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Abstract— Networked controlled systems have recently re-
ceived attention from the industry since they allow for flexibility
and cost reduction. However, due to the fact that communica-
tion media can be subject to random delays, packet dropouts,
jitters and other uncertainties, destabilization of the closed loop
system can occur. Model predictive control has demonstrated to
be a valid solution to cope with these issues. On the other hand,
it typically relies on TCP-like (or connection oriented) protocols,
i.e. either the received or the lost information is acknowledged.

In this work, we propose an event-based model predictive
control algorithm for nonlinear continuous time systems subject
to state and input constraints which is based on UDP-like
communication. We show that without the use of any ac-
knowledgment or error message we can derive a compensation
algorithm, which used in combination with the controller,
under mild conditions, guarantees closed loop stability. The
solution is applied to a continuous stirred tank reactor where
an exothermic irreversible reaction takes place. The simulations
show the effectiveness of the presented algorithm.

I. INTRODUCTION

In recent years, Networked Control Systems (NCSs) have
received a lot of attention from the industry, since they allow
for fast, flexible, and cheap solutions. For instance, wire-
less networks can be used for the communication between
controller, sensors and actuators, without being invasive. At
the same time, they do not require to restructure the already
existing network infrastructure, while providing component
redundancy. On the other hand, the use of shared and/or
wireless communication networks often results in a non-
deterministic behavior which can generate random delays,
information losses, or other uncertainties. From the control
perspective, this is a major problem since the closed loop
system can be destabilized.

In [1], [2], a general review on control over communi-
cation networks can be found. As presented in [1], [2], the
most of the available results about NCSs are mostly limited
to linear systems, e.g. [3]–[6]. On the other hand, work on
nonlinear ones is typically available only for the discrete time
case, e.g. [7]–[10]. Besides, current research focuses mostly
on solving particular problems without providing a general
framework to cope at the same time with the network nonde-
terminism and to reduce the exchanged information, cf. [1],
[2]. Model based solutions, in particular Model Predictive
Control (MPC), have demonstrated to be effective in dealing
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with both delays and packet dropouts, cf. [8], [10]–[13].
However, these approaches typically rely on a connection-
oriented (or TCP-like) communication channel on the input
side (see for example [7], [8], [12]). In other words, either
error or acknowledgment messages need to be used to make
sure that the input is correctly delivered to the actuator. In
[11], the use of acknowledgments is avoid by introducing
additional set-based constraints on the optimization problem,
thus resulting in a non-trivial-to-implement solution.

In this paper, we introduce an Event-based Model Pre-
dictive Control (EB-NMPC) algorithm for nonlinear con-
tinuous time NCSs, subject to state and input constraints.
Differently from our former work [12], [14], the commu-
nication channels are supposed to be connectionless, i.e.
up- and downlink work in a UPD-like way without using
error/acknowledgment messages. Additionally, alternatively
to [11], the solution is easily applicable and computationally
undemanding. Our novel model-based network compensa-
tion algorithm, in combination with EB-NMPC, guarantees
closed loop stability for NCSs controlled via UPD-like
communications. Additionally, the compensator has the ad-
vantage of making the communication network transparent to
the controller, thus allowing under mild conditions to re-use
any controller already developed for the nominal system. The
choice of an event-based controller has also the advantage of
reducing the network traffic, thus potentially improving the
overall system performance.

The presented solution is tested by simulating a Contin-
uous Stirred Tank Reactor (CSTR), where an irreversible
exothermic reaction takes place. The simulations show that
the method is effective under the presence of random de-
lays and random information losses, by achieving stability
without violating the state and input constrains.

II. PROBLEM STATEMENT
We consider a nonlinear continuous time system

ẋ(t) = f(x(t), u(t)), x(0) = x0, (1)
x(t) ∈ X ⊂ Rn, u(t) ∈ U ⊂ Rm, (2)

where x(t) and u(t) represent respectively the constrained
state and the constrained input. The following assumptions
on the system are made:

A1) f(x(t), u(t)) is locally Lypschitz.
A2) f(0, 0) = 0, i.e. the origin is an equilibrium point

of the system.
A3) The complete state x(·) is available only at discrete

times ti ∈ π, where π is a increasing sequence of
sampling times (time partition or simply partition).
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The system is controlled by a remote regulator connected
through a (shared) nondeterministic communication network
(see Figure 1). We look for an application-level solution,

Fig. 1. Graphical representation of the problem under investigation.

where the network is abstracted as merely delays and packet
dropouts. Additionally, we assumed that the network has the
following properties:

A4) A set of synchronized clocks (or a global clock) is
available to each component — controller, sensor,
actuator, system —.

A5) The network is subject to bounded random delays

τin(t) ∈ [0, τ in], τout(t) ∈ [0, τout], (3)

respectively in the up- and downlink.
A6) The network is subject to random information

losses with probability-loss

pin(t) ∈ [0, 1), pout(t) ∈ [0, 1), (4)

i.e. at least some exchanged packets are delivered
correctly.

A6) All exchanged packets are time-stamped. The time-
stamping depends on the algorithm which is uti-
lized (more details are to be found in Section III).

A7) Both down- and uplink are connectionless, i.e. they
both work in a UPD-like way.

Remark 2.1: Assumptions A4)-A6) are standard assump-
tions for NCSs. Small uncertainties on clocks and time-
stamps are, in general, non-trivial to handle. An alternative
solution was presented by the authors in [15].
Disordered packet arrivals are solved by keeping the packet
with the most recent time-stamp. All other information is
discarded.

All the components are supposed to be event-based. In
this framework, we can identify four different ways how the
network works:

a) No dropouts: no information is lost; the network is
only subject to delays.

b) Consecutive Measurement Dropouts: only measure-
ment are lost; new inputs are not generated since
measurements are not delivered correctly.

c) Consecutive Actuation Dropouts: only inputs are
dropped; measurements keep arriving regularly.

d) Consecutive Actuation and Measurement Dropouts:
input and measurement packets are consecutively lost,
leaving the system work in open loop.

Notice that, since a new input is generated only when a
measurement arrives, consecutive losses of measurement and
actuation messages cannot occur.

To control the system, we use an EB-NMPC algorithm.
For sake of clarity, before introducing the main results of
this work in the following section a short review on EB-
NMPC is given, cf. [12], [16].

A. Event-based Nonlinear Model Predictive Control

The basic idea behind predictive control is the repeated
solution of an Optimal Control Problem (OCP) over a finite
prediction horizon Tp:

J∗(x(ti)) =min
u∈U

∫ ti+Tp

ti

F (x(τ), u(τ))dτ + E(x(ti + Tp)) (5a)

s.t. ẋ(t) = f(x(t), u(t)), x(ti) = x(ti) (5b)
x(t) ∈ X, u(t) ∈ U (5c)
x(ti + Tp) ∈ ε, (5d)

where · refers to the controller’s internal variables (model at
the controller side), whereas x(ti) represents the measure-
ment taken from the real system (1) at time ti. Only the first
piece of optimal input trajectory is applied to the system, i.e.

u∗(τ ;x(ti)), τ ∈ [ti, ti+1), ti, ti+1 ∈ π. (6)

By choosing a suitable cost functional F (·), terminal cost
E(·), terminal region ε, prediction horizon Tp, and a proper
partition π, closed loop stability of the EB-NMPC scheme
can be shown, in the sense of asymptotic convergence (see
[12], [16]–[18] for additional details). For sake of clearness,
we recall here the definition of proper partition, firstly
introduced in [12], [14]:

Definition 2.1 (Proper Partition):
An increasing sequence of recalculation times ti ∈ R+ is
called proper partition π if ∃β ∈ R+ such that

0 < β ≤ (ti − ti−1) < Tp, ∀ti−1, ti ∈ π, (7)

i.e. the maximum recalculation interval is strictly smaller
than the prediction horizon Tp.

Notice that, in an event-based framework, condition (7)
is necessary to ensure that the input u∗(τ ;x(·)) is always
correctly defined.

The presence of delays and/or packet dropouts, however,
can destabilize the closed loop system. Therefore, a network
compensator is needed to cope with these issues. In this
work, we utilize a model-based network compensator (see
Figure 2). The choice of a model-based network compen-
sator is motivated by the fact that a model of the system
is already available for the EB-NMPC controller. In this
situation, it seems logical to re-use such information to cope
with the induced network nondeterminism. In practice, EB-
NMPC controller and network compensator could be merged
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Fig. 2. Model-based network compensator scheme.

together and become a single component. How the com-
pensation algorithm is realized depends on the underlying
network infrastructure and protocol stack. Additional details
on the compensation algorithm that we use in this work can
be found in Section III-A.

III. MAIN RESULT

A. Model-based Network Compensator

The model-based network compensator is an application
level algorithm designed to counteract the delays and the
packet dropouts. In this way, the compensator can be used
without loss of generality with any kind of network infras-
tructure, see [19].

As long as the compensator is input-consistent, stability
of the closed loop system can be shown as in [12], [19].
For sake of clarity, we recall here the definition of input-
consistent algorithm:

Definition 3.1 (Input-consistent Algorithm):
Let u(t) ∈ U be the input applied to the system; u∗(t;x(·)) ∈
U the input generated by the controller and used by the
compensator. We call a model-based network compensator
input-consistent, if

∀t ∈ R+, u(t) ≡ u∗(t;x(·)), (8)

i.e. the applied input is always equal to the input generated
by the controller.

Input-consistency is important when a model-based network
compensator is utilized, since the input u(t;x(·)) ∈ U is
adopted to forward predict the system evolution by using
the available model. If there were a discrepancy between the
two inputs, the real state x(t) would differ from the predicted
behavior x(t).

Similarly to [12], [14], the compensation of random delays
is done by worst-case forward prediction, i.e. the worst
possible delays in both the input and output channel are
considered. This is necessary because, although we can
obtain the exact value of τout(t), the presence of a random
delay τin(t) does not allow to be sure when the input
arrives. However, we can make the process deterministic
again by taking τ in, τout, and using these values to predict
the behavior of the system in the future. Utilizing this worst-
case approach is also necessary to counteract information
losses, as clarified later. If we time-stamp the measurements

x(ti) with ti, instant in which they are collected from the
plant, then we can calculate

x(ti + τout + τ in) =

∫ ti+τout+τ in

ti

f(x(τ), u(τ))dτ + x(ti), (9)

and use (9) to solve the OCP (5). For simplicity of notation,
we define

tsi := ti + τout + τ in. (10)

Notice, however, that the resulting optimal input

u∗(τ ;x(tsi)), τ ∈ [tsi, tsi + Tp), (11)

refers to a future time-instant tsi. Thus, it cannot be used
by the actuator immediately at its arrival. Instead, it must be
buffered until tsi. This solution works well only when no
dropouts occur. In [7], [9], [14], this problem was solved,
even if not explicitly mentioned, by utilizing connection-
oriented (or TCP-like) protocols on the input side, i.e. either
error messages, or acknowledgments, are sent. In this case,
however, we work with UDP-like connections, which means
that once the message is sent, there is no way to be sure it
is arrived at destination.

We propose to utilize additional information to deal with
packet dropouts: by adding to the measurement packets the
time-stamp ti and also the time-stamp of the latest success-
fully received actuation message tsj , we can confirm the
arrival of an input. Instead, measurement losses are ignored.
In practice, the acknowledgment mechanism is included in
the downlink, without requiring a full-duplex connection-
oriented communication on the input side. Such a solution
is reasonable since we want to control the system in closed
loop. Therefore, as assumed in A6) some measurement must
arrive to the controller in a finite time.

Notice also that before sending a new measurement mes-
sage, the sensor needs to make sure that either a new input is
arrived, or it went lost. Therefore, a new measurement x(ti)
cannot be sent before the arrival time ti + τout(t) + τin(t)
and, in case of a dropout, it has to wait till the next expected
time-stamp tsi.

In addition, instead of sending only the first piece of input
trajectory, the complete optimal input (11) is dispatched. It
is up the smart-actuator to store the input and use it when
necessary. A meta-code description of the algorithm is given
in Table I.

Remark 3.1: The maximum length of the input trajectory
depends on the actual underlying protocol, as well as on the
problem under investigation, i.e. prediction horizon, problem
discretization. A trade-off between packet size and problem
requirements should be considered in order to obtain good
closed-loop performance.

B. Stability Results

By using the algorithm described in Table I, we can prove
the closed loop stability of the NCS under the presence of
both random delays and information losses. Before going
any further, we introduce the following quantities, which are
important for the main result:
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• Nin = maximum number of consecutive losses in the
uplink.

• Nout = maximum number of consecutive losses in the
downlink.

• RTT = τout(t) + τin(t), round-trip-time.
• RTTmax = τout + τ in, maximum round-trip-time.

We can now present the following theoretical result:

Theorem 3.1 (Stability over UDP-like channels):
Consider the nonlinear continuous time NCS (1) subject to
random delays τin(t), τout(t) and random information losses
with probabilities pin(t), pout(t). If

i) Assumptions A1)-A7) are verified.
ii) The model-based network compensator of Table I is

used.
iii) The EB-NMPC controller (11) is chosen such that the

prediction horizon

Tp > (Nin +Nout) ·RTTmax, (12)

and minimum sampling time

β =

{
RTT, if a new input arrives
RTTmax, if the last input is lost . (13)

Then, the closed loop system is asymptotically stable, in the
sense of asymptotic convergence, i.e.

lim
t→∞
‖x(t)‖ = 0. (14)

Proof: To prove closed loop stability we first need to
show that the compensator is input-consistent. Then, stability
follows from [12], [19].

Without loss of generality, we suppose that initially an ac-
tuation and a measurement packet arrived consecutively1, i.e.
controller knows that u∗(τ ;x(tsi−1)), τ ∈ [tsi−1, tsi−1 +
Tp), has arrived from the latest measurement x(ti). We can
then distinguish four different scenarios (see Figure 3):

a) No Dropouts:
Input-consistency easily follows from the fact that
every measurement is generate only after a new input
arrived (Condition (13)) and thus the controller always
knows the applied input u∗(t;x(·)).

b) Consecutive Measurement Dropouts:
The last input u∗(τ ;x(tsi−1)), τ ∈ [tsi−1, tsi−1+Tp),
is re-used until a new measurement x(tj), tj > ti,
arrives, and the input u∗(τ ;x(tsj)), τ ∈ [tsj , tsj+Tp),
is generated.
Recursively, the latest input is known-to-be-arrived
when a new measurement x(tk), tk > tj , is success-
fully delivered. From A6) and (12), we know that a
measurement x(ti) must arrive before the end of the
prediction horizon, i.e. before the latest input is com-
pletely over. Therefore, input-consistency is verified.

c) Consecutive Actuation Dropouts:
Similarly to the former case, u∗(τ ;x(tsi−1)), τ ∈
[tsi−1, tsi−1 + Tp) is re-used until a new input

1This essentially means that at least for a very short period of time the
NCS works without any problem.

(a) No Dropouts

(b) Consecutive Measurement Dropouts

(c) Consecutive Actuation Dropouts

(d) Consecutive Actuation and Measurement Dropouts

Fig. 3. Different dropout scenarios. As soon as some information is lost,
the old input is reused to preserve stability.

u∗(τ ;x(tsj)), τ ∈ [tsj , tsj+Tp), corresponding to the
measurement x(tj), tj > ti, is correctly dispatched.
Since the measurements x(ti) are assumed to arrive
correctly, the controller knows always the most re-
cently received input. Again, from A6) and (12) input-
consistency holds.

d) Consecutive Actuation and Measurement Dropouts:
The controller knows the latest successfully received
input u∗(τ ;x(tsi−1)), τ ∈ [tsi−1, tsi−1 + Tp). Simi-
larly to b)-c), from A6) and (12), a new measurement
x(ti) and a new input u∗(t;x(·)) must arrive before the
end of the prediction horizon. Input-consistency easily
follows.

Due to the fact that a new input is generated only when
a measurement is lost, there cannot be a measurement loss
followed by an input dropout. Consequently, the algorithm
is always input-consistent.

From [12], [19], since the model-based network compen-
sator is input-consistent, and the chosen prediction horizon
Tp is sufficiently long, the closed loop NCS is asymptot-
ically stable, in the sense of asymptotic convergence, i.e.
lim
t→∞
‖x(t)‖ = 0.
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Remark 3.2: Condition (13) on the minimum sampling
time means that we cannot send a new measurement x(ti),
before either the latest input has arrived at ti + τout(t) +
τin(t), or it is sure that it went lost, i.e. more than the
RTTmax has passed after the last arrival.

Remark 3.3: Notice that the presented compensation al-
gorithm based on the use of redundant information can be
actually implemented only in an event-based framework. In
fact, with a synchronous controller — a regulator which uses
constant sampling intervals — since an input needs to be
calculated at every sampling time, the forward prediction
should take into account every possible sequence of losses.
This would result in a computationally intractable problem.

IV. SIMULATION RESULTS

The model-based network compensator presented in this
work is applied to the CSTR represented in Figure 4, where
an irreversible exothermic reaction, A → B, takes place
in a constant volume, cooled by a single coolant stream at
temperature Tc. The system is described by the following

Fig. 4. CSTR where an irreversible exothermic A→ B takes place.

equations:

ĊA(t) =
F

V
(CAf − CA(t))− k0CA(t)e−

E
RTr(t) ,

Ṫr(t) =
F

V
(Trf − Tr(t))−

k0∆H

ρcp
CA(t)e−

E
RTr(t)

+
UA

ρcpV
(Tc(t)− Tr(t)),

where CA(t) represents the concentration of the reactant A,
and Tr(t) is the reactor temperature. A detailed description
and the exact values of all the parameters for the nominal
condition Tnomc = 103.4 K can be found in [20]. Both
Tr(t) and Tc(t) are subject to hard safety constraints. In
particular, Tr(t) must not overcome 500 K, while Tc(t) lies
between 275 K and 350 K. Under nominal conditions, the
system has three equilibrium points: (0.19, 432.08) (stable),
(0.52, 398.97) (unstable), and (0.90, 361.14) (stable).

The objective is to stabilize the unstable equilibrium
point (0.52, 398.97) by manipulating the temperature of the
cooling jacket Tc(t). To do that, we use a remote EB-NMPC
controller connected to the system through a nondeterminis-
tic network having the following properties: τin ∈ [0, 10] sec,
τout ∈ [0, 20] sec, pin = 0.15, pout = 0.05. For simplicity,
all stochastic variables are modeled as uniform distributions.

From several simulations, it was seen that with the former
parameters the max number of consecutive losses in the up-
and downlink are respectively 2 and 1. For security, Nin = 4
and Nout = 2 were chosen. This is due to the fact that
generally the information provided by simulation is less than
the one obtained from the analysis of a real network. By
choosing Nin = 4, Nout = 2 we have that the prediction
horizon Tp needs to be longer than 150 sec. A prediction
horizon of 160 sec is chosen and the following cost function
utilized:

J(x(ti)) =

∫ ti+Tp

ti

(
(x− xsp)TQ(x− xsp) + uTRu

)
dτ

+ (x(ti + Tp)− xsp)TS(x(ti + Tp)− xsp),

where x(t) = [CA(t) Tr(t)]
T , xsp represents the desired set-

point, u = Tc(t), Q = I , R = 1, and S = I , with I equal to
the identity matrix. For simplicity of implementation, in the
simulations the input is held constant between consecutive
recalculation times. In Figure 5, we can see that without

Fig. 5. Comparison between the compensated (black solid line) and non-
compensated closed loop system (black dashed line).

model-based network compensator, the EB-NMPC controller
is not able to steer the system to the desired set-point (black
dashed line), generating an oscillatory behavior and violating
the safety constraints on Tr(t). On the other hand, when
the compensation mechanism presented in Section III is
introduced (black solid line in Figure 5), the CSTR can be
safely brought to the desired equilibrium point. The initial
transition phase is due to the fact that both measurement and
input are delayed and lost, and the controller and the actuator
are initialized as if the system were already on the desired
set-point.

V. CONCLUSIONS AND FUTURE WORK
In this paper, an event-based predictive control solution

for nonlinear continuous time NCSs was presented. Dif-
ferently from former work, which relies on the use of
connection-oriented (or TCP-like) communication channels,
here a connectionless (or UDP-like) solution is presented. In
particular, we showed that by adding extra information to the
header of the measurement packet, it is possible to obtained
an input-consistent model-based network compensator. The
time-stamp of last correctly arrived input packet is included
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in the header of the output. The former solution seems to
be reasonable since we want to remotely closed loop control
the system, thus expecting that at least some measurement
packets sooner or later arrive. We can prove that under mild
conditions, EB-NMPC in combination with this network
compensator achieves closed loop stability, in the sense of
asymptotic convergence.

Future work should concentrate on the development of
robust methodologies for systems subject to disturbances or
uncertainties. Additionally, the algorithm could be improved
to obtain less restrictive conditions on the prediction horizon
length, e.g. by updating the values Nin, Nout in function of
the network traffic. It is also interesting to investigate other
possible input-consistent compensation algorithms, which
can be used with connectionless communication protocols.
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