
 

 

 

Abstract – The paper presents three different types of LQG 

based controllers designed for tracking control of the arterial 

partial pressures of the blood gases; oxygen and carbon dioxide 

(O2 and CO2) during extracorporeal membrane oxygenation 

(ECMO). ECMO is a method of support for the heart and or 

lungs in severely ill patients. In this procedure, the blood is 

circulated out of the body and into an ECMO machine where 

the O2 and CO2 gas levels are restored before being pumped 

back into the body. The performance of each of the controllers 

was ascertained both from a tracking as well as disturbance 

rejection standpoint to step commands in both these inputs. 

Robustness analysis was also performed on all the closed loop 

configurations using the structured singular value analysis. The 

uncertainty was considered to be of a structured parametric 

type and was captured by the perturbation of the system “A” 

matrix. Performance of all the controllers was tuned so as to 

ensure robust stability to these parametric uncertainties. The 

LQG and LQG/LTR with feed forward control were able to 

achieve good tracking performance. But, only the LQG 

augmented with integral control was able to achieve accurate 

tracking of the arterial partial pressures of the blood gases in 

the presence of a step input disturbance in the blood gases flow 

rates. 

I. EXTRACORPOREAL SUPPORT 

Extracorporeal support, in general refers to a medical 

procedure that occurs outside the body, most often applied to 

circulatory procedures. Examples include hemodialysis, 

hemofiltration, plasmapheresis, apheresis, extracorporeal 

membrane oxygenation (ECMO), and cardiopulmonary 

bypass [2]. This particular study is focused on the use of 

advanced control methodologies to regulate the arterial 

partial pressures of O2 and CO2 during an ECMO process. 

ECMO is performed as a method of support for the heart 

and/or lungs in severely ill patients. In this process, the 

blood is circulated out of the body and into an ECMO 

machine where the O2 and CO2 gas levels are restored using 

a membrane oxygenator before being pumped back into the 

body. This membrane oxygenator performs in a similar 

function to that of the human lungs by mixing O2 and CO2 

with the blood. In addition to oxygenating the blood, an 

ECMO machine maintains the blood temperature at the 

appropriate level with the help of a heat exchanger such that 

the body temperature does not drop when the blood is 

returned, which has serious implications [2]. Additional 

components of a typical ECMO system include pressure 
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monitors, pump and various drug administration interfaces 

as shown in Fig. 1. 

 
Fig. 1: Typical ECMO hardware setup 

II. STATE SPACE MODELING  

The main components of a typical ECMO system include a 

membrane oxygenator, pump, fluids and heparin 

administration interfaces, heat exchanger, pressure monitor, 

and blood gas sensors. In this study, only the membrane 

oxygenator and the blood gas sensors need to be considered 

for quantifying the system under consideration. As explained 

earlier, the membrane oxygenator replicates the functionality 

of the human lungs in that it exposes the blood to regulated 

amounts of O2 and CO2 for assimilation. Firstly, the choice 

of membrane is critical, since the material should be 

impermeable to blood, but permeable to O2 and CO2 so as to 

achieve the desired objective [7]. However, the possibility of 

clots and other obstructions can both impede the 

functionality of any membrane oxygenator in terms of its 

mixing capability [8] therby making closed loop control of 

the device essential. Fig. 2shows a typical membrane 

oxygenator available in the market and the method by which 

the O2 and CO2 gases are introduced into the oxygenator for 

mixing. 

 
Fig. 2: Membrane blood oxygenator Fig. 3: Arterial blood gas sensor 
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Owing to new advances in technology, continuous 

monitoring of blood gases is now possible not only in the 

form of flow rates of these gases, but also their partial 

pressures in the blood. This is achieved by the use of a 

typical blood gas sensor shown in Fig. 3. With this sensor, 

continuous blood gas monitoring is achieved via a 

combination of opto-chemical and fiber-optic detectors. 

These advanced detectors that can measure pH, PCO2, PO2 

and temperature can be inserted in-line with the bloodstream 

in an artery (8). This component is essential for the modeling 

of a membrane oxygenator from a controls standpoint, since 

the amount of O2 and CO2 assimilated into the blood is best 

measured through their arterial partial pressures in the blood. 

Hence, together with the dynamics of the flow rates of O2 

and CO2 gases through the membrane oxygenator, and the 

dynamics of the blood gas sensor that measure the partial 

pressures of these gases assimilated by blood, the desired 

state space model of the system under consideration is 

obtained. One such mathematical model laid out in [1] is 

used for analysis and control in this paper and is as given 

below. 

 

 ̇                            (1) 

                      (2) 

                       (3) 

 

     [        ]  

     [    ]         [    ]   (4) 

 

  [

      
      
      
       

]     [

   
   
  
  

]     [

   
   
  
  

] 

   *
    
    

+ 

 

x1(t): flow rate of oxygen; x2(t): flow rate of carbon dioxide; 

x3(t):arterial partial pressure of oxygen (P02); x4(t): arterial 

partial pressure of carbon dioxide (PC02); u1(t):commanded 

oxygen flow rate; u2(t): commanded carbon dioxide flow 

rate; w1(t): error in the oxygen valve position; w2(t): error in 

the carbon dioxide valve position. 

III. CONTROLLER DESIGN 

In this study, several H2 linear optimal control techniques 

based on the Linear Quadratic Gaussian (LQG) control 

formulation were designed and simulated. The LQG control 

system design which is based on the use of a stochastic 

linear quadratic regulator in cascade with a Kalman filter 

aims at minimizing a quadratic cost function involving 

selected states and inputs of the system. The original LQG 

formulation is such that it functions as a regulator (all states 

are driven to zero). In order to be able to track a non-zero 

reference, the LQG control methodology was modified in 

two ways. 

 

A. LQG and LQG/LTR with Feedforward Control 

 

As shown in Fig. 4, in order to incorporate feedforward 

control, a feedforward control gain (Kr) is added to the 

above expression. The new control input to the plant is now 

given by 
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This feedforward control gain can be selected to drive the 

performance outputs to the desired values after first 

generating the Linear Quadratic Regulator feedback gains 

(K) and then obtaining the value for the gain Kr.  Using the 

plant dynamics given by (1)-(3) and the LQG with 

feedforward control law given by (6), the closed loop system 

equations can be obtained and are as shown below. 
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As is common knowledge, the basic LQG control scheme 

loses much of the robustness to modeling and other 

uncertainty that is provided by the LQR control 

methodology. Using a technique called Loop Transfer 

Recovery (LTR), it has been noticed that some of this 

robustness could be recovered. LTR achieves this objective 

by adding a fictitious noise input to the control input during 

Kalman Filter design, which has the effect of reducing the 

filter’s reliance on the control input and also making it faster 

at the same time. This results in the estimated states reaching 

the actual states quicker, thereby making the closed loop 

appear more like that of the LQR. For comparison, an 

LQG/LTR controller design was also undertaken in this 

study. The new state equation for the plant dynamics in the 

case of the LQG/LTR controller becomes 
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And the new spectral density matrix is given by, 
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The closed loop system then becomes 
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In this study, the LQG and LQG/LTR, both modified by 

feedforward control were designed and analyzed from a 

performance as well as robustness standpoint. A schematic 

of the closed loop system with these two controller 

configurations is shown in Fig. 4. The results of the 

simulation are presented in Sec. IV. 
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Fig. 4: LQG and LQG/LTR with Feedforward control 

 

B. LQG Augmented with Integral Action 

 

Although the LQG methodology works well for white noise 

inputs, the controller does not increase the system type. If 

the plant being controlled intrinsically does not have an 

integrator, the closed loop system with the basic LQG 

controller even with the feedforward modification cannot 

achieve good performance to inputs of a higher type such as 

a step input. Hence, to achieve good tracking and 

disturbance rejection to step inputs, the LQG controller has 

to be augmented with integral action. In this study, one such 

LQG controller augmented with integral action is designed, 

and is compared to the above mentioned two LQG variants 

from a performance and robustness standpoint. A schematic 

of the LQG control scheme augmented with integral action 

is shown in Fig. (5). 

 
Fig. 5: LQG augmented with integral control 

 

Unlike the basic LQG methodology, the Kalman filter in the 

integral control system estimates both the plant state and the 

disturbance input. In order to accomplish this objective, a 

second disturbance input w0(t) has to be augmented to the 

white noise disturbance input w(t) in (1), as described by the 

method in [1]. This disturbance input, w0(t), which is of the 

step input type, is considered to be defined by (13). 
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where, wo(t) is the disturbance input now considered to be 

the augmented system state and wT(t) is the white noise that 

drives it. In order to account for the additional integral 

action, (1) has to be augmented with (13). These new 

augmented system equations given by (14) and (15) are used 

for finding the Kalman gains. 
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In order to generate the control, the LQR gains need to be 

computed. This also requires the knowledge of the 

integration action, since the feedback gains must include a 

separate gain for the integral controller. Hence, the 

augmented plant must now include the integral error state 

equation as well. As can be seen from the schematic, the 

error state equation is defined as,  

 ̂  ∫  ̂       ̂  ∫(    ̂      )      (  ) 

By differentiating the above equation we get the governing 

error state equation to be, 

 ̇̂      ̂              (  ) 
Hence the new augmented plant equation for computing the 

LQR gains is given by the equations (18) and (19). 
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Hence the closed loop system is given by, 
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IV. UNCERTAINTY ANALYSIS 

Uncertainty analysis is a critical aspect that has to be 

considered whenever mathematical modeling is performed 

to capture the dynamics of a real-world system. For the 

analytical modeling of the extracorporeal membrane 

oxygenation procedure, the uncertainty is assumed to be 

structured and of a parametric type affecting the values in 

the system “A” matrix as shown by (22). 

[

      
      
        
      

]       (  ) 

Where the parametric values k1, k2, and k3 are uncertain but 

bounded in the range    [   ]     [   ]     [       ]. 
Comparing (1) with (23), it can be noticed that the mean 

values of the uncertainty range is chosen for the nominal 

plant dynamics. The stability of a system to a structured 

uncertainty is determined by analyzing the feedback system 

shown in Fig. 6 and Fig. 7. Since the nominal closed-loop 

system is assumed to be stable, any unstable poles of this 

system are therefore caused by closing the loop through the 

perturbation (Δ). It can be shown that the feedback system in 

Fig. 6 and Fig. 7 are internally stable for all possible 

perturbations if the magnitude of the structured singular 

value (SSV) of the transfer matrix seen by the Δ over the 

entire range of desired frequencies is less than or equal to 

one. This condition is mathematically stated in (24). 
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 (the transfer matrix seen by the Δ) is nothing but the 

transfer matrix within the dotted box (Fig. 6 and Fig. 7).  

The procedure to find this transfer function matrix is covered 

in detail in [1]. For the configuration shown in Fig. 6, the 

corresponding transfer matrix for the SSV analysis is given 

by (25).  
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For the case of LQG with integral action shown in Fig. 7, the 

corresponding transfer matrix for the SSV analysis is given 

by (26).  
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Fig. 6: Structured uncertainty block diagram (LQG and LQG/LTR) 

 

 

 
Fig. 7: Structured uncertainty block diagram (LQG with integral action) 

 

V. RESULTS 

The main objective of control design for an ECMO process 

was to accurately track the arterial partial pressures of O2 

and CO2 in the blood by regulating the flow rates of the 

gases. To ascertain the tracking performance, the closed loop 

systems were subjected to step reference inputs in the partial 

pressures of both these gases, (27). 
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To further ascertain the tracking performance of the different 

controllers in the presence of disturbances, step inputs in 

disturbance, with a magnitude of 40% that of the reference, 

were applied after steady state values were reached for the 

tracking reference input. A step disturbance input, as given 

in (2), was applied to the system. This step change in in 

disturbance could be thought of as an error in the flow rate 

valve position that might be caused due to nonlinear actuator 

dynamics in the form of sudden jerks. An extreme case of 

disturbance where the oxygen flow rate was reduced and at 

the same time, the carbon dioxide flow rate was increased 

was simulated. With the above mentioned parametric values 

for the reference and disturbance inputs, the three different 

controllers were synthesized for optimal tracking and 

disturbance rejection performance while providing robust 

stability to the parametric uncertainty described in the 
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previous section. The various gains and design parameters 

resulting for the different controllers are given below. 

The design parameters shown in Table 1 were identical for 

the three different controllers. 

 
Table 1 
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Table 2 shows a comparison of the different controller gains 

for the corresponding controllers. 

 
Table 2 

 

LQG LQG/LTR LQG+Integral 

K
T
 

0.70 -0.34 0.70 -0.34 0.96 -0.37 

-0.34 0.19 -0.34 0.19 -0.37 0.42 

1.66 -0.82 1.66 -0.82 2.48 -1.06 

0.08 0.29 0.08 0.29 2.24 5.27 

Kr
T
 

3.08 -1.11 3.08 -1.11 - - 

5.12 10.43 5.12 10.43 - - 

G 

83.82 33.02 783.7 756.8 84.2 33.84 

-19.58 98.67 -325.5 2056 -19.70 100.7 

28.86 -4.36 101.5 -21.50 28.93 -4.39 

-0.44 6.03 -2.10 40.10 -0.44 6.13 

Ki 
- - - - -9.24 3.81 

- - - - -12.06 -29.23 

 

Step response analysis was carried out with the above 

mentioned parametric values obtained from the synthesis of 

the controllers. Fig. 8 and Fig. 9 show the step response of 

the arterial partial pressures of O2 and CO2 respectively. It 

can be clearly seen that while all the controllers provide 

excellent tracking performance to the reference input, only 

the LQG controller augmented with integral action is able to 

totally reject a step input in disturbance given in (28) that 

was applied to the system at 2.5 s. The ability to reject 

disturbance is as critical as tracking, since, as already 

mentioned, variation in blood gas levels over a prolonged 

time can result in life threatening consequences. Also, it can 

be noticed that although the LQG augmented with integral 

control provides slower response than the other two 

controllers, its well within the accepted limits (≈ 30 sec). 

 

Fig. 10 and Fig. 11 show the control inputs provided by the 

different controllers in the form of flow rates of O2 and CO2 

gases. Using the rise time criteria, a rough idea of the 

actuator bandwidth can be calculated for the different 

controllers. Table (3) provides the corresponding 

parameters. 

 

 
Fig. 8: Step response of O2 arterial partial pressure 

 

 
Fig. 9: Step response of CO2 arterial partial pressure 

 

 
Table 3 

  
LQG + 

Feedforward 

LQG/LTR + 

Feedforward 

LQG + 

Integral 

Bandwidth (Hz) 

(CO2 flow rate) 
≈ 5 ≈ 5.15 ≈ 0.85 

Bandwidth (Hz) 

(O2 flow rate) 
      ≈ 1.9 

 

From Table (3) it can be clearly noticed that the LQG and 

LQG/LTR with feedforward control have much higher 

bandwith requirements than the LQG with integral control. 

This difference is even more pronounced for the O2 flow rate 

where only the bandwidth for the LQG with integral control 

can be physically realized. 
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Fig. 10: Controller output in O2 flow rate 

 

 
Fig. 11: Controller output in CO2 flow rate 

 

Fig. 12 shows the structured singular values for the 

parametric uncertainty being considered in (22) and (23). As 

mentioned earlier, all the controllers were designed so as to 

ensure that the robust stability condition given by (24) is 

satisfied. However, it is interesting to notice that the 

LQG/LTR control slightly reduces the robust stability 

characteristic of the system compared to the LQG by itself. 

In Fig. 12, only two out of the four structured singular values 

have been plotted, since the other two values are close to 

zero due to the nature of the perturbation. It can be clearly 

seen from the figure that although addition of integral action 

reduces the degree of robustness, it still satisfies the robust 

stability criteria of (24). 

 

 
Fig. 12: Structured singular value analysis 

VI. CONCLUSION 

The paper investigated three different types of LQG based 

controllers designed for tracking control of the arterial 

partial pressures of the blood gases (O2 and CO2) during a 

typical ECMO procedure. The system included a membrane 

oxygenator for introducing the above mentioned gases into 

the bloodstream and a blood gas sensor for measuring their 

resulting arterial partial pressures in the blood. The 

performance of each of the controllers was ascertained both 

from a tracking as well as disturbance rejection standpoint to 

step commands in both these inputs. Robustness analysis 

was also performed on all the closed loop configurations 

using the structured singular value analysis and the 

performance of all the controllers was tuned so as to ensure 

robust stability to the parametric uncertainties considered. 

While the LQG and LQG/LTR with feed forward control 

were able to achieve good tracking performance, only the 

LQG augmented with integral control was able to achieve 

accurate tracking of the arterial partial pressures of the blood 

gases in the presence of a step input disturbance in the blood 

gases flow rates. It was also noticed that the LQG 

augmented with integral control required lesser bandwidth to 

achieve the better performance.  Extension to this work will 

involve investigation of H∞ based control schemes for 

comparison with the optimal control methodologies 

designed in this paper. 
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