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Abstract— The paper deals with the problem of unveiling
the link structure of a network of linear dynamical systems. A
technique is provided guaranteeing the exact detection of the
links for networks with no undirected cycles (Linear Dynamic
Polytrees). The result extends previous work that was limited
to a more restricted class (Linear Cascade Model Trees).

I. INTRODUCTION

Recently, a significant interest for complex systems has
been shown in many scientific fields, with a particular focus
on the study of the emergence of complicated phenomena
from the connection of simple models [1]. As a consequence,
graph theory [2] has been successfully exploited to perform
novel modeling approaches in several fields, such as Eco-
nomics (see e.g. [3], [4]), Biology (see e.g. [5]) and Ecology
(see e.g. [6]), especially when the investigated phenomena
are characterized by spatial distribution and a multivariate
analysis technique is preferred [7].

While networks of dynamical systems are well studied
and analyzed in Physics [8], [9] and Engineering [10], [11],
[12], there are fewer results that address the problem of
reconstructing an unknown dynamical network from sampled
data, since it poses formidable theoretical and practical
challenges [13].

One of the most formidable complications in the recon-
struction of a network of dynamical systems is given by
the presence of cycles in the structure. This is the reason
why most techniques focus on identifying acyclic structures
(see for example [14], [5], [3], [15]). However, even though
an acyclic topology may seem a quite reductive choice,
given an intricate and connected link structure, one may be
interested into “approximating” it with a tree scheme. Such
an approximation could be considered “satisfactory” if the
most important connections were captured.

For example, tree topologies have been successfully em-
ployed in [5] for the study of gene regulatory networks that
have instead a more complicated structure.
Another well-known technique for the identification of a tree
network in a complex scenario is developed in [3] for the
analysis of a stock portfolio. The authors identify a tree
structure according to the following procedure: i) a metric
based on the correlation index is defined among the nodes; ii)
such a metric is employed to extract the Minimum Spanning
Tree [2] which forms the reconstructed topology. In [7]
severe limitations of these strategies are highlighted, where
it is shown that, even though the actual network is a tree,
the presence of dynamical connections or delays can lead
to the identification of a wrong topology. In [16] a similar
strategy, where the correlation metric is replaced by a metric
based on the coherence function, is numerically shown to

provide an exact reconstruction for tree topologies. Finally, in
[15] it is shown that the procedure theoretically guarantees a
correct reconstruction for rooted tree topologies. Rooted tree
topologies are good models for networks where propagation
phenomena are present. However, they can still be considered
a limited class of networks for other applications. Indeed
assuming the presence of a single root node determines the
orientation of all links in a unique way. Thus a single root
process is assumed to drive the dynamics of all the other
nodes. This makes all the network processes necessarily
correlated.

In this paper we extend the theoretical guarantees that were
provided in [15] for rooted tree networks to the more general
case of connected networks with no undirected cycles.

Notation:
The symbol := denotes a definition
(v1, v2): ordered pair of two elements v1 and v2
W ∗: the conjugate transpose of a matrix or vector W
E[·]: mean operator;
Rxy(τ) := E[x(t)yT (t + τ)]: cross-covariance function of
wide-sense stationary processes x and y;
Rx(τ) := Rxx(τ): autocovariance;
Z(·): Zeta-transform of a signal;
Φxy(z) := Z(Rxy(τ)): cross-power spectral density;
Φx(z) := Φxx(z): power spectral density;

II. PRELIMINARY RESULTS

In this section we give the necessary theoretical back-
ground in order to formulate the problem of reconstructing
an acyclic network of dynamical systems.

A. Recall of Graph theory concepts

First, the standard definition of undirected and oriented
graphs is provided.

Definition 1 (Directed and Undirected Graphs): An
undirected graph G is a pair (V,A) where V is a set of
vertices or nodes and A is a set of edges or arcs, which are
unordered subsets of two elements of V .
A directed (or oriented) graph G is a pair (V,A) where V
is a set of vertices or nodes and A is a set of edges or arcs,
which are ordered pairs of elements of V .
Given a directed graph G = (V,A) it is possible to define
its undirected version G′ = (V ′, A′) where V ′ = V and
A′ = {{v1, v2} ⊆ V |(v1, v2) ∈ A}.

Definition 2: Given a graph G = (V,A), the pair C =
(V1, V2) is a a cut of G if V = V1 ∪ V2. Every edge
(N1, N2) ∈ A (or {N1, N2} ∈ A for undirected graphs)
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such that N1 ∈ V1 and N2 ∈ V2 is referred to as a an
edge of the cut C and we write (N1, N2) ∈ CutA(C) (or
{N1, N2} ∈ CutA(C) for undirected graphs).

The definition of “walk” in a graph will be widely used
in the rest of the paper. In the literature of graph theory a
“walk” is defined in a variety of way non always equivalent.
Thus, we explicitely provide the definition that we will use.

Definition 3: Consider a directed graph G = (V,A).
We say that a finite ordered sequence P = (Nπ0 , . . . , Nπl

)
of elements of V is a directed walk from the node Ns to the
node Ne if the following properties are met

1) Nπ0 = Ns, Nπl
= Ne

2)
(
Nπk−1

, Nπk

)
∈ A for k = 1, ..., l

We say that P is an undirected walk from the node Ns to
the node Ne if this weaker property replaces 2)
2b)

(
Nπk−1

, Nπk

)
∈ A or

(
Nπk

, Nπk−1

)
∈ A

for k = 1, ..., l.
If G = (V,A) is an undirected graph we equally say that P
is an undirected walk by replacing 2b) with
2c)

{
Nπk−1

, Nπk

}
∈ A for k = 1, ..., l.

In all the cases above, we say that l ≥ 0 is the length of the
walk and that the walk is simple if all nodes are distinct.

Lemma 4: For any walk P := (Nπ0
, . . . , Nπl

) that is not
simple and with Nπ0

6= Nπl
, it is possible to find a walk P ′

from Nπ0 to Nπl
with length 0 < l′ < l.

Proof: Since P is not simple assume that, for 1 ≤
i < j ≤ l, we have Nπi

= Nπj
. Define P ′ :=

(Nπ0
, ..., Nπi

, Nπj+1
, ..., Nπl

). It is straightforward to verify
that P ′ is still a walk and that its length satisfies 0 < l′ =
l − j + i < l.

Lemma 5: For any walk P := (Nπ0
, . . . , Nπl

) with
Nπ0 6= Nπl

, there exists a simple walk from Nπ0 to Nπl

Proof: By contradiction, there is no simple walk from
Nπ0

to Nπl
. Since P is not simple there is a walk P1 from

Nπ0
to Nπl

with length l1 ≤ l − 1. P1 can not be simple,
thus there must exist P2 with length l2 ≤ l− 2. Iterating the
argument we find that there must be a walk with non-positive
length, that is a contradiction.
We also introduce the concept of “connected graph”.

Definition 6: A directed graph G = (V,A) is directly
(undirectly) connected if for any pair of distinct nodes
Ni, Nj ∈ V there is at least one directed (undirected)
walk connecting them. Analogously, if G = (V,A) is an
undirected graph, we say it is connected if there is at least
an undirected walk between each couple of distinct nodes
Ni, Nj ∈ V .

Definition 7 (Directed and Undirected cycles): Given a
graph G = (V,A), a directed (undirected) cycle is a directed
(undirected) walk from one node to itself.

Definition 8 (Ancestors, Descendants): Given a directed
graph G = (V,A), if there is a directed walk from Ni to
Nj , we say that Ni is an ancestor of Nj or, equivalently,
that Nj is a descendant of Ni.

Definition 9 (Common ancestor): Given a directed graph
G = (V,A), if Nk is an ancestor of both Ni and Nj , we say
that Nk is a common ancestor of Ni and Nj .

Definition 10 (Related nodes): Given a directed graph
G = (V,A), two nodes Ni and Nj are related if one is a
descendant of the other or if they have a common ancestor.

Definition 11 (Polytree): A polytree is a directed graph
G = (V,A) meeting the following two conditions
• for any two distinct nodes Ni and Nj , there is exactly

one simple undirected walk linking them
• {Ni, Nj} ∈ A implies {Nj , Ni} /∈ A.

Any node for which there are no entering edges is called a
root of the polytree.

Definition 12 (Rooted tree, undirected tree): A rooted
tree is a polytree with exactly one root.
A tree is the undirected version of a polytree.
The following definition introduces the concept of Minimum
Spanning Tree.

Definition 13: Given a connected undirected graph G =
(V,A), a Spanning Tree of G is a subgraph T = (V,AT )
that is a tree. Given a weight function defined on the edges,
w : A→ R, T is also a Minimum Spanning Tree (MST) of G
with respect to w if, for every Spanning Tree T ′ = (V,A′T ),
it satisfies ∑

a∈AT

w(a) ≤
∑
a′∈A′T

w(a′). (1)

Proposition 14 (Cut Property): Consider a connected and
undirected graph G = (V,A), a weight w : A→ R and a cut
C = (V1, V2). If, there exists an edge {N1, N2} ∈ CutA(C)
such that, for all {N3, N4} ∈ CutA(C),

w({N1, N2}) ≤ w({N3, N4}), (2)

then there is a Minimum Spanning Tree of G with respect
to w that contains the edge {N1, N2}.
Furthermore, if there is one edge {N1, N2} with weight
strictly smaller than every other edge of the cut, it belongs
to any MST of G with respect to w.

Proof: It is a standard result in graph theory. See, for
example, [2].

B. Rationally correlated processes

Definition 15: The set F is defined as the set of real-
rational SISO transfer function with no poles on the unit
circle {z ∈ C| |z| = 1}.

Definition 16: Consider a transfer function H(z) ∈ F and
let e be a wide sense stationary random process. Since H(z)
is analytical in a neighborhood of the unit circle, by the
properties of the Z-transform, there is a unique bi-infinite
sequence hk such that, for any |z| = 1,

H(z) =

∞∑
k=−∞

hkz
−k

By using the notation y(t) = H(z)e(t) we denote the
random process defined, for any t, as

y(t) =

∞∑
k=−∞

ht−ke(k).
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Definition 17: Let E be a set containing time-discrete
scalar, zero-mean, jointly wide-sense stationary random pro-
cesses such that, for any ei, ej ∈ E , the power spectral
density Φeiej (z) exists, is real rational with no poles on the
unit circle and given by

Φeiej (z) =
A(z)

B(z)
, (3)

where A(z) and B(z) are polynomials with real coefficients
such that B(z) 6= 0 for any z ∈ C, with |z| = 1. Then, E is
a set of rationally correlated random processes.

C. Linear Dynamic Graphs, Polytrees and Rooted Trees

The following definition provides a class of models for a
network of dynamical systems. We assume that the dynamics
of each agent (node) in the network is represented by a scalar
random process {xj}nj=1 that is given by the superposition
of a noise component ej and the “influences” of some other
“parent nodes” through dynamic links. The noise acting on
each node is assumed not correlated with the other noise
components. If a certain agent “influences” another one, then
a directed edge can be drawn and a directed graph can be
obtained.

Definition 18 (Linear Dynamic Graph): A Linear Dy-
namic Graph is defined as a pair (H(z), e) where
• e = (e1, .., en)T is a vector of n rationally correlated

random processes such that Φe(z) is diagonal
• H(z) is a n× n matrix of transfer functions in F .

Define the output processes {xj}nj=1 of the LDG as

xj = ej +

n∑
i=1

Hji(z)xi, (4)

or in a more compact way x(t) = e(t) +H(z)x(t).
A LDG is said topologically detectable if Φej (z) > 0 for
any |z| = 1.
Let V := {x1, ..., xn} and let A := {(xi, xj)|Hji(z) 6= 0}.
The pair G = (V,A) is the associated directed graph of
the LDG. Abusing the nomenclature we will refer to nodes,
edges, cycles, walks, roots etc... of a LDG even though,
formally, we should refer to them as nodes, edges, cycles,
walks, roots etc... of its associated graph.

Definition 19 (Linear Dynamic Trees): The LDG
(H(z), e) is a Linear Dynamic Polytree (LDP) if the
associated graph is a polytree.
The LDG (H(z), e) is a Linear Cascade Model Tree
(LCMT) if the associated graph is a rooted tree (see [15]).

As in [15] we define a pseudo-metric among the wide-
sense stationary processes x1, ..., xn in the following way

Definition 20: Given a LDG with nodes {x1, ..., xn} we
define the coherence pseudo-metric as

d(xi, xj) :=
1

2π

∫ π

−π

(
1−

|Φxixj (eiω)|2

Φxi
(eiω)Φxj

(eiω)

)
dω. (5)

Finally, we recall the main result proved in [15].
Theorem 21: Consider a topologically detectable LCMT

(H(z), e) with associated directed graph T = (V,A). Define
the complete graph Q = (V,E) where E := {{xi, xj} ∈

V 2|xi 6= xj} and consider the weight w({xi, xj}) :=
d(xi, xj) where d(xi, xj) is the coherence pseudo-metric.
The MST of Q with respect to w is unique and is the
undirected version of T .

Proof: See [15].

III. PROBLEM FORMULATION

Given a LDP with output processes {xj}nj=1, assume that
only the (cross)-spectral densities Φxixj (eiω) are known and
determine, for any two processes xi and xj , if there is an
edge linking them (disregarding the orientation).

IV. PRELIMINARY RESULTS

We start with the following lemma.
Lemma 22: Consider a LDG (H(z), e) with nodes

{x1, ..., xn} and assume that l < +∞ is the length of the
longest directed walk (that is there are no directed cycles).
Then, we have that

x = T (z)e =

(
I +

l∑
k=1

Hk(z)

)
e. (6)

Furthermore, if there is no directed walk from xi to xj 6= xi,
Tji(z) = 0.

Proof: Observe that a non-zero entry (j, i) of H(z)
represents the presence of a direct link from xi to xj , that
is a walk of length 1. The entry (j, i) of H2(z) is given by

(H2(z))ji =

n∑
k=1

Hjk(z)Hki(z) (7)

that is zero if there is no direct walk of exactly length 2 from
xi to xj . Iterating the reasonment we find that, if there is no
direct walk of length q from xi to xj , then (Hq(z))ji = 0.
Then we have that (Hq(z))ji, for any q > l. Now consider
the relation (I − H(z))x = e. Since H(z) is nilpotent of
order l + 1, (I − H(z)) is invertible and (I − H(z))−1 =
I +

∑l
k=1H

k(z). The statement follows immediately.
Lemma 23: Given a LDP (V,A) with nodes V =

{x1, ..., xn}, each node that is not a root has a root ancestor
Proof: Without any loss of generality assume that x1

is not a root. Then it has a parent. Let it be x2. If x2 is a
root, the lemma is proven. If x2 has a parent, then it must
be different from x1, otherwise we would have that both
(x1, x2) and (x2, x1) belong to A, against the fact the graph
is a polytree. Thus let x3 be the parent of x2. It holds that
x3 6= x1, x2, and that (x3, x2, x1) is a directed walk. Let us
prove that if there is a direct walk (xk, xk−1, ..., x1 and y is
a parent of xk, then y 6= x1, ..., xk.
If there exists 1 ≤ j ≤ k such that y = xj , then the
two walks (xj , xk) and (xj , xj+1, ..., xk) are two simple
undirected walks from xj to xk. This is a contradiction since
the graph is a polytree proving that y 6= x1, ..., xk. If x3 has
a parent then, it needs to be different from x1, x2. Let it be
x4. By iterating the argument we must eventually find a root
or we will obtain the contradiction that the graph has more
than n distinct nodes.
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Lemma 24: Given a LDP with nodes {x1, ..., xn}, if xi
and xj are related nodes, then they have a common ancestor
that is a root or xi is a root or xj is a root.

Proof: If either xi or xj is a root, the assertion is true.
So consider the case where neither of them is a root. Assume
that xi is an ancestor of xj . By Lemma 23, xi has a root
ancestor that is also an ancestor of xj .
Analogously, if xj is an ancestor of xi, by Lemma 23, xj
has a root ancestor that is also an ancestor of xi.
If xi and xj have a common ancestor xk, then it either can
be a root or.have a root ancestor, proving the assertion even
in this case.

Lemma 25: Given a topologically detectable LDP with
nodes {x1, ..., xn}, if xi and xj are not related nodes, then
Φxi,xj

(z) = 0.
Proof: Let T (z) be as in (6). Let xk be a node of the

LDP. First assume that xk 6= xi, xj . Since xi and xj are
not related nodes, it is not possible that there is at the same
time a direct walk from xk to xi and a direct walk from xk
to xj . Then, Tik(z)T ∗jk(z) = 0. If k = i (or k = j), then
Tii(z)T

∗
ji(z) = 0 (or Tij(z)T ∗jj(z) = 0) since one is not a

descendant of the other and viceversa. This implies that

Φxixj
(z) = Ti∗(z)Φe(z)T

∗
∗j(z) = 0 (8)

where the last equality follows from the fact the Φe(z) is
diagonal.

Given a LDP P = (H(z), e) with n nodes, it is possible
to define a LCMT for each of its roots.

Proposition 26 (LCMT associated to a root of a LDP):
Let P = (H(z), e) be a LDP with n nodes. Without any
loss of generality, let x1 be a root of P and let x2, ..., xm
be all its descendants. Let xm+1, ..., xn be all the other
nodes. For any i = 1, ...,m define

e
(tree)
i := ei +

+∞∑
k=m+1

Hikxk

H
(tree)
ji (z) := Hji(z) for i, j = 1, ...,m.

Then, (e(tree), H(tree)(z)) is a LCMT with nodes
{x1, ..., xm}.

Proof: First we prove that {e(tree)i }mi=1 have null cross-
spectral density making (e(tree), H(tree)(z)) a LDG.

Consider ki > m and kj > m such that Hiki(z) 6= 0 and
Hjkj (z) 6= 0, for i, j < m and i 6= j.

First, we show that xki and xkj are not related nodes.
By contradiction assume they are related. Let P (i) =

(y
(i)
1 , ..., y

(i)
li

) and P (j) = (y
(j)
1 , ..., y

(j)
lj

) the walks from
x1 to xi and from x1 to xj respectively. They ex-
ists because xi and xj are descendants of x1. P ′ =

(y
(i)
1 , ..., y

(i)
li
, y

(j)
lj
, ..., y

(j)
1 ) is a walk from xi to xj . Let P

be the simple version of P ′. It is the unique simple walk
connecting xi and xj . Observe that it contains nodes xk with
k ≤ m and none of them can be an ancestor for either xki
or xkj (otherwise they would be descendants of x1). Build
the walk from xki to xkj by appending the edges xki and
xkj at the beginning and at the end of P respectively. This

walk is simple and is not directed, thus xki and xkj are not
in a ancestor/descendant relation.
Thus, there must be a common ancestor for xki and xkj .
Use it to build a simple walk Q between them and observe
that it can only contain nodes xk with k > m. This is
a contradiction since there must be a unique simple walk
between two nodes. Since xki and xkj are not related, from
Lemma (25), their cross-spectral density is zero. Then, for
i 6= j, we have that

Φ
e
(tree)
i e

(tree)
j

(z) = 0 (9)

proving that (H(tree)(z), e(tree)) is a LDG. Define

x(tree) = e(tree) +H(tree)(z)x(tree) (10)

and observe by inspection that x(tree)i = xi for i ≤ m. The
way the nodes have been chosen proves that the associate
graph of (H(tree)(z), e(tree)) is a tree, thus the LDG is a
LCMT.

V. MAIN RESULT

The following theorem is the main result of the paper.
It states that, given a LDP, the MST associated with the
coherence pseudo-metric of its nodes is unique and coincides
with the undirected version of the LDP graph.

Theorem 27 (Topology reconstruction for LDP’s):
Consider a connected and topologically detectable
LDP (H(z), e) with associated graph G = (V,A).
Define the complete graph Q := (V,E) where
E := {{xi, xj} ∈ V 2|xi 6= xj}, and the weight
w({xi, xj}) = d(xi, xj). The MST of Q with respect
to w is unique and coincides with the undirected version of
G.

Proof: Let us consider an edge (xp, xc) ∈ A and let us
prove that it belongs to the MST. Consider the following two
sets: V1 contains xp and all the nodes connected to it with
an indirected walk that does not contain the edge {xp, xc};
and V2 is its complement to V . Let us prove that, for any
x1 ∈ V1 and any x2 ∈ V2 such that x1 6= xp or x2 6= xc, we
have d(xp, xc) < d(x1, x2). First observe that d(xp, xc) < 1.
Let us distinguish two cases.
If x1 and x2 are not related, from Lemma 25 their distance
is 1, so the statement is true. If they are related, consider the
LCMT T corresponding to one of their common roots. A
common root exists because of Lemma 24. Let xT1

, ..., xTm

be the nodes of T . Define V (tree)
1 := {xTi

|xTi
∈ V1} and

V
(tree)
2 := {xTi

|xTi
∈ V2}. The sets V (tree)

1 and V
(tree)
2

represent a cut of T . Observe that x1 ∈ V
(tree)
1 and that

x2 ∈ V (tree)
2 . From Theorem 21, the edge {xp, xc} belongs

to the unique MST defined on the nodes V (tree)
1 ∪ V (tree)

2

and it is its only edge on the cut (V
(tree)
1 , V

(tree)
2 ). Thus,

the relation d(xp, xc) < d(x1, x2) must be satisfied.
Theorem 27 provides an immediate way to identify the
network structure of a LDP from time series: under the
assumption of ergodicity, estimate the coherence function
and the coherence pseudo-metric to weight the edges, and
then determine the MST to obtain the undirected network
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(a) (b)
Fig. 1. The original network (a) and the reconstructed topology (b).
Notice that while the edges have an orientation in the original network, the
graph obtained using the proposed technique is not directed, thus the link
orientation is not recovered. However, the detection of the presence/absence
of the link between two nodes is guaranteed.

structure. Even though the technique does not reconstruct
the link orientation it is guaranteed that all the connections
are exactly detected.

VI. NUMERICAL IMPLEMENTATION AND AN EXAMPLE

The theory developed in the previous section relies on the
knowledge of the coherence function associated with each
pair of the network signals. An estimate of the coherence
can be obtained from the observation of time realizations of
the signals, under the assumption of ergodicity. To this aim,
many techniques can be used. In the following example we
have simply used a standard implementation based on the
Welch algorithm (already provided in the software tool used
for the numerical simulation).
A polytree of 49 nodes has been randomly generated (see
Figure 1a). Each link of the network represents a third order
transfer function that has been randomly generated as well.
The noise signals acting on each node have been chosen
to be white with unitary variance. The network has been
simulated for 1000 steps and the coherence metric has been
estimated form the time series. An implementation of the
Prim algorithm [2] has been used to identify the MST and
reconstruct the network topology (see Figure 1). Notice that
while the technique is not capable of reconstructing the link
orientation, every single link of the network structure has
been exactly detected.
Identical results have been obtained by applying the same
procedure to different randomly generated LDPs.
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