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Abstract— In this paper, we study a specific optimal control
problem associated with a multiagent dynamic system. The

interest is placed on minimization of the tracking error in
the multiagent leader-follower model. We replace this problem
by a specific hybrid optimal control problem. In particular,
we consider control systems with monotonically increasing
dimensions of the state vector. The change of the state dimension
has the character of a jump and is modeled by an impulsive
hybrid system. The paper proposes an effective computational
procedure for the above optimal tracking control problem in a
multiagent setting. The theoretical and numerical approaches
obtained in this contribution are tested on a practically moti-
vated example.

I. INTRODUCTION

Traditional control theory usually deals with system dy-

namics of a fixed dimension (see e. g., [24], [14], [10]).

Lately, there has been an increasing interest in practically

relevant interconnected systems that can be formalized as

dynamical models with variable state dimensions. In fact, the

evolution of the dimension on complex engineering models

is a general effect that can appear in many applications (see

e.g., [17], [26], [27]). These application range from robot

dynamics [17], [18], [22], to networked control [16], [18],

[22], and control of autonomous vehicles [15]. One of the

possible formal approaches to take these impulsive discrete

event dynamics into consideration is related to a suitable

extension of the original state space. Moreover, an extension

of the system dimension has consequences for the resulting

optimal control problem and the generation of a effective,

numerical solution procedures constitute a new challenging

task. Note that a comparatively small number of papers

are devoted to the control design problem of systems with

variable (time-dependent) dimensions. We refer to [17], [26],

[27] for some partial results.

Motivated by the above-mentioned tracking (path-

following) optimization problem of a variable dimension

we represent the given multiagent systems as a hybrid

system. This interpretation gives rise to a constructive formal

description of the discrete event effects caused by changes in

the state dimension. The initial multiagent model is replaced

by an auxiliary hybrid system that not only has the discrete-

continuous parts, but also contains subsystems of different
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state dimensions. Note that the impulsive character of the

changes of dimension contributes to the general complexity

of the optimal control design for the multiagent system

under consideration. We concentrate on dynamic systems

with monotonically increasing dimensions. The last situation

corresponds to a modeling framework that describe a pos-

sible behavior of some groups (networks) of interconnected

intelligent machines. The dimension of a robots-network will

be growing if a new agent is associated with the network at

any time instant t (see [18]). Note that an example of this

specific behavior is a vacuum cleaner type problem where

there are some agents doing certain tasks in a given area and

we need to collect them all in an ordered manner, i.e. the

agent are sparse in an area therefore we can send an agent to

collect them following a planned path. An additional example

of a system with variable state dimension is provided by a

mechanical ”trampoline” model that describes the periodical

trampoline jumping [26].

In this paper, we apply the hybrid LQ-type technique to

the optimal control design of a class of multiagent systems

with increasing state dimensions. Hybrid optimal control

processes and in particular, the hybrid optimal LQ dynamics

with a fixed dimension have been extensively studied over the

past few years (see e.g., [2], [4], [9], [7], [8], [12], [20], [21],

[23], [25], [29]). Note that these investigations are recently

extended by the hybrid optimal control problem methodology

in the presence of the additional impulsive effects [1],

[3], [5]. Some alternative variational techniques related to

the optimization of complex multidimensional systems have

been proposed in [17], [26]. Applications of the hybrid LQ

methodology is associated with a specific hybrid Riccati-

type formalism that describes the optimal feedback control

strategy in the case of the increasing systems dimension. In

this context we are also interested in constructive solution

procedures for the above optimal control problem.

The paper is organized as follows: Section II deals with

a formal description of a specific multiagent dynamic model

and contains the main concepts and facts. Section III is

devoted to the equivalent representation of the initial leader-

followers model in the form of a hybrid dynamic system. We

also consider an optimal tracking problem associated with

this hybrid model. Section IV proposes a LQ-based control

design in the auxiliary hybrid setting for the tracking problem

stated in the previous section. In Section V we develop

a concrete solution procedure for the hybrid LQ regulator

problem in the case of a growing dimensional space. In

Section VI we applied the proposed hybrid methodology to

the initial multiagent problem. The applicability of the the-
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oretical schemes and computational algorithms is illustrated

by the numerical simulations of an optimal behavior of the

multiagent robots-network. Section VII concludes the paper.

II. A MULTIAGENT LEADER-FOLLOWER MODELLING

FRAMEWORK

Consider a leader-followers model that is composed as a

network of N0 dynamical agents vl, l = 1, ..., N0. The leader

(a selected element of this network) is denoted here by v1.

The dynamic behavior of the leader constitutes an optimal

strategy that preserve an adequate geometrical configuration

of the given followers, while the leader ensures a prescribed

smooth path re(·). In assure linearity of the system dynamics

we assume that the dynamics of the above multiagent system

are described by the consensus protocol

ẏ1(t) = u(t),

ẏl(t) =
∑

j∈Ql

(yj − yl − rlj) l = 2, . . . , N0, (1)

where Ql is an index set or neighbors to agent vl,

y1(t), yl(t) ∈ R
m specifies a position of the agent vl at

t ∈ [0, tf ], u(t) constitute the control input of the leader.The

initial conditions for (1) are given as y1(0), yl(0) for

l = 2, . . . , N0. We refer to [18], [19] for some additional

details related to the consensus protocols. By rlj , where

l = 2, ..., N0, j ∈ Ql, we denote a collection of suitable

displacements between agents vl and vj that helps ensure

preservation of the given formation (see Fig. 1(b)). The initial

(a) Convex configuration of a
multi agent system

(b) Distances associated with a
configuration

Fig. 1. Geometrical parameters of a leader-followers configuration

formation of the given group of agents (the leader-followers

configuration) is determined as follows: every agent is lo-

cated at the vertex of a regular convex N0-polygon in a

two-dimensional space (as presented in Fig. 1(b)). At times

ti ∈ [0, tf ], i = 1, ..., L, the multiagent system detect di
additional agents, i.e. the distance between the newly selected

followers and the leader v1 is less or equal to a prescribed de-

tecting distance δ. For simplify of the mathematical formulas,

we assume in this manuscript di = d, i = 1, . . . , L; but this

assumption does not affect the applicability, in the general

case, of the obtained results. The new system now contains

some additional agents denoted by vN0+ν , ν = 1, ..., d and

is now characterized by a N1 = N0+d-polygonal formation.

Note that we need to know the final number of found agents

in order to have a system with L switches, note also that

in every time interval [ti−1, ti) the dimension of the system

is Ni = Ni+1 + d, for i = 1, ..., L. The agents selection

process described above can be represented by a dynamic

oriented graph G[ti−1,ti). The initial conditions y1(0), yl(0)
represent the vertices of an initial graphG[t0,t1). The directed

graphG[ti−1,ti) is associated with a set V(G[ti−1,ti)) of nodes

and a set E(G[ti−1,ti)) ⊂ V(G[ti−1,ti)) × V(G[ti−1,ti)) of

edges of G[ti−1,ti). The nodes vl, vj ∈ V(G[ti−1,ti)) are

called neighbors if (vl, vj) ∈ E(G[ti−1,ti)). Evidently, the

set E(G[ti−1,ti)) is also a dynamic set corresponding to

the dynamics of the leader-followers configuration described

above. We are now ready to specify concretely the index set

Ql in (1) introduced above. Let us consider the set of all the

neighbors of an agent vl and put

Ql(G[ti−1,ti)) = {j ∈ N|(vl, vj) ∈ E(G[ti−1,ti))}.

Note that the dimensions of the above sets are

dim(V(G[ti−1,ti))) = Ni, dim(E(G[ti−1,ti))) ≤ N2
i ,

dim(Ql(G[ti−1,ti))) ≤ Ni.

Fig. 2 illustrates this dynamical behavior of the multiagent

system in the case d = 1. The (Ni × ρi)-incidence matrix

Fig. 2. An additional follower detected

associated with G[ti−1,ti) is determined as D(G[ti−1,ti)) =
[Dlj ]lj , where ρi is the number of edges of the Graph

G[ti−1,ti) and

Dlj =







1 if (vl, vj) ∈ E(G[ti−1,ti)),
−1 if (vj , vl) ∈ E(G[ti−1,ti)),
0 otherwise

This matrix not only captures the adjacency relationships in

the graph, but also the orientation of the graph. Let us define

the graph Laplacian L(G[ti−1,ti)) ∈ R
Ni×Ni as

L(G[ti−1,ti)) = D(G[ti−1,ti))D
T (G[ti−1,ti))

which is a symmetric positive semidefinite matrix. Without

loss of generality assume that the incidence matrix and the

graph Laplacian for the leader-follower framework can be

rewritten as

D(G[ti−1,ti)) =

[

Dleader(G[ti−1,ti))
Dfollower(G[ti−1,ti))

]

L(G[ti−1,ti)) =

[

Lleader(G[ti−1,ti))
Lfollower(G[ti−1,ti))

]
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where the matrices Dleader(G[ti−1,ti)) ∈ R
1×ρi , and

Lleader(G[ti−1,ti)) ∈ R
1×Ni are the incidence ma-

trix and the Laplacian’s rows associated with the

leader. Here Lfollower(G[ti−1,ti)) ∈ R
(Ni−1)×Ni and

Dfollower(G[ti−1,ti)) ∈ R
(Ni−1)×ρi are composed with the

rows corresponding to the followers. The dynamics of the

multiagent system 1) can be written in a compact form using

those matrices and we refer to [18] for the details.

III. THE HYBRID LQ OPTIMAL TRACKING PROBLEM

ASSOCIATED WITH THE LEADER-FOLLOWERS DYNAMICS

In this section we deal with an equivalent representation of

the multiagent system from the previous section in the form

of an auxiliary hybrid system. This representation makes it

possible to consider an associated optimal control problem in

order to optimize the dynamic behavior of the initial leader-

followers model.

The dynamical change of the number of agents (vertexes

of the polygonal formation) constitutes a discrete event

effect in the model. This effect can also be described in

the framework of the hybrid systems theory. Let i be a

discrete i-state of the multiagent system that is determined

by Ni-polygonal formation, where i = 1, ..., L. Clearly,

Ni − Ni−1 = d. Note that this uniform evolution of the

system dimension can be easily generalized to the case of

different increments of dimension in every discrete i-state.

As mentioned above the dynamics of this leader-followers

configuration with a Ni-polygonal formation is given by

(1). Let ri := (rlj)
T
(l=1,...,Ni, j∈Ql)

∈ R
ρi . The complete

evolution of the above group of agents can now be interpreted

as a hybrid linear control system with L locations

ẋi(t) = Aixi(t) +Biu(t) + Ciri, (2)

x1(0) = (y1(0), yl(0))
T . Here i = 1, ..., L represents the

current Ni-polygonal formation and also the active subsys-

tem in (2).

Ai =

[

0
−Lfollower(G[ti−1,ti))

]

∈ R
χi×χi ,

Bi =

[

Id
0

]

∈ R
χi×m,

Ci =

[

0
Dfollower(G[ti−1,ti))

]

∈ R
χi×ρi .

and χi := Nim = (N0 + d (i − 1))m. More-

over, xi(t) := (yT1 (t), y
T
l (t))

T ∈ R
χi is the new

state vector, Lfollower(G[ti−1,ti)) ∈ R
(χi−dm)×χi and

Dfollower(G[ti−1,ti)) ∈ R
(χi−dm)×ρi are the Laplacian-type

and the incidence matrices related to the followers agents vl,

l = 2, . . . , L defined in Section II. Note that xi(t) ∈ R
χi+1

and is different from the vector xi(t).
Evidently, the resulting hybrid system is characterized by

the monotonically increasing dimension of the subsystems

associated with the given sequence of locations. Note that the

above-mentioned mechanism of the agents detection defines

the switching rules for the location transitions in the resulting

hybrid system (2). This switching rules can be analytically

expressed by the norm-inequalities:

||y1(ti)− yNi+ν(ti)|| ≤ δ, ν = 1, ..., d

where ti, i = 1, ..., L denotes a switching time between

locations (i − 1) and i. Note that we are assuming that the

switching times ti are uniquely defined by the switching rule,

i.e. we assume that our system does not have zeno behavior.

As a consequence of the above switching mechanism we

obtain the following ”continuity” property of the resulting

trajectory generated by (2): xi(ti) = PrRχi

(

xi+1(ti)
)

, where

PrRχi

(

x
)

is a projection of the vector x on the space R
χi .

Note that in every location we will have a corresponding

graph, and the new connections should be assigned such that

every subsystem be controllable (see e.g. [22], [18], [16] for

a detail definition of multiagent controllability).

A possible treatment of the above leader-followers prob-

lem can be based on the newly elaborated theory of hybrid

LQ optimal control (see e.g. [4], [5]). Let us firstly introduce,

some necessary matrices associated with a hybrid LQ-type

cost functional. Assume Sf ∈ R
χi×χi , Ri : R → R

m×m,

Si : R → R
χi×χi where i = 1, 2, . . . , L, be symmetric

matrices. In addition we assume that Sf is positive semidef-

inite, and that for every time instant t ∈ [0, tf ] and every i

every Si(t) is also positive semidefinite. Moreover, let Ri(t)
be symmetric and positive definite for every t ∈ [0, tf ] and

every i. Additionally the given matrix-functions Si(·), Ri(·)
are continuously differentiable. Our aim is to minimize the

following cost function.

J(·)=
1

2
(DLxL(tf)−ELr̄L(tf))

T
Sf(DLxL(tf)−ELr̄L(tf))+

L
∑

i=1

ti
∫

ti−1

1

2
((Dixi(t)−Eir̄i(t))

T
Si(t)(Dixi(t)−Eir̄i(t)) +

uT (t)Ri(t)u(t))dt

(3)

with respect to (2). Here

Di =

[ [

Id 0
]

−Lfollower(G[ti−1,ti))

]

, Ei =

[

Id 0
0 Ci

]

are weight matrices of the corresponding dimension and

r̄i(t) := (rTe (t), r
T
i )

T is a reference vector of the leader-

follower configuration. Note that re es the leader’s reference

path defined in the previous section.

We now assume that the above reference vector can be

chosen from the following linear (hybrid) model:

˙̄ri = Γi(t)r̄i(t), i = 1, ..., L (4)

where Γi(t) ∈ R
(ρi+md)×(ρi+md) are some reference matri-

ces associated with locations i = 1, ..., L. Note that in the

case of a nonlinear reference dynamics the linear model (4)

is a result of a suitable linear approximation (see [13] for

the linear neuronal network approximation approach). Note

that the LQ-type optimal control problem (3) represents a

special optimal tracking problem in the form of the hybrid

optimal control problem for the initial multiagent system
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(2). A non-standard character of the above tracking problem

is characterized by different dimensions of the state and

references. Moreover, the current dimension of the state

vector xi(t) and the reference vector r̄i(t) is a monotonically

increasing function of the index i.

IV. RICCATI-BASED TECHNIQUES FOR ANALYSIS OF THE

HYBRID TRACKING PROBLEM

As we have seen in the previous section the original

optimal control problem (3) has two specific characteristics

in comparison to a conventional hybrid LQ optimization

problem (see e.g., [4], [5]). These specific points, namely,

the different dimensions of the states-reference processes and

the growing dimensions of subsystems from (2) (described

in section III) can be analyzed separately. In this section we

focus our attention on the first phenomena and reduce the

specific optimal tracking problem 3 to a hybrid LQ regulator.

Note that we consider here (3) under assumption of identical

subsystems dimensions (no dimension evolution).

Recall that dim(r̄i(t)) 6= dim(xi(t)). The first m com-

ponent of the above reference vector r̄(t), t ∈ [0, tf ]
represents a required state re(t) of the leader. The next

components of r̄(t) formalize the condition of a desirable

geometrical configuration of followers. Our aim is to design

an optimal control strategy in (3) in the absence of the

dimensions evolution of the states in every location i =
1, ..., L. The optimal control in (3) can be obtained using

the hybrid Maximum Principle and the associated Riccati

formalism (see [4], [5]). We firstly introduce the auxiliary

variable zi(t) := xi(t)−D
−1
i Eir̄i that satisfies the following

differential equation

żi(t) = Aizi(t) +Biu(t)+
(

Ciri +AiD
−1
i Eir̄i(t)−D−1

i Ei ˙̄ri(t)
) (5)

The weight matrix Di is assumed to be invertible. Note that

this invertibility condition conforms with the dynamics of the

initial multiagent system (1). Using (5) and the dynamical

reference model (4), we deduce the differential equation for

the new vectors zi(t)

żi(t) := Aizi(t) +Biu(t) + ωi(t) (6)

where ωi(t) :=
(

AiD
−1
i Ei −D−1

i EiΓ(t)
)

ri(t). Note that

in general zi(ti) 6= zi+1(ti) and the resulting system (6)

can be interpreted as an impulsive hybrid system (see [2],

[3], [4]). This impulsive character of (6) is a consequence of

the dynamics of the reference vectors r̄i. The corresponding

interpretation leads to the hybrid LQ-type optimal control

problem

minimize

J(·) =
1

2
zTL (tf )D

T
LSfDLzL(tf )+

L
∑

i=1

ti
∫

ti−1

1

2

(

zTi (t)D
T
i SiDizi(t) + uT (t)Ri(t)u(t)

)

dt

over all admissible trajectories of (6).

(7)

Note that (7) is a general impulsive LQ optimization prob-

lem for a linear system with an additive (external) input.

Following the general approach to impulsive hybrid systems

developed in [5] we now solve the above optimal control

problem, and obtain the optimal piecewise linear feedback

in the form

u(t) = −R−1
i (t)BT

i (t)Pi(t)zi(t), t ∈ [ti−1, ti), (8)

where Pi is the solution of the differential Riccati equation

Ṗi(t) = −Pi(t)Ai(t)−AT
i (t)Pi(t)+

Pi(t)Bi(t)R
−1
i (t)BT

i (t)Pi(t)− Si(t)

∀t ∈ (ti−1, ti), i = 1, 2, . . . , L

(9)

with a boundary (terminal) PL(tf ) = Sf . The difference

between the Riccati matrices at the switching time instances

ti, i = 1, 2, . . . , L are given as solutions of the specific

system algebraic Riccati equation [4], [5]

AT
i Pi + PiAi − PiBiR

−1
i BT

i Pi + Si −AT
i+1Pi+1+

Pi+1Ai+1 − Pi+1Bi+1R
−1
i+1B

T
i+1Pi+1 + Si+1 = 0.

(10)

Theorem 1: Under assumptions of Section III the optimal

feedback control in problem (7) is given by (8).

Proof: Let HND(zi, ui, φi) be a Hamiltonian associated

with the specific variant of (7) determined by ωi(t) ≡ 0. The

Hamiltonian HD(zi, ui, ψi) for the general problem (7) (with

a nontrivial ωi(t)) can be written as

HD(zi, ui, ψi) = HND(zi, ui, ψi) + ψi(t)ωi(t),

where i = 1, ..., L. Evidently, the systems of adjoint equa-

tions and the corresponding boundary value problems for

the above two variants of the basic problem (7) have the

same form. The maximization conditions from the hybrid

Maximum Principle also lead to the same result in both cases.

These facts imply the conformity of the Riccati matrices for

the general optimal control problem (7) and for the specific

case of (7) indicated above. The Riccati matrix can now

uniquely determined form the differential-algebraic system

(9)-(10) and the optimal piecewise feedback in (7) is given

by (8) with zi(·), where i = 1, ..., L, are solutions to the

general systems (6). The proof is completed.

Theorem 1 provides an analytical basis for the effective

treatment of the specific LQ-type optimal control problem (7)

that represents a formalization of the non-standard quadratic

optimal tracking problem with different dimensions of the

states and the reference processes.

V. OPTIMAL CONTROL OF THE MULTIAGENT

LEADER-FOLLOWER MODEL

This section deals with the constructive analysis of the

growing dimensions of subsystems in the optimal control

problem (7). The dimension of the reference trajectory is

assumed to be increased. This fact is indicated in model (4)

by the variable dimensions of vectors ri(t). Also the di-

mensions of the matrices Γi(t) are correspondingly evolved.

Theorem 1 from the previous section make it possible to
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compute the gain matrix in (8) using the Riccati formalism

for a non-disturbed model (6) for ωi(·) ≡ 0, i = 1, ..., L. The

increasing dimension of xi(ti) causes the equivalent change

of dimension of the vector zi(ti). Note that this evolution of

dimensions happens at the switching times ti, i = 1, ..., L
and has an impulsive nature. We can interpret system (6) as

an impulsive linear hybrid system from [1], [2], [5] and also

rewrite the above algebraic Riccati equation

AT
i Pi + PiAi − PiBiR

−1
i BT

i Pi +∆i = 0 (11)

where

∆i = Si − FT
(

AT
i+1Pi+1 + Pi+1Ai+1−

Pi+1Bi+1R
−1
i+1B

T
i+1Pi+1 + Si+1

)

F

and F = [I, 0]
T

. Note that the product ∆i − Si determines

a projection PrRχi×χi (Pi+1(t)) of the matrix Pi+1(t) on the

space R
χi×χi . Resulting from the dynamics of dimension

this projection associated with a matrix Ω ∈ R
χi+1×χi+1 can

be realized as FTΩF with the above matrix F . Let us now

summarize the above facts in the form of a theorem.

Theorem 2: The Riccati matrices Pi(·) in (8) for optimal

control problem (7) with increasing dimension of the state

vectors zi(t) are determined by (9) and (11).

Proof: Every subsystem related to the location i can be

embedded in a space of dimension χi+1 such that all the rel-

evant vectors and matrices are represent as appropriate pro-

jection. zi(t) = PrRχi×χi (ẑi(t)), Ai(t) = PrRχi×χi Âi(t).
Moreover Bi(t) = PrRχi×χi B̂i(t), Pi(t) = PrRχi×χi P̂i(t),

where ẑi(t) =
(

zTi (t), 0
)T

,

Âi(t) =

[

Ai(t) 0
0 0

]

, B̂i(t) =

[

Bi(t)
0

]

.

The vectors and matrices of the i + 1 subsystem have the

following structure: zi+1(t) = (zTi+1,k(t), ζ
T
i+1(t))

T , where

zi+1,k denotes the first k-elements of the vector zi+1,

Ai+1(t) =

[

A11,i+1(t) A12,i+1(t)
A21,i+1(t) A22,i+1(t)

]

,

Bi+1(t) =

[

B1,i+1(t)
B2,i+1(t)

]

,

Pi+1(t) =

[

P11,i+1(t) P12,i+1(t)
PT
12,i+1(t) P22,i+1(t)

]

.

where the A11,i+1, P11,i+1 ∈ R
χi×χi and

A12,i+1, S12,i+1, P12,i+1, P̂1,i ∈ R
χi×dm,

A22,i+1, S22,i+1, P22,i+1, P̂3,i ∈ R
dm×dm,

A21,i+1 ∈ R
dm×χi , B1,i+1 ∈ R

χi×m, B2,i+1 ∈ R
dm×m.

Moreover dim(ζi(t)) = dm, t ∈ [ti−1, ti), i = 1, ..., L
and the matrix P̂i(t), t ∈ [ti−1, ti) is computed from (9).

As a consequence of the hybrid Maximum Principle ([2],

[25], [4]) we obtain an explicit form of the Hamiltonians

associated with the locations i and i+ 1

Hi(t, ẑ, u, ψ̂) := 〈ψ̂i, Âi(t)ẑi + B̂i(t)u〉−

1

2

(

ẑTi Ŝi(t)ẑi + uTRi(t)u
)

,

Hi+1(t, z, u, ψ) := 〈ψi+1, Ai+1(t)zi+1 +Bi+1(t)u〉−

1

2

(

zTi+1Si+1(t)zi+1 + uTRi+1(t)u
)

,

where 〈·, ·〉 denotes the scalar product in R
χi ,

Ŝi(t) =

[

Si(t) 0
0 0

]

, Si+1(t)=

[

S11,i+1(t) S12,i+1(t)
S12,i+1(t) S22,i+1(t)

]

and ψ̂i(t) = −P̂i(t)ẑi(t) ψi+1 = −Pi+1ẑi+1. Note that

S11,i+1 ∈ R
χi×χi , S12,i+1 ∈ R

χi×dm, S22,i+1 ∈ R
dm×dm

The embedded state vector ẑi(ti) is different to zi+1(ti) and

the hybrid system (6) in the location i+ 1 has a dimension

χi+1. Therefore, we consider the dynamics of the extended

vector ẑi(t) in the hybrid framework of the χi+1-dimensional

system (6) Evidently, the dynamics of the ”zero”-extensions

of the original state vector zi(t) is irrelevant. Following the

methodology developed in [2], [5], we now introduce the

auxiliary variable ẑi(t) = z̃i(t) +
(

0, ζTi+1(ti)
)T

. We now

deal with a new family of continuous Hamiltonian (see [2],

[5]) of the form

Hi(t, x̂, u, ψ̂)=

[

zTi
ζTi+1

]T[
H11,i H12,i

H21,i H22,i

] [

zi
ζi+1

]

Hi+1(t, x̂, u, ψ)=

[

zTi
ζTi+1

]T[

H11,i+1 H12,i+1

H21,i+1 H22,i+1

][

zi
ζi+1

]

(12)

where H11,i+1, H11,i ∈ R
χi×χi , H12,i+1, H12,i ∈ R

χi×dm,

H21,i+1, H21,i ∈ R
dm×χi and H22,i+1, H22,i ∈ R

dm×dm.

Using the continuity of Hamiltonians we deduce for every

location the modified Riccati equations that contain jumps

−AT
i (ti)Pi(ti) +

1

2
Pi(ti)Bi(ti)R

−1
i (ti)B

T
i (ti)Pi(ti)−

1

2
Si(ti)−H11,i(ti) = 0,

The last (non-symmetrical) equation can be finally rewritten

as (11). The complete system that allows characterize the

dynamics of the Riccati matrices.

Theorem 2 represents our final result that provides a basis

for a constructive computational approach to the general LQ-

type optimal control problem (3). Recall that the general

optimal control problem (3) was characterized by two non-

standard phenomena, namely, the different dimensions of the

state and reference processes and the growing dimension of

the full system.

VI. A COMPUTATIONAL EXAMPLE OF THE OPTIMAL

LEADER-FOLLOWERS BEHAVIOR

We now show the effectiveness of the proposed approach

and apply the theory developed in Sections III, IV and V

to a particular case of the general multiagent system from

Section II. Let us consider a leader-followers model with
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total numbers of agents equal to 10. Assume that an initial

system with N0 = 5 agents forms a (regular) pentagon

that is inscribed in a circle of radius R = 1. To assure

that the controllability of the system remains we use the

dynamical graph presented in Fig. 3. Note that those graphs

Fig. 3. Located graphs

are directed and the connections between the nodes are

ruled by the dynamics presented in (1). Recall that our aim

is to preserve a configuration of the system in which the

leader follows a reference trajectory given by a circle with

radius ρ = 10. Moreover, there are 5 additional agents that

extend the current system configuration. In the context of

the leader-followers strategy discussed in Section II a current

configuration is extended by a further agent if the Euclidean

distance is less or equal to δ = 1 (see Section II). Then the

auxiliary hybrid system is characterized by L = 6 locations.

0 1 2 3 4 5 6 7 8 9 10 11
−1

0

1

2

3

4

5

6

7

8

9

10

x

y

Leader−Follower System t=0.00

Fig. 4. Leader–Followers system simulation: Initial formation

For a concrete computation of the impulses and the distances

we use the following scheme.

Computational Algorithm 1:

i) For every location i a circle with radius R is centered

at the origin and collocate the leader in any point along

the circumference of this circle yi,1 = yi,0.

ii) Calculate the internal angle of the current Ni-polygon

formation: γi =
2π
Ni

;

iii) For k = 2, 3, . . . , Ni determine the running position of

the agents included into the current polygon

yk,i =

[

cos γi sin γi
− sin γi cos γi

]

yk−1,i;

iv) for l = 1, 2, . . . , Ni−1, j ∈ Ql, and l 6= j compute the
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Fig. 5. Leader–Followers system simulation: Last second location 2

actual distances between the agents

rlj,ix = rjl,ix = yl,ix − yj,ix ,

rlj,iy = rjl,iy = yl,iy − yj,iy .

v) Calculate the value of the impulses in the switching time

ti: θi = PrRρi ri+1 − ri.

Following the theoretic approach developed in Sections III

IV and V we obtain the optimal input in a closed form

ui(t) = −R−1
i (t)BT

i (t)Pi(t)
(

xi(t)−D−1
i Eir̄i(t) + θi

)

where t ∈ [ti−1, ti) and Pi is the solution of (9). Let us

note that jumps of the differential Riccati equations (9)

at switching times ti, i = 1, ..., L are governed by the

algebraic Riccati equation (11). Using the above algorithm,

we establish the dynamical configuration of the followers

with the leader’s coordinate equal to (0.6503,−0.7597) (see

Figs. 4 – 7).
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Fig. 6. Leader–Followers system simulation: Initial time location 5
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Fig. 7. Leader–Followers system simulation: Final configuration

VII. CONCLUSIONS

In this paper we proposed an optimal tracking methodol-

ogy for a leader-followers problem in a multiagent setting.

The dynamic systems under consideration are characterized

by two additional formal effects, namely, by the evolution

of the dimensions of the state and references vectors and by

the monotonically increasing dimensions of the current state

space.

The resulting gap of dimensions and the dimension evo-

lution mentioned above are due to the concrete nature of the

leader-followers multiagent model. In our contribution we

deal with two partial problems: a multiagent optimal tracking

problem and a hybrid LQ-type optimal regulator problem.

Both of these sub-problems incorporate theoretical aspects

related to the effects of the dimension evolution. The hybrid

LQ-based optimization techniques are considered here as an

auxiliary method associated with the constructive solution

procedure for the initial multiagent tracking problem.

Let us note that the theoretical and computational ap-

proaches proposed in this paper can also provide a conceptual

basis for the optimal control design in some practical ap-

plications associated with the multiagent dynamic systems.

Also the multiagent result presented can be generalized to

more general formations, where the agents are not uniformly

distributed on a ring. Finally the approach presented in the

paper can be extended to multiagent models with potentials

and collision avoidance.
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