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Abstract— This work addresses the problem of modeling the
complex nonlinear behavior of a nylon-6,6 batch polymerization
process and subsequently tracking trajectories of the important
process variables, namely the reaction medium temperature
and reactor pressure, using model predictive control (MPC).
To this end, a data-based multi-model approach is proposed in
which local linear models are identified from previous batch
data using latent variable regression and then combined using
a continuous weighting function that arises from fuzzy c-means
clustering. The resulting data-based model is used to formulate
a trajectory tracking predictive controller. Through simulation
studies, the modeling approach is shown to capture the major
nonlinearities of the process, and closed-loop simulation results
demonstrate the efficacy of the proposed predictive controller
and its advantages over conventional proportional-integral (PI)
trajectory tracking.

I. INTRODUCTION

Batch processes are commonly used for the manufacture of
high-value specialty products or as startup/intermediate steps
in a continuous processing unit. As opposed to continuous
reactors that are operated around a nominal steady-state, the
end-point in a batch reactor is not necessarily an equilibrium
point, allowing for achieving a wide range of product
specifications by changing the initial conditions and input
trajectories. This flexibility is particularly important in the
polymerization industry as polymerization reactions often
require a wide range of operating conditions to yield polymers
with a desirable end-use quality, which is the primary control
objective. Batch polymerization processes, however, exhibit
numerous characteristics that complicate the control problem.
Undoubtedly, the biggest challenge is that measurements
related to the final end-use quality are unavailable during
the batch and are only made (off-line) after the batch is
complete. The control problem is further complicated by the
presence of constraints, nonlinear, time-varying dynamics,
and the absence of equilibrium conditions, which invalidates
or limits the achievable performance of many existing control
designs for continuous systems.

Polymerization models are identified either deterministi-
cally or empirically. In the former approach, appropriate
conservation equations and models for the reaction kinetics
are used to derive a state-space representation of the system
consisting of coupled (integro-)differential equations. Deter-
ministic model-based control designs, however, have limited
practical applicability for batch polymerization processes; the
number of system states in the deterministic model is often
excessive and/or the differential equations are overly complex.
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Moreover, the model’s predictive capabilities are subject to
the accuracy of numerous model parameters. In many cases,
the kinetic parameters in polymerization models are unknown
or inaccurate, and their proper estimation is difficult. Fur-
thermore, many of the simplifying assumptions taken during
model development are often violated in specific situations,
making the model unreliable during control calculations.

The increased availability of past process data, however,
can be exploited to improve the achievable level of accuracy
of polymerization models developed using simpler, empirical
models. Identification experiments, such as those in which a
pseudo-random binary signal (PRBS) is applied on the process
are often too expensive to justify for batch polymerization pro-
cesses since they result in wasted batches. Furthermore, within
the range of operating conditions during a polymerization,
the process behavior is highly nonlinear and characterized by
stages with considerably different dynamics. These factors
make conventional system identification approaches, where a
single linear model is identified, ill-suited for identifying an
accurate dynamic model. One general strategy to address the
nonlinearity issue has been to use multi-model approaches,
such as piece-wise affine (PWA) or Takagi, Sugeno, and
Kang (TSK) models. In these approaches, linear models
are used to capture local dynamics and combined with a
weighting function to describe the process nonlinearities (see
[1], [2] and the references therein for details). Recently, a
new multi-model approach was proposed in [3], [4] that
differentiated itself from the existing work by its use of a
generalized, continuous, and entirely data-driven weighting
function (see [3] for additional details). However, in [3], full
state measurements were assumed. In this work, we extend
this modeling methodology and demonstrate its efficacy for
a process with limited available measurements.

The direct control of the end-use quality in batch poly-
merization reactors is often impractical because the product
quality is only measured following batch completion. As a
result, the control objective is typically pursued indirectly via
trajectory tracking methods. In trajectory tracking methods,
trajectories for a set of measurable process variables, which
are related to the end-use properties, are generated off-line
or re-calculated at specific time points during the batch
(e.g, see [5]–[9]). These trajectories are subsequently tracked
using local model-based controllers or proportional-integral-
derivative (PID) controllers, possibly modified with gain
scheduling [10] or feedforward [11] terms to partially account
for the nonlinear batch dynamics. The control performance
with PID-based local controllers is limited because they fail
to account for control loop interactions, input constraints,
and optimality. Explicitly nonlinear, model-based tracking

2011 American Control Conference
on O'Farrell Street, San Francisco, CA, USA
June 29 - July 01, 2011

978-1-4577-0079-8/11/$26.00 ©2011 AACC 2540



controller have been proposed in the form of differential
geometric (e.g., [11], [12]) and model predictive (e.g., [13]–
[15]) controllers. These designs have a strong dependence on
an accurate deterministic process model or utilize a simplified
linearized model (deterministic or empirical). However, an
accurate and reliable deterministic model may be unavailable
or even if available, may be overly complex or unreliable
for use within a model-based control framework while
linearized models are incapable of describing inherent process
nonlinearities.

Motivated by these factors, we address the problem of
empirically modeling the highly nonlinear nylon-6,6 batch
polymerization process and then tracking key process variable
trajectories using model predictive control (MPC). The rest
of this manuscript is organized as follows. First, in Section II,
we give an overview of the process and its control objective.
Then, we propose the modeling approach in Section III and
extract models for the process variables of interest. This is
followed by the presentation of a trajectory tracking predictive
controller for the process variables and a comparison of
the proposed controller’s performance against a classic PI
controller. Finally, we summarize our results in Section IV.

II. PROCESS OVERVIEW

In this section, we give an overview of the nylon-6,6
polymerization process and discuss the control objective and
available control strategies. We focus on nylon-6,6 production
by amidation of adipic acid and hexamethylenediamine
(HMD) in a batch reactor. In this polymerization, the reactor
is initially charged with molten adipic acid and HMD
(from an evaporator) in approximately stoichiometric (1 ∶
1) proportions. The reaction model is summarized by the
following equations.

Degradation C→ SE +W (1)
L→ SE +A (2)

Polyamidation A +C⇆ L +W (3)

where A is an amine end group, C is a carboxyl end group,
W is a water molecule, L is a polymer link, and SE is a (non-
reactive) stabilized end group. The polymerization reaction is
treated as a second-order, reversible reaction of a-a/b-b type
that is commonly described in terms of functional groups
for simplicity (see [16]). During the polymerization reaction
(given by (3)), the amine end groups (A) in HMD or the
polymer chain react with the carboxylic end groups (C) on
either the adipic acid or polymer chain, forming a polymer
link (L) and water (W). The degradation reactions (1–2)
are considered due to their effect on the reaction mixture
temperature. In order to meet the typical desired end-use
qualities, a high extent of reaction (over 99%) is required,
which, in turn, calls for shifting the polymerization reaction
towards completion by vaporizing water and then venting the
vaporized water. Consequently, the polymerization is carried
out in an autoclave reactor equipped with a steam jacket for
providing the heat needed for vaporization (and reaction) and
a valve for venting vaporized water.

A. Nylon-6,6 Polymerization Model

To illustrate the proposed modeling and control approach,
we utilize the mathematical model of nylon-6,6 polymeriza-
tion presented in [16]. The modeling assumptions (and their
explanations), parameter values, and kinetic relationships are
available in [16], [17] and omitted here for brevity. The final
state-space model of the process consists of nine coupled
ordinary differential equations (ODEs) with the state vector
comprised of the molar amounts of each functional group and
evaporated HMD, the reaction medium mass, temperature,
and volume, and reactor pressure. The final model takes the
following general form:

ẋ(t) = f(x,u)
y(t) = Cx + v

(4)

where x denotes the vector of state variables, y denotes the
vector of measurable process variables, which were taken as
the reaction mixture temperature, T (K), and reactor pressure,
P (psia), and u denotes the vector of manipulated inputs,
which are the steam jacket pressure, Pj (psi), and vent rate,
v (kg/h), constrained between umin and umax. The vector
function f(x,u) denotes the right hand side of the ODEs and
C is a constant matrix since the outputs are two of the states.
Thus, the output and input vectors are defined as follows:
y = [T V ]′ and u = [Pj v]′. The physical limitations
in the process design imposes constraints on the available
inputs; the constraints on the steam jacket pressure and vent
rate are: 700 psi ≤ Pj ≤ 1800 psi and 0 ≤ v ≤ 2000 kg/h; that
is, we have: umin = [700 0]′ and umax = [1800 2000]′.
The output measurements are assumed to be corrupted by
zero-mean normally distributed noise that is denoted by v.
The standard deviations for the measurement noise for T
and P were set to 0.16 K and 0.17 psia, respectively. The
duration of the batch is 3 hours with a sampling period of
60 s. In generating a database of previous batches for this
system, only the input and output measurements are assumed
to be available.

Remark 1 One difference between the model in [16] and
the one used in this work is that we do not neglect the reactor
pressure dynamics. In [16], the reactor pressure is treated as
an input due to the assumption of fast dynamics whereas we
append the model equations with a differential equation for
the pressure that is equal to the product of a (negative) gain
term and the vent rate. In this way, the reactor pressure can
be treated as a controlled variable that is influenced by the
vent rate and the control problem becomes a multiple-input-
multiple-output (MIMO) problem.

B. Control Strategies of Nylon-6,6 Autoclave

The end-use product quality of nylon-6,6 polymer is defined
by the molecular weight and the residual amide concentration;
however, their measurements are not available during batch
operation. Instead, the product quality is monitored through
easily measurable process variables, such as the reaction
mixture temperature, reactor pressure, steam jacket pressure,
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and vent flow rate. Thus, a common control strategy has
been to track suitable trajectories of the measurable process
variables obtained through off-line optimization of the process
model or from historical batch data that produced the target
qualities. For this work, we focus on tracking trajectories of
the reaction medium temperature, T , and reactor pressure,
P , by manipulating the steam jacket pressure, Pj and vent
rate, v. In [16], additional industrially popular secondary
variable tracking control strategies are evaluated (using PID
controllers) in terms of robustness to common disturbances.

Note that even with perfect tracking during a new batch,
there is no guarantee that the desired quality will be met
because unavoidable disturbances encountered during the new
batch effectively alter the relationship between the product
quality and the trajectories of the process variables. Thus, the
profiles being tracked may no longer yield the desired polymer
quality, and they essentially have to be “re-optimized” in some
fashion. The development of an inferential quality model,
which can be used to predict the final product quality from
the measurable process variables, and then the subsequent
integration of the model within the control design is outside
the scope of the present work but an important aspect of our
future research direction. The current work assumes that an
appropriate trajectory has been computed and re-optimized
as necessary, and we focus on the complexities associated
with the trajectory tracking problem.

III. DATA-BASED MODELING AND PREDICTIVE CONTROL
OF NYLON 6,6 BATCH POLYMERIZATION

In this section, we propose a modeling methodology for the
nylon-6,6 batch polymerization process. After reviewing a few
preliminary concepts, we propose the modeling methodology
and apply it on a realistic database of past nylon-6,6 batches.
Then, we formulate a trajectory tracking predictive controller
for the process and present the results of closed loop
simulations.

A. Preliminaries

In this section, we give an overview of auto-regressive
exogenous (ARX) modeling, principal component regression
(PCR), and fuzzy c-means clustering. These concepts are
later unified in the proposed data-based modeling approach.

1) Auto-Regression Exogenous (ARX) Models: In ARX
modeling, the process outputs at a specific sampling instance
depend linearly on the previous process conditions (defined
by the process outputs and inputs). Mathematically, in vector
form, an ARX model for a given process output takes the
form shown below.

y(k) = βx̄(k) + v(k) (5)

where β is a vector of model coefficients that
is identified using linear regression and x̄(k) =
[y′(k − 1) ⋯ y′(k − ny) u′(k − 1) ⋯ u′(k − nu)]
is a row vector of lagged concatenated outputs and inputs.
The scalars, ny and nu, are the number of lags in the
outputs and inputs (respectively). Note that we have assumed
the same number of lags, ny and nu, for each output and

input variable (respectively) and continue to do so for the
remainder for notational simplicity. This assumption can be
easily relaxed (i.e., ny and nu may be vectors). Different
criteria can be used to select the “optimum” lag structure
(see [18]) with the general objective being to achieve
low prediction error with the minimum number of model
parameters, which prevents against over-fitting and maintains
model simplicity.

One way to estimate the ARX model coefficients (for each
output) is with principal component regression (PCR). PCR
can handle correlations/co-linearities in the plant data, which
is a possibility for batch data especially when lagged variables
are involved. To facilitate the regression, a response vector, ȳ,
and a regressor matrix, X̄, are first constructed corresponding
to y(k) and x̄(k) (respectively) in (5) by sorting the plant
data sample-wise. Next, principal component analysis (PCA)
is performed on X̄, and the resulting transformed regressor
matrix is regressed onto ȳ using ordinary least squares (OLS).
Geometrically, in PCA, the variables in X̄ are projected
onto a lower dimensional subspace defined by A orthogonal
principal components or latent variables. Each principal
component accounts for a certain percentage of the variance
in the regressor matrix. With highly correlated data, the
number of principal components required to summarize the
information is much lower than the dimensionality of the
original data. Mathematically, X̄ is decomposed in PCA as
the sum of the outer products of a score and loading vector:
ˆ̄X = ∑A

a=1 tap′a = TP′ where ˆ̄X is the approximation of the
original regressor matrix, ta is a score vector containing the
projections of each row in X̄ on the a-th principal component,
and pa, the loading vector, defines the orientation of the
corresponding principal component. The score and loading
matrices, T and P (respectively), contain their corresponding
vectors; thus, the score matrix represents the projection of
the original data set on the latent variable subspace and
the loading matrix defines the subspace’s orientation. The
orthogonality between each principal component induces the
orthonormality of P, P′P = I. A variety of algorithms,
classifiable as either covariance or iterative methods (see
[19] for details on the latter), can be employed for finding
the loading and score matrices. If the PCA model is to be
used for prediction, a suitable cross-validation method (see
[20] for a review of possible options) can be used to find an
acceptable number of principal components to retain. The
lesser (unimportant) principal components are typically a
consequence of measurement and process noise, and therefore
discarded, resulting in noise reduction.

After decomposing X̄ with PCA, β is estimated with PCR
by regressing T onto ȳ using ordinary least squares (OLS),
β̂PCR = (T′T)−1 T′ȳ. In short, PCR entails replacing the
variables in the original regressor matrix by new ones with
better properties (orthogonality) that also span the original
space and then using OLS regression. The orthogonality
property improves the numerical properties of the required
inversion during OLS, which is important when the original
variables in the regressor matrix are correlated.
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2) Fuzzy c-Means Clustering: An important pre-processing
step in the multi-model approach in Section III-B is to locate
the operating points around which local linear models are
identified. One approach for finding this set of operating
points for batch systems is to partition a historical batch
database into a number of clusters (i.e., a group of points
in the database that are mathematically similar) using fuzzy
c-means clustering. We describe this algorithm for a given
output in this section.

Consider the regressor matrix, X̄, for a given process
output. The matrix, X̄′ = [x̄′1 ⋯ x̄′i ⋯ x̄′N ], has N
columns with each column being a different instance of x̄′
(see Equation 5) in the training data. The lagged output-
input space in X̄′ can be partitioned into L different clusters
using fuzzy clustering, which assigns each sample, x̄′i, a
degree of belonging to a cluster ` ∈ [1, L] using a continuous
membership function, Mi,`. In fuzzy clustering, the degree of
x̄i belonging to cluster ` is taken to be inversely proportional
to the squared distance between the point and cluster center,
c`, and then normalized across all clusters [21]:

Mi,` =
∥x̄′i − c`∥−2

∑L
`=1 ∥x̄′i − c`∥−2 (6)

such that ∑L
`=1Mi,` = 1 ∀i. The center of a cluster is taken

as the mean of all the points, weighted by their membership
to the cluster or c` = ∑N

i=1 M2
i,`x̄i∑N

i=1 M2
i,`

[21]. In the fuzzy c-
means clustering algorithm, the memberships and cluster
centers are computed by iteratively minimizing the objective
function, J = ∑N

i=1∑L
`=1M2

i,`∥x̄i − c`∥2 [22]. The algorithm
is terminated when the changes in the membership functions
between two iterations is smaller than some pre-defined
tolerance. As this is a non-linear optimization, this procedure
can possibly terminate at a local minimum; therefore, the
optimization is usually repeated numerous times starting from
different initial memberships, and the results are selected for
the replicate with the minimum objective function value.

Remark 2 From the definition of X̄ in this section, the
dimension of the space required to be clustered can be
prohibitively high. The dimensionality problem was addressed
in this work by first projecting the variables in X̄ onto
a lower dimensional, latent variable subspace using PCA
and clustering the resulting latent variable or score space.
The resulting loading matrix from PCA, P, can be used to
relate the original cluster space (measurable) variables to the
latent variables according to: T = X̄P. In addition to better
numerical properties (i.e., orthogonality), the score space
typically has a much lower dimension, making the clustering
computations more numerically stable and computationally
tractable.

B. Data-based Model Development

In this section, we propose the multi-model approach for
modeling the outputs of the nylon-6,6 polymerization system.
Given a database of previous nylon-6,6 batches, the main
steps in the multi-model approach are to first cluster the X̄

space (or the score space after decomposing X̄ using PCA) of
the batch database using fuzzy c-means clustering and then to
(simultaneously) identify several local linear models around
the cluster center points. These models are then combined
with appropriate weights to describe the global nonlinear
behavior. For the individual linear models, we employ the
ARX model form in (5). Mathematically, this idea is expressed
by the following model:

ŷ(k) =
L

∑
`=1w`(k)β̂`x̄(k) (7)

where w`(k) is the (normalized) weight given to model `
of the L total models and β̂` defines the `-th local model
of the output. Note that from (7), all L ARX models are
assumed to have the same lag structure, but this assumption
can be easily removed. If the weights corresponding to the
training data are known prior to estimating the individual
model parameters, (7) becomes linear in β̂`, and the system
identification problem reduces to a regression problem that
is solvable using PCR.

Intuitively, from the process description in (4), the weights
placed on local linear models should depend on the current
value of the states and inputs since they define the system
dynamics. In other words, the local models should be
weighted according to the current process conditions. In the
absence of state measurements, a combination of lagged
outputs and inputs can be used to infer the current process
conditions. Accordingly, in this work, to determine the
weights for the training data, the normalized fuzzy clustering
membership function in (6) is used. Because the membership
function quantifies the degree to which a lagged output-input
combination belongs to each cluster, it is also indicative of
which local models should be given more weight than the
others. For instance, if an output-input combination nearly
coincides with a specific cluster center point, the local linear
model corresponding to that cluster should be given most of
the weight. This is consistent with (6) as the membership
function value corresponding to that cluster will be close to
1 while for the remaining clusters, the membership function
value will be near 0.

Remark 3 One advantage of using a continuous membership
function is evident when an output-input combination is
encountered that belongs to many clusters with varying
degrees. This becomes particularly important during periods
of transition in a polymerization process when it is evolving
from one stage to another. In this case, as multiple models
will be weighted appropriately, the information from several
different models can be used, resulting in more accurate
predictions. In multi-model approaches using crisp clustering
algorithms (i.e., PWA), only samples belonging to a specific
cluster can contribute in determining the model and no
surrounding information is used. That is, artificial boundaries
are established for the clusters and their corresponding models,
which can lead to abrupt predictions during transitional
periods.
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To develop the data-based models for the two outputs,
a database of previous batches was first generated. To this
end, the deterministic nylon-6,6 polymerization model in
[16] was simulated 15 times from different initial conditions
(five of the 15 batches were reserved as the validation data
set). To mimic a typical industrial batch data set, which is
comprised mostly of “successful” batches, the set of reference
temperature and pressure profiles were tracked reasonably
well using two PI controllers in the simultations. For the
PI loop-pairing, the vent rate was used to track the reactor
pressure while the steam jacket pressure was used to track the
temperature. Both PI controllers were tightly tuned for one
set of initial conditions and fixed for the remaining batches.
The criteria used to tune the PI controllers was to minimize
the integral of time-weighted absolute error (ITAE) while
attaining reasonably smooth input trajectories.

The identification procedure for the local linear models
for a given output was as follows. For a given lag structure,
the number of clusters was varied from L = 1 to L = 20. For
each choice of L, the X̄ matrix was constructed, decomposed
using PCA, and clustered. Since the model weights were then
known, multiple ARX models were estimated using PCR. This
was repeated for all possible lag structures with a lag range of
0 − 2 for each variable. The goodness of each fit was judged
using its root mean squared error (RMSE) in predicting back
the fit and validation batches. The lag structure and number of
clusters, L, for the two outputs that yielded the lowest RMSE
values are tabulated in Table I. In Table I, a zero lag indicates
that the variable was excluded from the model. Observe that
the reactor pressure was not used in predicting the reaction
mixture temperature, and its dynamics were best captured
with one linear, first order model. These results are consistent
with the fundamental process model; the significantly faster
pressure dynamics assumed in the state-space model leads
to a decoupling of the pressure from the other states (i.e.,
the pressure does not influence any of the other states and
vice-versa), and the pressure ODE is simply the product of
a constant gain term and the vent rate (a linear first order
model). Despite the decoupling of the outputs, the control
problem cannot be decomposed into two single-input-single-
output (SISO) problems because one of the inputs, the vent
rate, affects both outputs. Another observation from Table I is
that the lag structure for the temperature model corresponds
to a first order model between the outputs and inputs. One
possible explanation for this is the assumption of the same lag
structure for all the local models. With this assumption, using
all first order models minimizes the possibility of over-fitting.

TABLE I
FINAL LAG STRUCTURES, NUMBER OF CLUSTERS, L, AND RMSE VALUES

Lags

Output T P Pj v L RMSE

T 1 0 1 1 5 1.648

P 0 1 0 1 1 0.1791

C. Predictive Control Design and Implementation

A predictive controller for tracking reference temperature
and pressure profiles for the nylon-6,6 polymerization process
is presented in this section. The control action at each
sampling instance in the proposed controller is computed
by solving the optimization problem below.

min
umin≤u(k)≤umax

J =
P

∑
k=1 ∥ŷ(k) − yref(k)∥Q + ∥∆u(k)∥R (8)

subject to: Equation (7) (9)
ŷ(0) = y(t) (10)

The first term in the objective function penalizes discrepancies
between the predicted output trajectories, ŷ, and the output
reference trajectories, yref, over the prediction horizon, P ,
and the second term is a move suppression term that penalizes
the magnitude of input changes (i.e., the control rate). The
positive-definite matrices, Q and R, are used to trade-off
the relative importance of the output and input performance.
The constraint in (9) simply states that the data-based model
is the predictive model in the MPC formulation, and (10)
represents the initialization of the optimization problem at
the current process conditions and can be understood as the
feedback mechanism to account for plant model mismatch.

Closed-loop simulations for 10 new initial conditions were
performed using the proposed trajectory tracking MPC design,
and the performance was compared against a PI controller. All
initial conditions were ensured to be within the range of initial
conditions in the training data. All controllers were tuned
once for a specific set of initial conditions and left unchanged
for the remainder of the simulations to avoid confounding
the results with tuning. The tuning parameters used for the
proposed MPC were: P = 12, Q = diag {2.75,27.5}, and
R = diag {0.02,0.02}. Note that with P = 12, the proposed
MPC design was efficiently solvable; the average CPU time
required time to solve the MPC optimization problem (as
reported by the MATLAB functions tic and toc) was 0.69
seconds (using GAMS with IPOPT as the solver on an Intel
Quad Core machine). The metric used to assess the tracking
performance of the controllers was the ITAE between the
process variable value and the reference trajectory. The results
are summarized in Table II.

In all simulations, the proposed predictive controller
outperformed the PI controller. A representative set of closed-
loop simulation results is presented in Fig. 1 (initial condition
5). In this case, the ITAEs for the proposed predictive
controller improved on the PI controller by 77% and 26%
for temperature and pressure tracking (respectively). Overall,
the simulation results clearly demonstrate the advantages
of implementing the proposed trajectory tracking predictive
controller over PI control.

IV. CONCLUSIONS

In this work, we addressed the problem of modeling and
controlling a nylon-6,6 batch polymerization process. A multi-
model approach was developed which exploited historical
batch data, the simplicity of local linear models, the data

2544



0 1 2 3
0

5

10

∣T−
T

re
f∣(K

)

MPC
PI

0 1 2 3
0

0.5

1

1.5

2

∣P−
P

re
f∣(p

si
)

MPC
PI

0 1 2 3
0.8

1

1.2

1.4

1.6

⋅103

Time (h)

P
j

(p
si

)

MPC
PI

0 1 2 3
0

0.5

1

⋅106

Time (h)

v
(g

/h
)

MPC
PI

;

Fig. 1. Representative output tracking error (magnitudes) and input profiles for PI control and the proposed trajectory tracking MPC design

TABLE II
TRACKING PERFORMANCE COMPARISON OF THE PI CONTROLLER AND

PROPOSED MPC FORMULATION FOR 10 INITIAL CONDITIONS (ICS)

Temperature ITAE Pressure ITAE

IC PI MPC PI MPC

1 9.10 2.18 3.08 1.01

2 10.18 1.51 3.46 1.22

3 3.33 1.33 5.02 1.47

4 4.95 1.76 2.71 2.03

5 12.99 2.98 1.93 1.43

6 6.99 1.21 10.29 1.04

7 13.29 2.72 5.18 1.57

8 3.14 1.19 1.20 0.860

9 14.63 1.90 1.43 1.31

10 4.91 1.89 4.61 1.58

Average: 8.35 1.87 3.89 1.35

extraction capabilities of latent variable tools, and appropriate
clustering and weighting techniques to capture the nonlinear
nature of the nylon-6,6 batch polymerization process. The
resulting model was used to formulate a trajectory tracking
predictive controller for the key measurable process variables,
namely the reaction mixture temperature and reactor pressure.
Closed-loop simulation results (subject to noise and distur-
bances in the initial conditions) demonstrated the advantages
of using the proposed control design over PI control.
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