
Integrating Data-Based Modeling and Nonlinear Control Tools for Batch
Process Control*

Siam Aumi and Prashant Mhaskar†

Department of Chemical Engineering, McMaster University, Hamilton, ON., Canada L8S 4L7

Abstract— This work presents a data-based multi-model
approach for modeling batch systems in which multiple local
linear models are identified using partial least squares (PLS)
regression and then combined with an appropriate weighting
function that arises from fuzzy c-means clustering. The result-
ing data-based model is used to generate estimates of empirical
reverse-time reachability regions (RTRRs) (defined as the set of
states from where the data-based model can be driven inside a
desired end-point neighborhood of the batch system) using an
optimization based algorithm. The empirical RTRRs are used to
formulate a computationally efficient predictive controller with
inherent fault-tolerant characteristics. Simulation results of a
fed-batch reactor subject to noise, disturbances, and uncertain
parameters demonstrate that the empirical RTRR-based MPC
design consistently outperforms PI control in both a fault-free
and faulty environment.

I. INTRODUCTION

Batch and fed-batch processes play an important role in
the production of expensive, low-volume products such as
bio-chemicals and polymers. The primary control objective
in a batch process is to reach a specified product quality by
batch termination. The control problem is complicated by
the presence of constraints, nonlinear, time-varying dynamics,
and the absence of steady-states, which limits the performance
achievable by implementing controllers designed for continu-
ous systems. Another operational issue with batch process
control that requires special attention is the occurrence of
faults. Due to the emphasis on the final product quality, even
benign faults can ruin an entire batch, making the ability to
handle faults an intrinsic requirement of the control design.
The operation and control of batch processes stand to benefit
immensely from the development of dedicated batch process
control tools comprising fundamental contributions in the
areas of modeling and control.

Process models can be built deterministically or empir-
ically. In the former approach, first principles are used to
derive a state-space representation of the process with some
parameters to be determined from experimental data. One
of the limitations with deterministic modeling is the lack of
sufficient measurements to uniquely determine key model
parameters, and even when available, many of the simplifying
assumptions taken during model development may be violated
in specific situations. Empirical modeling, on the other hand,
typically uses a simple model structure (often linear) between
the process inputs and outputs and determines all the model

*Financial support by NSERC and the McMaster Advanced Control
Consortium (MACC) is gratefully acknowledged.

†Corresponding author: mhaskar@mcmaster.ca

parameters from plant data. However, for batch systems,
plant data needed to build empirical models is essentially
limited to historical databases of previous batches since
identification experiments are often too expensive to justify.
The model identification task is further complicated by the
highly nonlinear process variable behavior in these databases.
This makes conventional system identification approaches,
where a single input-output linear model is identified, ill-
suited for identifying an accurate model. For batch systems,
the high expenses associated with every batch dictate the need
for dedicated modeling tools that minimize wasted batches
in the model-development process, and yet provide a model
that captures the essential nonlinear and complex nature of
the process.

Another drawback of conventional system identification ap-
proaches is that most approaches fail to utilize the availability
of auxiliary measurements (beyond the designated outputs
and inputs) in batch databases. While these measurements
are often (auto and/or cross) correlated with each other and
the output and input measurements, they contain valuable
information regarding the underlying process states, implying
an improved model (compared to input-output models) could
potentially be identified if the auxiliary measurements are
included in the system identification procedure. This increased
availability of past process data has made latent variable
regression techniques, particularly partial least squares (PLS)
regression, principal component analysis (PCA), and principal
component regression (PCR), popular tools used during
system identification (e.g., see [1]–[3]). The limitation with
latent variable methods is an inherent assumption of linearity.
In the approaches to incorporate nonlinear relationships (e.g.
see [4] and the references therein), the models’ predictive
capability depends on the choice for the nonlinear mapping.

Existing batch control approaches either specify the desired
end-point quality indirectly, through first determining “opti-
mal” measurable process variable trajectories that terminate at
the desired end-point and then using advanced control tools,
such as model predictive control (MPC), to track the desired
trajectories, or directly in an end-point based MPC framework.
In trajectory tracking approaches, the relationship between the
final product quality and process variables is altered during a
new batch due to unavoidable disturbances; hence, trajectories
deemed optimal in off-line calculations may be significantly
sub-optimal in online implementation. MPC performance,
in the context of trajectory tracking or end-point based
designs, is contingent on the underlying model’s prediction
accuracy. When available, a deterministic process model with

2011 American Control Conference
on O'Farrell Street, San Francisco, CA, USA
June 29 - July 01, 2011

978-1-4577-0079-8/11/$26.00 ©2011 AACC 2534

well identified parameters can be used; however, there are
situations, typically in industry, when the practical application
of the deterministic model-based controller is restricted due
to the heavy computational demands of repeatedly solving
an optimization problem embedded with the full process
model. The common work-around for this issue has been
to reduce the complexity of the predictive model through
linearization techniques. However, the use of linearized
models (deterministic or empirical) in computing the control
action has limited control performance owing to the strong
nonlinearities in most batch systems.

The majority of the existing work addressing faults in batch
systems focuses primarily on fault detection and isolation
while contributions on explicit fault tolerant control structures
have essentially been robust control designs that treat faults as
disturbances (e.g, see [5], [6]). The fault-tolerant characteristic
in these formulations is a result of an underlying assumption
of availability of sufficient control effort such that the primary
control objective remains achievable even in the presence of
the fault. However, upon fault occurrence in a batch system,
the final product quality may become unreachable if the fault
is not repaired sufficiently fast. Additionally, implementing
input trajectories prescribed by controllers with limited fault-
tolerant properties can drive the system to a point from where
the final quality is unreachable even if the fault is repaired.

Motivated by the above considerations, this work considers
the problem of designing an integrated framework that merges
data-based models with nonlinear control tools for fault-
tolerant, predictive end-point based control of batch processes.
The rest of this manuscript is organized as follows. After
presenting a few preliminaries, a methodology is presented
for modeling batch processes that makes use of all available
measurements in an existing database and captures the
nonlinear nature of the process by combining local linear
models with an appropriate weighting function. The resulting
model is then incorporated within the existing framework in
[7], [8] for computationally efficient and fault-tolerant end-
point based MPC for batch systems. Simulation results of a
fed-batch reactor system (subject to sensor noise, disturbances,
and time-varying parameters) are presented to demonstrate the
effectiveness of the proposed modeling and control approach.
Finally, we summarize our results.

II. PRELIMINARIES

In this section, we review the key concepts, namely auto-
regressive exogenous (ARX) modeling, partial least squares
(PLS) regression, and fuzzy c-means clustering, that are
unified in the data-based modeling approach in Section III.

A. Process Description

We consider batch process systems subject to input con-
straints, uncertainties, and failures described by:

ẋ = f(x,u,θ)

y = g(x) + v

t ∈ [t0, tf],u(⋅) ∈ U ,θ(⋅) ∈ Θ,x(t0) = x0

(1)

The vectors, x ∈ Rn and y ∈ Rp, denote the state variables and
noise corrupted output variables (respectively), v ∈ Rp is the
zero-mean, normally distributed measurement noise vector,
and u ∈ Rm is a vector of constrained manipulated inputs,
taking values in a nonempty, convex set, U ≜ {u ∣ umin ≤ u ≤

umax} ⊂ Rm where umin and umax define the minimum and
maximum (respectively) allowable input values. The vector,
θ ∈ Rq, is constituted of bounded, possibly time-varying
uncertain variables, taking values in the nonempty, compact
set, Θ ≜ {θ ∣ θmin ≤ θ ≤ θmax} ⊂ Rq where θmin and θmax
denote the minimum and maximum (respectively) allowable
uncertainty values. The times, t0 and tf, denote the initial
time and batch termination times, respectively. Throughout the
manuscript, we assume that for any input trajectory, u(⋅) ∈ U ,
the solution of the batch system exists (with initial conditions,
x0) and is continuous for all t ∈ [t0, tf].

B. Auto-Regression Exogenous (ARX) Models

In ARX modeling, the process outputs at a specific
sampling instance depend linearly on the previous process
conditions (defined by the process outputs and inputs).
Mathematically, in vector form, an ARX model for a given
process output takes the form shown below.

y(k) = βx̄(k) + v(k) (2)

where β is a vector of model coefficients and x̄(k) =

[y′(k − 1) ⋯ y′(k − ny) u′(k − 1) ⋯ u′(k − nu)]
is a row vector of lagged concatenated outputs and inputs.
The scalars, ny and nu, are the number of lags in the
outputs and inputs (respectively). Note that we have assumed
the same number of lags, ny and nu, for each output and
input variable (respectively) and continue to do so for
the remainder of the manuscript for notational simplicity.
This assumption can be easily relaxed (i.e., ny and nu
can be vectors). Different criteria can be used to select
the “optimum” lag structure (see [9]) with the general
objective being to achieve low prediction error with the
minimum number of model parameters, which prevents
against over-fitting and maintains model simplicity.

Estimating the model parameters, β, is a linear regression
problem. Possible co-linearities/correlations in plant data that
are problematic in ordinary least squares regression can be
handled by using latent variable tools such as partial least
squares (PLS) regression. When using PLS regression, rather
than specifying a lag structure for each individual output,
one global lag structure is typically selected, and the model
parameters for all the output variables are estimated simulta-
neously. To facilitate the regression, a response vector, ȳ, and
a regressor matrix, X̄, are constructed corresponding to y(k)
and x̄(k) (respectively) in (2) by sorting plant data sample-
wise. A response matrix, Ȳ, is then generated by constructing
response vectors for each output and concatenating them in
a matrix.

Geometrically, in PLS modeling, the variables in X̄ and
Ȳ are projected onto orthogonal subspaces of A-pairs of
latent variables. Each pair of latent variables accounts for
a certain percentage of the variance in the regressor and

2535

response matrices. Mathematically, PLS regression consists
of decomposing X̄ and Ȳ as the sum of the outer products
of a score and loading vector as ˆ̄X = ∑

A
j=1 tjp

′
j and ˆ̄Y =

∑
A
j=1 rjq

′
j where the hats denote estimates, tj and rj are

the input and output scores (respectively) representing the
projections of the variables in X̄ and Ȳ on their corresponding
subspaces, and pj and qj define the orientation of j-th
coordinate in the two subspaces. The noise reduction property
of PLS regression stems from the idea that the lesser principal
components are typically a consequence of measurement and
process noise and therefore can be discarded. Because it is
desired to obtain a useful relationship between the original
data matrices, X̄ and Ȳ, the two matrices are linked by an
linear inner relationship between their scores of the form
r̂j = bjtj where bj is the coefficient vector defining the inner
relationship. In PLS algorithms, such as nonlinear iterative
partial least squares (NIPALS), the subspace orientation and
(scores) for both matrices are determined simultaneously so as
to maximize the correlation between X̄ and Ȳ and therefore
obtain the optimal fit for the inner relationship. The properties
and steps of the NIPALS algorithms can be found in [10]. The
final result from PLS regression is a linear model between
X̄ and Ȳ where the coefficients are functions of the scores
and loadings from the matrix decompositions (i.e., ˆ̄Y = X̄β
where β = f(P,T,Q)).

Remark 1 With full state measurements, choosing the num-
ber of input and output lags is trivial since the process
conditions can be completely described by the current states
and inputs. As a result, ny = nu = 1, which then reduces
the ARX model form into a discrete linear state-space
system. Accordingly, the state and input transition matrices
are estimated by regressing a matrix of concatenated states
and inputs on a matrix of forward shifted states.

C. Fuzzy c-Means Clustering

A pre-processing step in the proposed multi-model ap-
proach is to locate the operating points around which
individual local linear models are identified. One approach to
find this set of operating points is to partition the batch
database into a number of clusters using fuzzy c-means
clustering.

Assuming full state measurements, let X̄′ =

[x̄′1 ⋯ x̄′i ⋯ x̄′N] be a matrix of N columns
where each column is a different instance of [x(k) u(k)]

′

(concatenated states and inputs at sampling instant k) in
the batch database. The state-input space in X̄′ can be
partitioned into L clusters using fuzzy c-means clustering,
which assigns each sample, x̄i, a degree of belonging
to a cluster ` ∈ [1, L] using a continuous membership
function, Mi,`. In fuzzy c-means clustering, the degree of x̄i

belonging to cluster ` is taken to be inversely proportional
to the squared distance between the point and cluster center,
c`, and then normalized across all clusters [11], [12]:

Mi,` = ∥x̄′i − c`∥
−2

/
L

∑
`=1

∥x̄′i − c`∥
−2 (3)

such that ∑L
`=1Mi,` = 1 ∀i. The cluster center is the

mean of all the points, weighted by their memberships as:
c` =

∑N
i=1 M2

i,`x̄
′
i

∑N
i=1 M2

i,`

. For a given L, the cluster centers are
computed by iteratively minimizing the objective function,
J = ∑

N
i=1∑

L
`=1M

2
i,`∥x̄

′
i − c`∥

2 [11], [12]. The algorithm is
terminated when changes in the membership function values
between successive iterations is smaller than a pre-defined
tolerance. As this is a nonlinear optimization, this procedure
can possibly terminate at a local minimum; therefore, the
optimization is usually repeated numerous times starting from
different initial memberships, and the results are selected for
the replicate with the minimum objective function value.

III. INTEGRATING DATA-BASED MODELING METHODS
WITH NONLINEAR CONTROL TOOLS

In this section, we first propose a multi-model approach
for modeling batch systems and work through the underlying
details. Then, we integrate the modeling approach into a
previously developed framework for fault-tolerant predictive
control of batch systems.

A. Multi-model Approach

Assuming a batch database (with full state measurements)
has been partitioned into L clusters using fuzzy c-means
clustering, the basic idea in the proposed multi-model
approach is to identify local linear models around the cluster
center points and then combine them with a weighting
function to describe the global nonlinear behavior. For the
local models, we employ the linear discrete state-space model
form. Mathematically, this idea is expressed as follows:

x(k) =
L

∑
`=1

w`β̂` [x
′(k − 1) u′(k − 1)] (4)

where w` is the (normalized) weight given to model ` of L
total models and β̂` defines the `-th local linear model. If the
weights corresponding to the training data are known prior
to estimating the individual model parameters, (4) becomes
linear in β̂`, and the system identification problem reduces
to a regression problem solvable using PLS.

Intuitively, from the process description in (1), the weights
for the local linear models should depend on the current
value of the states, inputs, and uncertainty realizations
since they define the system dynamics. In this work, to
determine the weights given initial conditions and inputs,
the normalized fuzzy clustering membership function in (3)
is used. This implies that the weights for the training data
are computed as a byproduct of the clustering step. Because
the membership function quantifies the degree to which a
state-input combination belongs to each cluster, it is indicative
of which local models should be given more weight than
the others. For instance, if a state-input combination nearly
coincides with a specific cluster center point, the local linear
model corresponding to that cluster should be given most of
the weight. This is consistent with (3) as the membership
function value corresponding to that cluster will be close to
1 while for the remaining clusters, it will be near 0.

2536

Remark 2 The extension of the multi-model approach for
the case of limited measurements is addressed in [13].
Note also that combining weighted local linear models is
a general strategy for describing global nonlinear dynamics
that has been formalized in literature as piece-wise affine
(PWA) (e.g. see [14]), Takagi, Sugeno, and Kang (TSK)
[15], and operating-regime based [3], [16] modeling. The key
delineating aspects of this work are the clustering algorithm
used to partition the training data, the use of latent variable
regression techniques to estimate the model parameters, and
the use of a generalized continuous weighting function that is
entirely data dependent and does not require precise process
knowledge (a detailed discussion is available in [17]).

B. Reverse-time Reachability Region Generation using the
Data-based Model

Reverse-time reachability regions (RTRRs) have been used
in [7], [8] to design predictive controllers for batch systems
with useful reachability and fault-tolerant characteristics. The
currently available algorithm for generating RTRRs, however,
requires a deterministic model, which, in many cases, may
be unavailable. In this section, we develop an algorithm to
generate data-based or empirical RTRRs.

Due to discrepancies between a process and its empirical
model, instead of considering exact reachability to a desired
end-point, we consider reachability to a desired end-point
neighborhood, B(xdes). We define a data-based version of a
RTRR as the set of states from where the data-based model
of the process can be driven inside the desired end-point
neighborhood by the end of the batch. Denoting this set at
sampling instant q as R̂q , the formal definition of an empirical
RTRR is given below.

Definition 1 For the batch process described by (1) with
sampling period δ for which a data-based model of the form in
(4) has been identified, the empirical RTRR at time t = tf−qδ,
indexed by q, is the following set:

R̂q = {x̂0 ∣ x̂(0) = x̂0, Equation 4 for k = 1, . . . , q ∃

u(k) ∈ U ∀k = 0, . . . , q − 1 s.t. x(q) ∈ B(xdes)}
(5)

In formulating a RTRR-based MPC design, explicit char-
acterizations of these sets are required. Denote ∥ ⋅ ∥Q as a
weighted norm, defined by ∥x∥Q = xTQx. In this work,
we use ellipsoids of the form R̂q = {x ∣ ∥x − cq∥Pq ≤ 1}
where cq ∈ Rn denotes the ellipsoid’s center and Pq ∈

Rn×n (positive definite and symmetric) defines its size and
orientation. Note that because q = 0 corresponds to tf,
c0 = xdes and P0 is a user defined matrix based on the
acceptable variance level of the final product quality. An
equivalent representation of the ellipsoid was used in this
work in which the ellipsoid is expressed as the image of a
unit ball under an affine transformation. Consider the unit
ball, S(0,1) = {x ∣ ∥x∥ ≤ 1 } and the affine transformation
T (x) = Qx + d where Q ∈ Rn×n is a nonsingular matrix
and d ∈ Rn. Applying the affine transformation to a point
on the unit ball, we have y = Qx + d, which implies
x = Q−1(y −d). An ellipsoid can then be expressed through

an affine transformation of the unit ball: T (S(0,1)) =

{y ∣ ∥Q−1(y − d)∥ ≤ 1} = {y ∣ ∥y − d∥V−1 ≤ 1} where V =

QQ′ ∈ Rn×n is a positive definite symmetric matrix. Thus,
defining Qq and dq is equivalent to defining Pq and cq .

Starting at q = 1, an explicitly characterized estimate of R̂q

is identified from where the model states can be driven inside
R̂q−1. This procedure is repeated until a RTRR is identified for
every sampling instant in the batch. Given the RTRR ellipsoid
parameters at q − 1 and I (pre-determined) points on the
surface of a unit ball denoted by {x

(1)
ub , . . . ,x

(i)
ub , . . . ,x

(I)
ub },

the following nonlinear program (NLP) is solved to determine
Qq and dq:

max
Qq,dq,u(i)∈U

detQq (6)

subject to: x(i) = Qqx
(i)
ub + dq ∀i = 1, . . . , I (7)

xnxt =
L

∑
`=1

w`β̂` [x
′(i) u′(i)] (8)

∥xnxt − cq−1∥Pq−1 ≤ 1 (9)
Qq = LqL

′
q (10)

The independent decision variables in this NLP are the
ellipsoid parameters (Qq and dq) and I control moves. The
NLP is formulated to maximize the volume of the current
RTRR ellipsoid while ensuring for I points on the surface
of the ellipsoid, there exists a control action (as prescribed
by a predictive controller using the data-based model) that
can drive the ellipsoid surface point inside the next RTRR.
Equation (7) represents the affine transformation of the I
unit ball points into ellipsoid surface points. Equation (10)
represents the Cholesky decomposition of Qq, where Lq ∈

Rn×n is a lower triangular matrix, and ensures Qq is positive
definite and symmetric. In theory, I should be set to ∞

such that the optimization problem is solved over the entire
surface of the ellipsoid. However, the same conclusions can
be reached by choosing a sufficiently large I . Accordingly, I
can be increased sequentially until changes in the solution are
below some pre-defined tolerance. Note that to verify that a
control action exists to drive the states inside the next RTRR
for the internal points of the ellipsoid, the NLP formulated
in [8] was used with substitution of the data-based model for
the deterministic model.

C. Empirical Reverse-time Reachability Region Based Model
Predictive Control (MPC) Formulation

In this section, we present a MPC design with the control
objective of maintaining the states inside empirical RTRRs
throughout the batch. To this end, consider a batch system
described by (1) for which empirical RTRR estimates have
been characterized for a given δ and B(xdes). The control
action at sampling instance q = (tf − t)/δ is computed by
solving the NLP:

min
u(k)∈U

JR =
P

∑
k=1

α∥x̂(k) − cq−1∥Pq−1 + γ∥∆u(k)∥R (11)

subject to: x̂(0) = x(t) (12)
Equation 4 (13)

2537

where ∆u(k) denotes a vector of differences between
successive input values across the horizon, R is a positive
definite weighting matrix, and the objective function, JR,
is formulated to minimize variations in the control moves
and maintain the process states inside the RTRRs over the
prediction horizon, P . The relative importance of the two
terms in JR can be traded off using α and γ.

1) Fault-tolerant Characteristics: A fault during a batch
can invalidate the desirable properties of a control design and
make the desired end-point unreachable. In cases where a
fault is rectified before the batch is complete, there may be a
chance to recover the batch, provided the control design has
inherent fault tolerant characteristics. For the system described
by (1), we consider finite duration faults in the control actuator
under the assumption that upon failure, the available control
effort is reduced. We define the safe-steering problem as the
problem of identifying functioning input trajectories during
the failure period (without requiring the value of trepair or an
estimate thereof to be known a-priori) such that the process
can be driven inside the desired end-point neighborhood upon
recovery of full control effort.

The key idea in the safe-steering problem is to preserve the
states inside RTRRs during the failure period by employing
the proposed MPC design. The empirical RTRR MPC design
offers a suitable control objective during the fault repair period.
In the event of a failure, standard end-point based predictive
controllers may no longer be able to meet the desired control
objectives and prescribe inputs which drive the process states
to a point from where the process is unrecoverable even after
fault repair. In contrast, by trying to maintain the process
states inside empirical RTRRs, we improve the chances of
maintaining the process states in a region from where it is
recoverable following fault repair.

IV. SIMULATION RESULTS

Simulation results of a fed-batch reactor system (subject
to varying initial conditions, noisy measurements, and time-
varying uncertainty) illustrating the efficacy of the proposed
modeling and control design are presented in this section.

A. Fed-batch Reactor

In this section, a data based model of a fed-batch system
is extracted from an artificially generated historical database
using the proposed modeling methodology. Then, the resulting
model is utilized to generate RTRRs, which are subsequently
used to design the RTRR-based predictive controller.

Consider the fed-batch reactor system where an irreversible
series reaction of the form 2A

k1
Ð→ B

k2
Ð→ 3C take place. The

state-space model for this system is derived in [18]. The state
vector is comprised of the species concentrations and reactor
temperature and volume: x = [CA CB CC T V]

′

where CA, CB, and CC denote the concentrations of species
A, B, and C (respectively) and T and V denote the reactor
temperature and volume (respectively). The manipulated
inputs are the inlet feed rate, F (L/h), and heating coil
temperature, Thx (K), u = [F Thx]

′
, with constraints umin =

[0 288]
′

and umax = [20 360]
′
. The primary control

objective considered is to drive x(tf) inside a (arbitrarily
chosen) desired ellipsoidal neighborhood around c0 = xdes =

[2.752 1.601 0.8422 365.756 112.425]
′

characterized
by P0 = diag {25,400,100,0.04,1}. The batch termination
and sampling times are: tf = 1 h and δ = 0.025 h.

1) Data-based Model Development: A database consisting
of 40 batches was generated for the fed-batch reactor system
using the state-space model. Ten of the batches were set aside
as the validation data set. In industry, historical batches are
mostly “successful”, which entails tracking a set of reference
trajectories that terminate at the desired end-point. With
two available inputs, reference trajectories of CB and T
were chosen to be tracked using two PI controllers. Both PI
controllers were tightly tuned for one set of initial conditions
and fixed for the remaining 39 batches. The criteria used
to tune the PI controllers was the integral of time-weighted
absolute error (ITAE) and reasonably smooth input trajectories.
For a more realistic representation of plant data, sensor
noise, disturbances, and a time-varying parameter were also
considered. To simulate disturbances, the temperature of
the feed flow, T in, was stochastically varied throughout the
duration of each batch around its nominal value (300 K)
in the range 295 − 305 K. The time-varying parameter was
chosen to be the heat exchanger coefficient, UA, which had
a nominal value of 30,000 cal/(h ⋅ K). At the start of each
batch, UA was assigned a value in the range 28,620−30,349
cal/(h ⋅ K) and decreased exponentially to simulate fouling.

Given the database, the model identification procedure
was as follows. The number of clusters, L, was varied from
10−100. For each L, PLS models were fit (using the PRESS
statistic to determine the number of latent variables to retain
- see [19]), the state trajectories of the 10 validation batches
were predicted back using the models, and the root mean
squared error (RMSE) of the predictions for each model was
tabulated. The PLS model and number of clusters yielding the
lowest RMSE value defined the final model’s parameters. For
the given database, the lowest RMSE value was obtained with
L = 20 clusters. Figures demonstrating the results of the model
fitting procedure are omitted due to space considerations.
The multi-model approach was able to capture the major
nonlinearities in the database. Using this model, empirical
RTRRs were generated for every sampling instant in the
batch.

2) MPC Implementation Using the Data Based Model:
In this section, the proposed RTRR-based tracking MPC
design is implemented on the fed-batch reactor system and
the control performance is compared with PI control. The
performance was measured according to the level set of the
desired end-point neighborhood, B(xdes), corresponding to
x(tf) or ∥x(tf)− c0∥P0 . A value of less than unity indicated
that x(tf) ∈ B(xdes) and the control objective was satisfied.

First, fault-free closed-loop simulations were performed for
ten different initial conditions that were not in the training or
validation data set, but were verified to be within the empirical
RTRR at t0. Sensor noise, a stochastic disturbance in T in, and
a time-varying UA were also considered. The RTRR-based
predictive controller was tuned once for a specific set of

2538

3

4

5
C

A
(m

ol
/L

)

Nominal
MPC
PI

280

300

320

340

360

T
(K

)

Nominal
MPC
PI

0 0.2 0.4 0.6 0.8 1

0

10

20

F
(L

/h
)

MPC
PI

0 0.2 0.4 0.6 0.8 1

300

320

340

360

t (h)

T
hx

(K
)

MPC
PI

Fig. 1: State and input profiles under PI control and RTRR-based
MPC with input failures between 0.25 h to 0.45 h. The
nominal state trajectories that terminate at the desired end-
point are also shown.

initial conditions and left unchanged for the remainder of
the simulation to avoid confounding the results with tuning.
For the RTRR-based MPC, the following tunings were used:
R = diag {0.01,0.005} and P = 18.

Under fault-free conditions, the RTRR-based MPC design
was able to drive the system inside B(xdes) for all ten initial
conditions while the PI controller failed in half of the cases.
On average, the final MPC level set was 0.359 whereas for PI
control, the final average level set was 2.153. To demonstrate
that the MPC problem is efficiently solvable despite being
nonlinear, we note that with P = 18, the longest CPU time
taken time to solve the MPC problem was 0.452 seconds
using GAMS with IPOPT as the solver on an Intel Quad
Core machine.

Next, we consider faults in both of the control actuators and
compare the performance of the RTRR-based MPC design
with PI control. Specifically, we consider the scenario where
at tfault = 0.25 h, the actuators associated with F and Thx fail
and the maximum inputs are reduced to: umax = [10 310]

′
.

At trepair = 0.45 h, the fault is rectified and full control effort is
recovered. The R matrix used during the fault-free simulations
was maintained for the fault scenario. However, during the
failure period, the prediction horizon of the RTRR-based
MPC was reduced from P = 18 to P = 1 to avoid having
to assume the failure situation any longer than necessary in
computing the control action. The closed-loop profiles for
this case are shown in Fig. 1 (only two of the states are
shown for space considerations). For the PI controller, the
batch is ultimately driven to a level set of 104.393, which is
well outside the desired end-point neighborhood. Meanwhile,
the RTRR-based MPC drives the process to a final level set
of 0.173. During the failure period, the flow rate prescribed
by both controllers essentially remain saturated at the new
maximum flow rate. For the PI controller, the heat exchanger
temperature also remains saturated during the failure period
whereas the RTRR prescribes more meaningful temperature

towards the latter stages of the fault in trying to maintain the
process states within empirical RTRRs.

V. CONCLUSIONS

In this work, we addressed the problem of empirically
modeling nonlinear batch systems using a multi-model
approach. In the proposed multi-model approach, we exploited
the availability of historical batch data, the simplicity of local
linear models, the data extraction capabilities of PLS, and
the use of appropriate clustering and weighting techniques to
capture the nonlinear nature of a batch process. The resulting
model from this approach was then employed to generate
empirical RTRRs, which were subsequently incorporated in
an inherently fault-tolerant predictive control design. The
efficacy of the RTRR-based MPC design in a faulty and
fault-free environment was demonstrated through a fed-batch
simulation example.

REFERENCES

[1] J. Flores-Cerrillo and J. F. MacGregor, “Latent variable MPC for
trajectory tracking in batch processes.” J. Process Control, vol. 15,
no. 6, pp. 651–663, 2005.

[2] ——, “Control of batch product quality by trajectory manipulation
using latent variable models,” J. Process Control, vol. 14, no. 5, pp.
539 – 553, 2004.

[3] N. Fletcher, A. Morris, G. Montague, and E. Martin, “Local dynamic
partial least squares approaches for the modelling of batch processes,”
Can. J. of Chem. Eng., vol. 86, pp. 960–970, 2008.

[4] G. Baffi, E. Martin, and A. Morris, “Non-linear projection to latent
structures revisited: the quadratic PLS algorithm,” Comp. & Chem.
Eng., vol. 23, no. 3, pp. 395 – 411, 1999.

[5] M. Alamir and I. Balloul, “Robust constrained control algorithm for
general batch processes.” Int. J. Contr., vol. 72, pp. 1271 – 87, 1999.

[6] P. Terwiesch, M. Agarwal, and D. W. T. Rippin, “Batch unit optimiza-
tion with imperfect modelling: a survey.” J. Process Control, vol. 4,
pp. 238 – 58, 1994.

[7] S. Aumi and P. Mhaskar, “Safe-steering of batch processes,” AIChE J.,
vol. 55, pp. 2861–2872, 2009.

[8] ——, “Robust model predictive control and fault-handling of batch
processes,” AIChE J., 2010, DOI: http://dx.doi.org/10.1002/aic.12398.

[9] L. Ljung, System Identification: Theory for the User (2nd Edition).
Prentice Hall PTR, 1998.

[10] P. Geladi and B. Kowalski, “Partial least-squares regression: A tutorial,”
Anal. Chim. Acta, vol. 185, pp. 1 – 17, 1986.

[11] G. A. F. Seber, Multivariate Observations. New York, NY, USA:
John Wiley & Sons, 1984.

[12] R. Hathaway and J. Bezdek, “Recent convergence results for the fuzzy
c-means clustering algorithms,” J. Classif., vol. 5, no. 2, pp. 237–247,
1988.

[13] S. Aumi, B. Corbett, and P. Mhaskar, “Data-based modeling and control
of nylon-6,6 batch polymerization (accepted),” in Proc. of the American
Control Conference (ACC), 2011.

[14] G. Ferrari-trecate, M. Muselli, D. Liberati, and M. Morari, “A
Clustering Technique for the Identification of Piecewise Affine Systems,”
Automatica, vol. 39, pp. 205–217, 2003.

[15] T. Takagi and M. Sugeno, “Fuzzy identification of systems and its
applications to modeling and control,” IEEE Trans. Syst. Man Cybern.,
vol. 15, no. 1, pp. 116–132, 1985.

[16] T. H. Gottsche, K. J. Hunt, and T. A. Johansen, “Nonlinear dynamics
modelling via operating regime decomposition,” Math. Comput. Simul.,
vol. 46, no. 5-6, pp. 543 – 550, 1998.

[17] S. Aumi and P. Mhaskar, “Integrating data-based modeling and
nonlinear control tools for batch process control (submitted),” AIChE
J., 2011.

[18] H. S. Fogler, Elements of Chemical Reaction Engineering, 4th ed.
Prentice Hall, 2006, pp. 625–627.

[19] R. Bro, K. Kjeldahl, A. Smilde, and H. Kiers, “Cross-validation of
component models: A critical look at current methods,” Anal. Bioanal.
Chem., vol. 390, pp. 1241–1251, 2008.

2539

