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Abstract—This paper studies the adaptive control problem
of single-input, single-output (SISO) piecewise linear systems,
a class of linear systems with switched parameters. A direct
state feedback model reference adaptive control (MRAC) scheme
is developed for such systems to achieve closed-loop signal
boundedness and asymptotic output tracking performance. Sim-
ulation results on linearized NASA GTM models are presented
to demonstrate the effectiveness of the proposed scheme.

I. INTRODUCTION

Adaptive control of plants that are modeled by linear time-

invariant (LTI) systems has been studied extensively in the

literature [4], [7], [11]. Yet in many practical applications, an

LTI system model is insufficient to describe the actual plant

due to the ever increasing performance requirements over a

wide range of operating conditions. Linear time-varying (LTV)

system models are thus considered in such applications.

Adaptive control designs have been proposed for LTV

models with slowly varying parameters [6] and a more general

class of LTV models [12], [13]. However, the assumption of

smoothness of the parameter variations excludes an important

class of LTV plants with switched parameters, the so-called

piecewise linear systems. Such systems arise in aircraft flight

control applications, and a typical example is the linearized

dynamics of an aircraft at some chosen operating points over

its flight envelope, each of which corresponding to a set

of constant parameters. With sufficient number of operating

points chosen, transitions among them can be modeled as

parameter switches.

When adaptive control schemes designed for LTI systems

are applied to piecewise linear systems, closed-loop stability

may be lost for fast parameter switches. In general, however,

if the average frequency of parameter discontinuities is suf-

ficiently low, stability can be maintained [14]. Even if this

is the case, deterioration of tracking performance is almost

unavoidable. Some modifications are thus made to the standard

adaptive control schemes aiming at improving the tracking

performance of piecewise linear system. In [1], a switching

scheme is presented to deal with control of plants with abruptly

jumping parameters, and a stability condition on the frequency

of the parameter discontinuities is derived. A multiple model

adaptive control (MMAC) approach is considered in [8] which

is effective in reducing transient tracking error of a piecewise

linear system. However, in these control schemes, only for a

finite number of parameter switches, the closed-loop system

settles down at the end and asymptotic tracking is achieved.

Whenever parameter switches occur, a deviation of the plant

output from the desired reference trajectory appears.

In this paper, we develop direct MRAC schemes for piece-

wise linear systems. It is shown that with such MRAC

schemes, closed-loop stability (signal boundedness) and

asymptotic tracking performance are achieved for such sys-

tems, if the occurrence frequency of parameter discontinuities

is sufficiently low. The desired performance are achieved

for arbitrarily frequent parameter discontinuities under certain

matching conditions, e.g., piecewise linear systems in control-

lable canonical form (CCF). As compared to the designs in

[2], [10] for state tracking, we will present the state feedback

for output tracking design which has a less restrictive plant

model matching condition.

The paper is organized as follows. The formulation of

the adaptive control problem for piecewise linear systems is

presented in section II. In section III, the non-adaptive model

reference control problem is considered, and an MRAC design

is proposed, with the stability results established in Section IV.

Illustrative examples are presented in Section V, and some

concluding remarks are given in Section VI.

II. PROBLEM STATEMENT

In this section, the adaptive state feedback control problem

for a piecewise linear system, to make its output track a

desired trajectory generated from a linear time-invariant refer-

ence model system, is formulated. To characterize the system

parameter discontinuities, we introduce indicator functions,

based on which an MRAC approach for such a control problem

is proposed in the next section.

A. Controlled Plant

We consider a SISO piecewise linear system

ẋ(t) = A(t)x(t) + b(t)u(t),

y(t) = cTx(t), x(0) = x0, (1)

where x(t) ∈ R
n is the state vector and is available for

measurement, u(t) ∈ R is the control input, y(t) ∈ R is the

controlled output, A(t) ∈ R
n×n and b(t) ∈ R

n are unknown

time-varying system parameter matrices, and c ∈ R
n is an

unknown constant parameter vector. The parameters matrices

A(t), b(t) vary in a piecewise linear pattern; that is, during

different time periods, (A(t), b(t)) take on different values as
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specified by the parameter matrix sets (Ai, bi), called a mode

of (1), i ∈ I , {1, 2, . . . , l}, where Ai, bi are unknown but

constant parameter matrices representing the controlled plant

operating at the ith mode, and l is the total number of the

system modes.

To characterize such time-varying behaviors of the system,

we introduce the indicator functions.

Indicator functions. The knowledge of the durations of

time of the ith mode that the system assumes and the time

instants at which it switches to the jth, i, j ∈ I, is crucial for

adaptive control design. The indicator functions χi(t), which

contain such knowledge of the system parameter discontinu-

ities, are assumed to be known and defined as

χi(t) =

{

1, if (A(t), b(t)) = (Ai, bi),
0, otherwise.

(2)

It follows that
∑l

i=1 χi(t) = 1, χj(t)χk(t) = 0, j 6= k. With

the indicator functions χi(t), the time-varying plant parameter

matrices A(t), b(t) can be expressed as

A(t) =

l
∑

i=1

Aiχi(t), b(t) =

l
∑

i=1

biχi(t). (3)

B. Control Objective

The control objective is to develop a feedback control law

for the system (1) with parameter variations characterized as

in (3) such that all the signals in the closed-loop system are

bounded, and the plant output y(t) asymptotically tracks a

reference signal ym(t), i.e., limt→∞(y(t)− ym(t)) = 0, with

ym(t) generated from a reference model system

ym(t) = Wm(s)[r](t), Wm(s) =
1

Pm(s)
, (4)

where Pm(s), independent of the system parameters, is a

desired closed-loop characteristic polynomial of degree n∗,

and r(t) is an external reference input signal which is bounded

and piecewise continuous.

III. ADAPTIVE CONTROL DESIGN

We propose a new state feedback controller structure and

the adaptive laws for the piecewise linear plant (1) to achieve

closed-loop stability and asymptotic output tracking in this

section. The non-adaptive model reference control problem is

considered first, and a gradient design is presented to solve

the adaptive control problem.

Assumptions. Suppose for the ith mode the transfer func-

tion of the system is

Gi(s) = cT(sI −Ai)
−1bi =

kpiZi(s)

Pi(s)
, (5)

with kpi 6= 0 a constant and Pi(s) = det(sI − Ai), Zi(s)
being monic polynomials with unknown constant coefficients

and of degrees n and m, respectively. To design an adaptive

state feedback control law for output tracking, the following

assumptions are made for i ∈ I:

(A1) (Ai, bi, c
T) is stabilizable and detectible;

(A2) The zeros of Zi(s) are stable;

(A3) The degree m of Zi(s) is known;

(A4) The degree of Pm(s) is n∗ = n−m;

(A5) The sign of kpi, sign[kpi], is known.

A. Nominal Controller Scheme

If Ai and bi, i ∈ I, are known, we propose the state

feedback model reference control law

u(t) = k∗T
x (t)x(t) + k∗r (t)r(t) (6)

with the controller parameters

k∗
x(t) = k∗

x1χ1(t) + k∗
x2χ2(t) + · · ·+ k∗

xlχl(t), (7)

k∗r (t) = k∗r1χ1(t) + k∗r2χ2(t) + · · ·+ k∗rlχl(t), (8)

where k∗
xi ∈ R

n and k∗ri ∈ R are defined to satisfy

det(sI −Ai − bik
∗T
xi ) = Pm(s)Zi(s), k∗ri =

1

kpi
. (9)

The existence of such k∗
xi and k∗ri is guaranteed by Assumption

(A1)–(A2). From (9), we have

cT(sI −Ai − bik
∗T
xi )bik

∗
ri =

kpiZi(s)k
∗
ri

det(sI −Ai − bik
∗T
xi )

= Wm(s), (10)

such that when the model reference controller (6) is applied

to the plant (1), the closed-loop system becomes

ẋ(t) =
l
∑

i=1

(

(Ai + bik
∗T
xi )χix(t) + bik

∗
riχir(t)

)

(11)

y(t) = cTx(t). (12)

Let the increasing sequence {ti}
∞
i=1 denote the time instants

at which system mode switches occur. With (9)–(12), the

output tracking error is e(t) = y(t) − ym(t) = ǫ0(t), where

ǫ0(t) = cTΦ(t, t0)x(t0), and Φ(t, t0) is the state transition

matrix associated with the homogeneous system of (11)–(12):

ż(t) = Am(t)z(t), (13)

where Am(t) =
∑l

i=1 Amiχi(t) with Ami , Ai + bik
∗T
xi

being stable. Exponential stability of (13) is sufficient for

stability of (11), which has been studied in [3]. It is well

known that for (13) to be exponentially stable, the time

interval between two consecutive mode switches should be

long enough. Let T0 = mink∈Z+{tk−tk−1}, where Z
+ stands

for all positive integers, and Pmi, Qmi ∈ R
n×n be symmetric,

positive definite matrices satisfying

AT

miPmi + PmiAmi = −Qmi, i ∈ I. (14)

Due to the stability of Ami, there exist ami, λmi > 0 such

that ‖eAmit‖ ≤ amie
−λmit. Define am = maxi∈I ami,

λm = mini∈I λmi, α = maxi∈I λmax[Pmi], and β =
mini∈I λmin[Pmi], where λmin[·] and λmax[·] denote the min-

imum and maximum eigenvalues of a matrix. The following

lemma gives a lower bound on T0 that ensures exponential

stability of (13), thus the stability of (11):
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Lemma 1. The homogeneous system (13) is exponentially

stable with decay rate σ ∈ (0, 1/2α) if the minimum switching

time interval T0 is such that

T0 ≥
α

1− 2σα
ln(1 + µ∆Am

), µ =
a2m
λmβ

max
i∈I

‖Pmi‖, (15)

where ∆Am
stands for the largest difference between any two

modes of Am(t), i.e., ∆Am
= maxi,j∈I‖Ami −Amj‖.

Proof: Let Am(k−1) denote the mode of Am(t) over [tk−1, tk),
Am(k−1) ∈ {Am1, . . . ,Aml}, k ∈ Z

+. Consider a mode

switch at t = tk. Due to the stability of Am(k−1), Am(k)

and without loss of generality, there exist symmetric, positive

definite Pm(k−1), Pm(k) ∈ R
n×n such that

AT

m(k−1)Pm(k−1) + Pm(k−1)Am(k−1) = −In,

AT

m(k)Pm(k) + Pm(k)Am(k) = −In,

where In denotes the n-dimensional identity matrix. With

∆Am(k) = Am(k) −Am(k−1), ∆Pm(k) = Pm(k) −Pm(k−1),

we have

AT

m(k)∆Pm(k) +∆Pm(k)Am(k) = −S(k), (16)

S(k) = ∆AT

m(k)Pm(k−1) + Pm(k−1)∆Am(k). (17)

Since Am(k) is stable, the solution of (16) is

∆Pm(k) =

∫ ∞

0

eA
T

m(k)tS(k)e
Am(k)tdt.

It follows from (17) that ‖S(k)‖ ≤ 2‖Pm(k−1)‖‖∆Am(k)‖,

and with ‖eAm(k)t‖ ≤ ame−λmt, we have

‖∆Pm(k)‖ ≤
a2m
λm

‖Pm(k−1)‖‖∆Am(k)‖. (18)

Consider the piecewise continuous Lyapunov function V =
zT(t)

∑l
i=1 Pmiχiz(t) with Pmi satisfying (14) for Qmi =

In so that Pm(k−1),Pm(k) ∈ {Pm1, . . . ,Pml}. At t = tk,

(18) and the fact that β‖z(t)‖2 ≤ V lead to

V (tk)− V (t−k ) = zT(tk)∆Pm(k)z(tk)

≤
a2m
λmβ

‖Pm(k−1)‖‖∆Am(k)‖V (t−k )

With µ =
a2
m

λmβ
maxi∈I‖Pmi‖, we have for k ∈ Z

+

V (tk) ≤ (1 + µ∆Am
)V (t−k ).

In addition, with the fact V ≤ α‖z(t)‖2, we have the time

derivative of V over [tk−1, tk) satisfies V̇ ≤ −V/α, and

V (t) ≤ e−
1
α
(t−t0) (1 + µ∆Am

)
k−1

V (t0), t ∈ [tk−1, tk),

which leads to

‖z(t)‖ ≤

(

α

β

)
1
2

e−
1
2α (t−t0)+

k−1
2 ln(1+µ∆Am

)‖z(t0)‖. (19)

Furthermore, with T0 being the minimum switching time

interval, we have t− t0 ≥ (k− 1)T0 for t ∈ [tk−1, tk), which

together with the condition (15), leads to

−
1

2α
(t− t0) +

k − 1

2
ln(1 + µ∆Am

) ≤ −σ(t− t0), (20)

and exponential stability can thus be concluded. ∇

Remark 1: In this paper, we consider a constant system

output vector c as in (1), by which (4), (11), (12) lead to

e(t) = y(t)− ym(t) = ǫ0(t) (21)

under the piecewise plant-model matching condition (9). For

c piecewise constant, we have e(t) = cT(t)x(t)− ym(t) with

c(t) =
∑l

i=1 ciχi(t). Here x(t) and ym(t) are continuous,

while c(t) is not; in particular, whenever a system mode

switch occurs, a discontinuity in y(t) appears. Since ym(t) is

continuous, we can conclude that asymptotic tracking cannot

be achieved with a switching c matrix. �

Remark 2: In the state feedback state tracking design for

piecewise linear systems [10], a plant-model matching condi-

tion, Ai + bik
∗T
xi = Ami, bik

∗
ri = bmi, is crucial and certain

structural information about the plant parameter matrices Ai,

bi are needed for the specification of Ami, bmi for a choice of

the reference model system. In the output tracking case, such

restrictive matching conditions are relaxed; in particular, the

triple (Ai + bik
∗T
xi , bik

∗
ri, c

T) here is a state space realization

of 1/Pm(s) to ensure input-output, piecewise plant-model

matching, which can always be satisfied under the stated

assumptions. In other words, the existence of the parameter

vectors k∗T
xi , k∗ri is guaranteed. �

B. Adaptive Control Scheme

Since Ai, bi, i ∈ I, are unknown, the nominal parameters

k∗
xi, k

∗
ri are also unknown, and the nominal control law (6)

cannot be implemented. An adaptive control law with its

parameters updated from some adaptive laws is needed.

Controller structure. The adaptive control law

u(t) = kT

x (t)x(t) + kr(t)r(t), (22)

is applied, where kx(t) and kr(t) are defined as

kx(t) =

l
∑

i=1

kxi(t)χi(t), kr(t) =

l
∑

i=1

kri(t)χi(t).

The parameters kxi(t), kri(t) are the adaptive estimates of

k∗
xi(t), k

∗
ri(t), respectively, and are updated from some adap-

tive laws to be developed in the following subsections.

By applying the adaptive control law (22) to the plant (1),

and defining k̃x(t) = kx(t) − k∗
x(t), k̃r(t) = kr(t) − k∗r (t),

k̃xi(t) = kxi(t)− k∗
xi, k̃ri(t) = kri(t)− k∗ri, we have

ẋ(t) =
l
∑

i=1

(

(Ai + bik
∗T
xi )χi(t)x(t) + bik

∗
riχi(t)r(t)

)

+
l
∑

i=1

bik
∗
ri

1

k∗ri

(

k̃T

xi(t)χi(t)x(t) + k̃ri(t)χi(t)r(t)
)

,

y(t) = cTx(t). (23)

In view of (4) and (10), the tracking error equation follows:

e(t) = Wm(s)

[

l
∑

i=1

1

k∗ri
(k̃T

xiχix+ k̃riχir)

]

(t) + ǫ0(t), (24)
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where ǫ0(t) is an initial condition related term.

Error model. To derive an estimation error equation for

adaptive law design, we denote θi(t) = [kT

xi(t), kri(t)]
T,

θ∗
i = [k∗T

xi , k
∗
ri]

T, and define the auxiliary signals ω(t) =
[xT(t), r(t)]T, ζi(t) = Wm(s)[ωχi](t), ξi(t) = θT

i (t)ζi(t) −
Wm(s)[θT

i ωχi](t) and the estimation error signal

ǫ(t) = e(t) +
l
∑

i=1

ρi(t)ξi(t), (25)

where ρi(t) is an estimate of ρ∗i = k∗pi. With (24) in (25) and

ǫ0(t) ignored, we have the estimation error model

ǫ(t) =

l
∑

i=1

(

ρ∗i θ̃
T

i (t)ζi(t) + ρ̃i(t)ξi(t)
)

, (26)

which is linear in parameter errors θ̃i(t) = θi(t)−θ∗
i , ρ̃i(t) =

ρi(t)− ρ∗i , and is suitable for adaptive control design.

Adaptive laws. Based on the error model (26), we propose

gradient adaptive laws to update θi(t) and ρi(t), i ∈ I:

θ̇i(t) = −
sign[kpi]Γiζi(t)ǫ(t)

m2(t)
, Γi = Γ

T

i > 0, (27)

ρ̇i(t) = −
γiξi(t)ǫ(t)

m2(t)
, γi > 0, t ≥ 0 (28)

with arbitrary initial estimates θi(0) = θi0, ρi(0) = ρi0, Γi ∈
R

(n+1)×(n+1), γi ∈ R, and the normalizing signal m2(t) =
1 +

∑l
i=1

(

ζT

i (t)ζi(t) + ξ2i (t)
)

.

IV. STABILITY ANALYSIS

We analyze the stability and asymptotic tracking perfor-

mance of the closed-loop system with the controlled plant

(1), the reference model (4), and the adaptive controller

(22) updated from the adaptive laws (27)–(28). Some desired

properties of the adaptive laws are presented first, which will

then be used to establish the asymptotic tracking performance.

The adaptive laws (27)–(28) have the following desired

properties for i ∈ I:

Lemma 2. The adaptive laws (27)–(28) ensure that

θi(t), ρi(t) ∈ L∞, and
ǫ(t)
m(t) , θ̇i(t), ρ̇i(t) ∈ L2 ∩ L∞.

Proof: Consider the Lyapunov function candidate

V (θ̃i, ρ̃i) =
1

2

l
∑

i=1

(

|ρ∗i |θ̃
T

i Γ
−1
i θ̃i + γ−1

i ρ̃2i

)

.

Its time derivative along the trajectories of (27)–(28) is

V̇ (θ̃i, ρ̃i) =
l
∑

i=1

(

|ρ∗i |θ̃
T

i Γ
−1
i θ̇i + γ−1

i ρ̃iρ̇i

)

= −
ǫ2(t)

m2(t)
≤ 0.

Hence θi(t), ρi(t) ∈ L∞,
ǫ(t)
m(t) ∈ L2 ∩ L∞. From (27)–(28)

and
ζi(t)
m(t) ,

ξi(t)
m(t) ∈ L∞, we have θ̇i(t), ρ̇i(t) ∈ L2 ∩ L∞. ∇

With Lemma 2, we can establish the following result:

Theorem 1. All signals in the closed-loop system with the

plant (1), the reference model (4), and the controller (22)

updated by the adaptive laws (27)–(28) are bounded, and the

tracking error e(t) = y(t)− ym(t) satisfies

lim
t→∞

e(t) = 0, e(t) ∈ L2, (29)

if the minimum switching time interval satisfies (15).

Proof: The homogeneous part of the closed-loop system (23)

is (13), and as shown in the proof of Lemma 1, with a

mode switching time interval T > T0, (13) is exponentially

stable. Therefore, the initial condition related term expressed

as ǫ0(t) = cTΦ(t, 0)x(0) is decaying exponentially to zero,

and thus can be ignored in a gradient design.

Closed-loop signal boundedness can be proved by first

using a reduced-order state observer design of the piecewise

linear system (1) to parameterize the state feedback controller

structure in (6) into an output feedback form:

u(t) = θ̄T

1 ω̄1(t) + θ̄T

2 ω̄2(t) + θ̄20y(t) + θ̄3r(t), (30)

ω̄1(t) =
a(s)

Λ(s)
[u](t), ω̄2(t) =

a(s)

Λ(s)
[y](t), (31)

with θ̄i =
∑l

j=1 θ̄ij(t)χj(t), i = 1, 2, 20, 3, Λ(s) be-

ing a monic stable polynomial of degree n − 1, ω̄1(t),
ω̄2(t) ∈ R

n−1, and a(s) = [1, s, . . . , sn−2]T. With θ̄i ,

[θ̄T

1i, θ̄
T

2i, θ̄20i, θ̄3i]
T and ω̄ , [ω̄T

1 , ω̄
T

2 , y, r]
T, the adaptive

control design in Section III with θi replaced by θ̄i, ω by

ω̄, results in the desired signal properties as stated in Lemma

1: θ̄i(t), ρi(t) ∈ L∞, and
ǫ(t)
m(t) ,

˙̄θi(t), ρ̇i(t) ∈ L2 ∩ L∞.

A filtered system output y(t), i.e., z(t) , 1
s+a0

[y](t) is

then expressed in a feedback framework that is suitable for

the application of the small gain theorem and with the signal

properties as above [11] to conclude signal boundedness. In

particular, with z0(t) ,
1

s+a0
[u](t) for a0 > 0, it can be shown

[11, Theorem 5.4] that

z0(t) = T1(s, ·)[z](t) + b0(t), b0(t) ∈ L∞, (32)

for some stable and proper operator T1(s, ·). Furthermore,

|ǫ(t)| ≤
|ǫ(t)|

m(t)

(

1 +
l
∑

i=1

(‖ζi(t)‖+ |ξi(t)|)

)

,

z(t) =
1

s+ a0
[ym](t) +

1

s+ a0

[

ǫ−

l
∑

i=1

ρiξi

]

(t).

It follows that |z(t)| ≤ x0(t) + T2(s, ·)[x1T3(s, ·)[|z|]](t) for

some x0(t) ∈ L∞, x1 ∈ L∞ ∩ L2, stable and strictly proper

operator T2(s, ·), and stable and proper operator T3(s, ·),
where we have used the fact that |y(t)χi(t)| ≤ |y(t)|,
|r(t)χi(t)| ≤ |r(t)|. With z1(t) , T3(s, ·)[|z|](t), we have

z1(t) ≤ b1 + b2

∫ t

0

e−α(t−τ)x1(τ)z1(τ)dτ (33)

for some α, b1, b2 > 0. By applying the small gain theorem, we

can conclude z1(t), z(t), z0(t) ∈ L∞, thus u(t), y(t) ∈ L∞,

ζi(t), ξi(t) ∈ L∞, and ǫ(t), ǫ̇(t) ∈ L∞ from (26). By the
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Barbălat Lemma, it follows that limt→∞ ǫ(t) = 0, ξi(t) ∈ L2

and limt→∞ ξi(t) = 0, and from (25), we have (29). ∇

Remark 3: The minimum switching time interval require-

ment, T > T0 for some T0 > 0, is for ensuring internal

stability in the presence of system mode switches. It can be

relaxed to T > 0, i.e., arbitrarily fast mode switches, when

Ai + bik
∗T
xi = Am, i ∈ I, in (9) for some stable matrix

Am, which implies that Zi(s) = Z(s), i ∈ I, for some

stable polynomial Z(s) specifying system zeros. Systems in

certain special forms, e.g., controllable canonical form, fit in

this context. An illustrative simulation example in this regard

is given in Section V. �

Remark 4: In the output tracking design, the analysis

method used is analogous to the conventional state feedback

output tracking design for an LTI plant. An estimation error

ǫ(t) (along with some auxiliary signals) is defined as in (25)

and the proposed gradient adaptive laws are such that the

desired signal properties in Lemma 2, i.e., the boundedness

of parameter estimates, and θ̇i, ρ̇i, ǫ/m ∈ L2 ∩L∞ remain in

spite of the presence of mode switches, and these properties

help establish signal boundedness and the asymptotic tracking

performance in a feedback framework for which small gain

theorem can be applied. The only difference in the analysis

with respect to the conventional output tracking design is the

requirement on a minimum mode switching time interval T0,

which is needed to ensure the exponential decaying of the

initial condition related term ǫ0(t) and internal stability of the

closed-loop system.

On the other hand, in the state feedback state tracking design

for the general case [10], an analogous Lyapunov analysis to

the conventional state tracking design cannot be carried out

due to the nonexistence of a common P matrix for Ami, in

general. A piecewise Lyapunov function was adopted, instead.

However, the minimum switching time interval requirement

for ensuring a stable reference model system cannot ensure

bounded parameter estimates, thus a parameter projection

algorithm is needed. Additional switching time interval re-

quirements are imposed for establishing the boundedness of

e(t) with the boundedness of parameter estimates. Asymptotic

state tracking performance cannot be concluded due to the loss

of e(t) ∈ L2 property. �

V. ILLUSTRATIVE EXAMPLES

A simulation study is first performed for a piecewise lin-

ear system in controllable canonical form (CCF), then the

proposed design is applied to the linearized NASA GTM

models to demonstrate its effectiveness, as compared with the

conventional MRAC design for LTI systems.

A. Simulation for Systems in CCF

We consider a piecewise linear system (1) with n = 3,

l = 3: A1 = [0, 1, 0; 0, 0, 1; 2,−3,−5], b1 = [0, 0, 1]T,

A2 = [0, 1, 0; 0, 0, 1;−2, 0, 1], b2 = [0, 0, 2]T, A3 =
[0, 1, 0; 0, 0, 1; 0, 1,−2], b3 = [0, 0, 0.5]T, and c = [1, 1, 0]T.

With m = 1 and n∗ = n − m = 2, we choose a reference

model system (4) with Wm(s) = 1/(s2 + 2s+ 1).

It can be verified that the matching condition (9) can

be satisfied with k∗
x1 = [−3, 0, 2]T, k∗r1 = 1, k∗

x2 =
[−0.5,−1.5,−2]T, k∗r2 = 0.5, k∗

x3 = [−2,−8,−2]T, k∗r3 = 2.

In all simulations, system mode switches in sequence every

10 seconds, i.e., T = 10s. The simulation parameters are

as follows: x(0) = [4,−5, 3]T, xm(0) = 0, θi(0) = 0.8θ∗
i ,

ρi(0) = 0.8ρ∗i , Γi = 3I , γi = 3, for i = 1, 2, 3.

The tracking error e(t) is plotted in Fig. 1 (top) for

r(t) = 2 sin(t). As a comparison, the tracking performance

under the same conditions with the conventional state feedback

MRAC scheme for output tracking [11] is also shown in Fig. 1

(bottom). It is clear that asymptotic tracking is achieved with
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Fig. 1. Tracking error e(t) with r(t) = 2 sin(t): the proposed scheme (top)
vs. the conventional MRAC scheme (bottom).

the proposed adaptive control scheme, which is a significant

performance improvement over the conventional scheme that

does not take into account the parameter discontinuities.

B. Simulation on NASA GTM

1) Linearized Aircraft Longitudinal Model and Reference

Model System: For simplicity of presentation, we choose

l = 2, and trim the GTM at steady-state, straight, wings-

level flight condition at 80 knots and 90 knots at 800 ft.,

respectively, to obtain a piecewise linear longitudinal system

model in the form of (1), where x = [u,w, q, θ]T with the

elements being the perturbed aircraft velocity components

along the x- and z-body-axis (fps), angular velocity along the

y-body-axis (crad/s), and pitch angle (crad), respectively. The

control input is the perturbed elevator deflection δe, and the

parameter matrices are

A1 =









−0.0293 0.2460 −0.0899 −0.3210
−0.2611 −3.0403 1.2973 −0.0222
1.7458 −32.0173 −3.8364 0

0 0 1.0000 0









,

A2 =









−0.0380 0.2786 −0.0750 −0.3213
−0.2440 −3.4119 1.4623 −0.0165
1.3633 −35.8069 −4.4019 0

0 0 1.0000 0









,

b1 =









0.0031
−0.6953
−85.2589

0









, b2 =









−0.0010
−0.8703

−108.6559
0









, c =









0
0
0
1









,

2004



with the corresponding transfer functions:

G1(s) =
−85.26s2 − 239.4s− 12.66

s4 + 6.906s3 + 53.62s2 + 2.324s+ 4.375
,

G2(s) =
−108.7s2 − 343.7s− 20.63

s4 + 7.852s3 + 67.85s2 + 3.157s+ 4.286
,

where we have chosen the pitch angle θ as the output, i.e.,

y = θ. It is clear that m = 2, thus n∗ = n−m = 2, and the

reference model transfer function is chosen as

Wm(s) =
1

(s+ 1)(s+ 2)
.

2) Matching Condition and Nominal Parameters: It can

be verified that the plant-model matching condition (9) can

be satisfied with the nominal controller parameters k∗
x1 =

[0.0205,−0.3755,−0.0098, 0.0235]T, k∗r1 = −0.0117, k∗
x2 =

[0.0125,−0.3295,−0.0129, 0.0184]T, k∗r2 = −0.0092, and

‖eAm1t‖ ≤ 12.5796e−0.0539t, ‖eAm2t‖ ≤ 10.6393e−0.0612t.

With Qm1 = Qm2 = I2 in (14), we can compute from (15)

the minimum switching time interval as T0 > 139.9350s.

3) Simulation Results: In this simulation, we choose a

switching time interval T = 150s. The initial plant state is

[5, 2, 0, 10]T with zero reference model initial condition, and

the initial parameter estimates are chosen to be 80% of their

nominal values. The adaptation gains are chosen to be unity.

Figure 2 (top) shows the output tracking error e(t) with a

sinusoidal reference input r(t) = 8 sin(0.3t), corresponding to

a desired fluctuation of the pitch angle in between ±2.6◦. As

a comparison, the tracking performance with the conventional

SISO state feedback output tracking MRAC scheme [11] under

the same conditions is plotted in Fig. 2 (bottom).
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Fig. 2. Tracking error e(t) with r(t) = 8 sin(0.3t): the proposed scheme
(top) vs. the conventional MRAC scheme (bottom).

From the simulation results, we can see that the closed-

loop stability is achieved for both simulations. However,

the proposed adaptive control scheme achieves asymptotic

output tracking, which is a substantial improvement over the

conventional MRAC scheme under the same conditions.

VI. CONCLUSIONS

A direct model reference adaptive control (MRAC) scheme

is developed in this paper for SISO piecewise linear sys-

tems. The proposed control design employs the knowledge

of the time instants of parameter discontinuities, which is

characterized by the indicator functions. Closed-loop signal

boundedness and asymptotic output tracking are achieved via

state feedback for sufficiently slow system mode switches.

Simulation results demonstrate the effectiveness of the pro-

posed adaptive control scheme.
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