QP optimisation problem (6-10),  with 
N=L and with the memorized switching mode sequence 

m
seq Lk

I
−

 
       end 
                end 
  1.4 chose the optimal solution among 1.3.1 solutions 
      break 
         end 
  end 
   2- If lN = , stop (the end of phase one), 
       Else (go to step 1 in the next sampling instant) 

Step 1.4 will insure the moving of the states from level 
Lk −  to level )1( +− Lk , but it is often possible that regions 

at level )( hk −  cover the new states ( 1+kx ), where 1−< Lh . 
That is why the check in step 1 has to be done at each time 
step, and this accelerates the movements towards the cyclic 
level l . 

Phase two, When the new states reach the cyclic 
invariance region (i.e. lkk Rx −+ ∈1 ), we solve the 
optimization problem (6-10) with a constant control horizon 
equal to the cyclic invariance horizon (i.e. lN = ). At each 
sampling instant we identify the region inside lkR − that 
includes the current state and use its associated mode 
sequence m

seq lk
I

−
to solve (6-10). 

Phase three, Once the current state enters any of the sub-
invariant sets, fixe the mode sequence to the mode sequence 
of this invariant sub-set ( m

seqinv
I ), and solve the optimization 

problem (6-9) with lN =  and with the following additional 
constraints: 

siIIlj r
invseq

rr
inv

r
inv

r
invjlk

,,2,1,,,,2,1for                 

,~  where,~*

 ===

−=∈+− DCRRRx
 (11) 

where r is the index of the sub-invariant set that includes the 
current state. 

The proposed control technique with the three different 
phases is not computationally burdensome. In phase one and 
two only the feasible regions that include the current states 
with their prefixed mode sequence is considered (only a 
small limited number of QP’s have to be solved at each 
sampling time), and in phase three only the invariant mode 
sequence is considered (only one QP has to be solved at each 
sampling time).  

Furthermore, the proposed control strategy guarantee the 
feasibility and the stability of the solution if Nkox −∈ R . The 
control strategy forces the system states to go through the 
pre-computed reachable regions, and finally remains at the 
target region (or periodically remains there, if there is no 
sub-invariant set in the target region). 

In [9] a reduction algorithm that aims at reducing the 
number of regions at each level is developed, and it is shown 
that it considerably decreases the number of regions. The 
problem of this algorithm is, however, that through the 
reduction technique (eliminating the small regions that are 

covered by other regions and also eliminating the 
overlapping regions) we lose the mode switching index m

seqk
I

 associated to each region, and this will affect step 1.3.1 in 
the developed control algorithm. A solution for this is to 
apply the first feasible solutions without enumerating all 
possible switching sequences. 

V. APPLICATION 

Let us consider as application of the previous techniques a 
two tanks example (Figure 1). The tanks are filled by a pump 
acting on tank 1, continuously manipulated from 0 up to a 
maximum flow 1Q . A switching valve 12V  controls the flow 
between the tanks. This valve is assumed to be either 
completely opened or closed ( 0or  112 =V  respectively). 
The 2NV  manual valve controls the nominal outflow of the 
second tank. It is assumed in the simulations that the manual 
valves, 1NV  is always closed and that 2NV  is open. 

The liquid levels to be controlled are denoted by 1h  and 
2h  for each tank respectively. The discrete time model, with 

a sampling time ( sT ) equal 10s, for the two tanks is: 
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Figure 1. Two-tank benchmark. 

This model can be formulated as a piecewise affine system 
of form (1), with two subsystems (two modes), described as 
follows. For mode one with  112 =V , two vertices for the 
uncertainty description are considered: 
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For mode two with 012 =V , two vertices for the 
uncertainty description are also considered: 
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The following matrices and vectors for the modes 
constraints are considered: 
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qQ  

where for mode one ( 1=i ), 1=b , and for mode two 
( 2=i ), 0=b . 

The constraints imply limitations on the global state space: 
62.00 2,1 ≤Χ≤ , as well as on the control signal. The target 

region, to which system states will be driven to, is defined by 
the following constraints: 
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A polytope for a bounded disturbance is finally considered 
with:  

007.0007.0 2,1 ≤≤− d  (14) 

The reachable approach presented above is first applied to 
compute the region Nk −R  in the state space which includes 
the states that can be driven in N  steps to kR  for all 
considered disturbances and parameter variations. 

Figure 2 shows the evaluation for the target region for 
[ ]50,0∈N  on the vertical axis. 

 
Figure 2. The region evaluation for [ ]50,0∈N . 

For the two tank example the target region will be safe in 
3 steps (l=3), 3−⊆Χ= kfk RR . The number of region for 
N=3 is 8. 

Looking for the invariant subset inside the target region, 
only two modes: ],2,1,1[=seqI  and ]1,2,1[=seqI , leads to 2 
non-empty regions that are two invariant subsets (see [9] for 

more details on safety and invariant subset results).  
The RMPC algorithm presented above including the three 

different phases is applied, where the nominal model of the 
state evaluation is chosen to be the epicentre of the state 
matrix ( )215.0 ii AA +  for each mode. The diagonal 
weighting terms in the cost function are chosen as 

21000 I×=Λ  and 1=Γ , and the state reference is 
)2.0,5.0( . The RMPC algorithm is applied several times, 

each with different initial states inside the feasible regions 
Nk −R , and in each simulation a random uncertainty w  is 

applied, and a random disturbance d is added to the system. 
Figure 3 shows the results for some different initial states, 

where each of those initial states, for visibility purpose, is 
covered by the reachable regions at the 20th depth level 
( 200 −∈ kx R ). Thus the control algorithm starts with a 
control horizon of 20=N , and decreases in different steps 
until 3== lN , and then continues with fixed horizon 

3=N , according to the technique developed in section 4. 
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Figure 3. The states are driven to the target region 

Figure 4 shows the state time evaluation with different 
initial states, considering random uncertainties and random 
disturbances as well. The green lines present the target 
regions. It is clear that the proposed algorithm is successful 
in driving the system states to the target region and keeping 
them inside the target region. The state trajectories do not go 
out of the invariant subsets once it enters any one of the two 
invariant subsets. 
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Figure 4. State evaluation with RMPC for different initial states. 
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As mentioned in the introduction, the approach presented 
in [6] can not be applied to our example, as the considered 
set-point differs from the origin, and also the two-tanks 
example has constraints over the control signals. Thus we 
can not compare our approach to this technique. 

The approach of [7] is modified and the toolbox ‘HyStar’ 
[8] is adapted to consider the case of constant reference point 
different from origin. The developed control strategy in this 
paper is compared with the technique presented on [7] (after 
doing the necessary modifications) that transfers the min-
max problem to a LP optimization problem. Figure 5 shows 
the performance for both approaches starting from 

[ ]0.0;62.00 =x , the same parameter uncertainty w and the 
random disturbance d is applied for both cases. The red solid 
line according to the LP technique [7], blue dashed line 
according to the developed technique and green dashed line 
are the target region limits. We have to mention that the 
reference point [ ]2.0;5.0=xe is not an equilibrium point for 
the system states, thus the controller keeps regulating the 
system states around the desired point. 
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Figure 5. State evaluation starting from [ ]0.0;62.00 =x , red solid 
lines according to the LP technique [7], blue dashed line according 
to the developed technique (RMPC), and bruin dashed lines are the 
target region limits. 

For many different simulations the technique presented in 
this paper offers a slightly better performance as it predict 
future performance over the N  future steps, while the LP 
approach consider only the current instant. But in general the 
two performances are very close. The main difference is the 
computational time, while the LP approach takes in average 
5.96 second for each time step to compute the solution; the 
technique presented in this paper takes in average 0.06s/step. 

VI. CONCLUSION 
This paper has examined a class of uncertain discrete-time 

piecewise affine systems affected by both polytopic 
parameter variations and bounded disturbance. Input 
constraints as well as output constraints are taken into 
account. The developed control strategy aims at driving the 
system states to a constant reference point that could be in 
general different from the origin. Based on a polyhedral 
technique to define the regions in the state space where a 

feasible robust control is assured, a new robust model 
predictive control technique consists of three different 
phases is developed. The developed technique able to drive 
the system states to the desired region and then keeps them 
inside this region (or periodically remains there, if there is no 
sub-invariant set in the target region) despite the considered 
uncertainty. Compared to the classical min-max optimization 
problem and also to the recent techniques presented in [7-8], 
the proposed technique reduces significantly the on-line 
computational time. Moreover, the developed technique 
guarantees the feasibility and the stability of the solution in 
driving the system state to the predefined target region. The 
proposed controller has been applied to a two tanks example.  
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