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Abstract— Pre-compensators are used in multivariable control
systems to reduce (or eliminate) open loop system interactions.
Classical methods for the design of pre-compensator are tra-
ditionally based on static designs. Static pre-compensators are
preferred for their simplicity, but are highly unsystematic in
the amounts of achievable diagonal dominance. In many ap-
plications, only the more powerful dynamic pre-compensators
are able to deliver the desired amounts of decoupling. This
paper proposes a new method for the design of dynamic pre-
compensators which is based on a Quadratic Programming
(QP) optimization. Using the proposed approach the total pre-
compensator is found through several smaller optimization
problems, one for each column. The application and effective-
ness of the QP dynamic design is demonstrated on a Distributed
Generation unit (DG) case study.

I. INTRODUCTION

Rosenbrock’s contribution to the design of control systems

for linear multivariable plants inspired much activity in the

development of techniques for achieving diagonal dominance

[1]. The primary objective of all such techniques is to reduce

plant interactions by the introduction of a multivariable pre-

compensator so that the control system design can then be

completed by using classical techniques to synthesise a set

of single-loop controllers for the compensated plant [2][3].

Traditional techniques developed for the achievement of

diagonal dominance by the use of static pre-compensators are

the pseudo-diagonalisation [4][5], the function-minimisation

method using conjugate-direction optimisation [6], and the

ALIGN algorithm developed initially in conjunction with

characteristic-locus methods [7]. More recently, advent of

powerful optimization algorithms paved the way for develop-

ment of improved techniques based on Evolution Strategies

[8], H2-norm [9], and H∞-norm [10].

Dynamic pre-compensation offers the opportunity to not

only aim to routinely achieve diagonal dominance for a

wide range of plants, but also achieve far higher levels of

diagonal dominance. Methods for the design of dynamic pre-

compensators should strike the right balance between achiev-

able performance and pre-compensator complexity. This is

not always easily obtained. For example while Chughtai

and Munro [10] extend their static formulation for dynamic

design, the dynamical order of the eventual dynamic pre-

compensator will be very high (each element would be equal

to the order of the entire plant plus the weighting functions).

Conversely, in [11] a method is proposed which can produce

low order pre-compensators, but the method is not systematic
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and comes at the expense of a considerable design effort

required for m2 curve fitting problems in case of an m×m

system. One of the more powerful recent approaches in

solving the dynamic problem has been with the use of

Evolutionary Algorithms [8]. An evolutionary optimization

offers large design flexibility including the ability to set each

element of the pre-compensator to have a desired order.

Alas, these user benefits are countered by two important

obstacles; a huge computational effort, and the ‘curse of

dimensionality’. The latter is especially inhibiting when it

comes to problems of larger size or higher dynamical order.

This paper aims to draw upon the main benefits of the

previous techniques to propose a practical and usable method

for the design of dynamic pre-compensators. Using the

proposed algorithm, a separate design problem is solved

for each column of the pre-compensator. Each element of

the pre-compensator can be either static or have arbitrary

dynamical complexity, but it may not be set to zero.

II. A QUADRATIC PROGRAMME APPROACH FOR

DYNAMIC DECOMPOSITION

A. Problem Statement

Consider the system to be a stable LTI transfer function

matrix (TFM) G(s) = [gij(s)] ∈ R
m×m where R

m×m is the

set of m×m rational transfer functions. The design problem

is to find a dynamic precompensator K(s) = [kij(s)] ∈
R

m×m such that Q(jω) = G(jω)K(jω) is dominant over a

set of frequencies Ω = {ωk : k = 1, . . . , N} [4], where

qij(jω) =
m∑

l=1

gil(jω)klj(jω). (1)

For design considrations it is desirable not to impose any

restrictions on the dynamical complexity of K(s) so that the

desired order for each element of the pre-compensator may

be set independently of others. The pre-compensator is thus

defined as,

klj(s) =

olj∑

r=0

αlj(olj−r+1)s
olj−r (2)

where O ∈ N
m×m is a matrix of integers. Elements of O =

[olj ] determine the respective order of the (l, j) element of

the pre-compensator K(s). In using this technique, either

column or row dominance can be used; but in this paper

the design problem will be solved in the case of column

dominance used for direct frequency designs. The column
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dominance problem solved in this paper is to determine a

dynamic pre-compensator K(s) such that the cost function,

Γ(K,Ω) =
m∑

j=1

ηj(jω) =
m∑

j=1

N∑

k=1

∑m
i=1

i 6=j
|qij(jωk)|

|qjj(jωk)|
(3)

is minimised. There are two important features of (3) which

may be exploited for a reduced problem size. Let Q(s) =
[q1(s), . . . , qm(s)] and K(s) = [k1(s), . . . , km(s)]. It will

then follow from (3) that,

min
K(s)

Γ(K,Ω) = min
K(s)

m∑

j=1

ηj(jω) =
m∑

j=1

min
kj(s)

ηj(jω) (4)

It is therefore possible to solve m different problems, one

for each column of K(s). If the row dominance measure

was used instead, the same could be shown with respect to

the row. Secondly, note that diagonal scaling does not alter

the value of (3). That is Γ(K,Ω) = Γ(K ∗ D,Ω), where

D = diag(d1, . . . , dm), D ∈ R
m×m. It will therefore always

be possible to scale K(s) such that,

αii(1) = 1, (5)

where αij(p+1) is the coefficient of pth term (sp) of the

polynomial k(ij)(s) (see (2)). Conversely,

min
K(s)

Γ(K,Ω) =







m∑

j=1

min
kj(s)

ηj(jω) | αii(1) = 1






(6)

Imposing (5) on (2) will mean that minimization of (3) will

no longer result in the trivial zero solution by ensuring qii(s)
will be nonzero. Thus, instead of minimizing the ratio defined

in (3), the same solution kj(s) can be obtained by minimizing

the modulus of the off-diagonal terms of qj(s), subject to (5).

This leads to the following optimization problem for the jth

column of the precompensator,

min
kj(s)

N∑

k=1

m∑

i=1,j 6=i

|qij(jωk)|
2 (7)

subject to,

αii(0) = 1 (8)

where the pre-compensator is defined according to (2).

B. The QP optimization problem

To form the QP problem, we create a modified system whose

H2 norm represents the summed interactions of the original

system as represented by (7). The H2 norm problem can then

be easily converted into a QP. The vectorization procedure is

similar to one laid out for static pre-compensators in Lemma

3 of [12], extended here for dynamic designs. Application of

the vectorization allows (7) to be rewritten as,

min
kj(s)

||qj(s)||2 = min
kj(s)

∣
∣
∣

∣
∣
∣k̃jG̃

∣
∣
∣

∣
∣
∣
2

(9)

where,

k̃j = (α1j , α2j , . . . , αmj) (10)

and,

αlj =
(
0 ∈ R

1×Om−olj , αlj(olj+1), αlj(olj), . . . , αlj(1)

)

(11)

In (11), Om is defined as,

Om = max
i

{oij} (12)

Similarly, we define G̃ as,

G̃ =
(

G̃1, . . . , G̃m

)

(13)

The dimensions of G̃ are (m×Om)× (m− 1) and the G̃i

are defined as follows,

G̃i = M |j

M =






M1

...

Mm




 , Mi = (ST (s)gil(s)) , i = 1, ...,m

(14)

and,

S(s) =
(
sOm , . . . , 1

)
(15)

In (14), M |j denotes the matrix M with its M th
j block

deleted. This will correspond to removing the diagonal

entries of Q(s) from the minimization as specified in (7).

To proceed with the QP formulation, note that,
∣
∣
∣

∣
∣
∣k̃jG̃

∣
∣
∣

∣
∣
∣

2

2
= k̃jG̃G̃H k̃Tj (16)

Each vector k̃j will contain a single 1 (imposed by the

constraint (5)) and a series of zeros (see (11)). Let P be

a permutation matrix which will bring k̃j into this form,

k̃
′

j = k̃jP =(1, 0, . . . , 0
︸ ︷︷ ︸

u

, α1j(oij+1), . . . , α1j(1)
︸ ︷︷ ︸

y

, . . . ,

. . . , αmj(omj+1), . . . , αmj(1)) (17)

since any permutation matrix PPT = I , then from (16) we

have,

k̃jG̃G̃H k̃Tj = k̃
′

j P
T G̃G̃HP
︸ ︷︷ ︸

Q̃

k̃
′T
j (18)

=
(
u y

)
ℜ(Q̃)

(
uT

yT

)

= uQ̃11u
T + yQ̃21u

T + uQ̃12y
T + yQ̃22y

T

(19)

since u is constant the first term does not effect the mini-

mization. Hence the solution is obtained by minimizing,

2uQ̃12y
T + yQ̃22y

T (20)

which is in the form of a QP. Since Q̃ is a Hermitian

matrix with complex entries. Therefore it is only necessary
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to consider the real part of Q̃. Alternatively, note that

since the L2 norm is real, then k̃
′

jℑ(Q̃)k̃
′T
j will always be

necessarily zero. In summary, the problem of designing the

jth column of the dynamic pre-compensator (7) is solved by

the following QP problem,

min
αlj

1

2
yQ̃22y

T + uQ̃12y
T (21)

A separate QP is solved for each column of K(s). For a row

dominance measure, a QP would be required for each row

of K(s).

III. ALGORITHM VERIFICATION EXAMPLE

To demonstrate the essential features of the algorithm, we
shall first consider a single model design problem. The 3×3
system to consider is given by,

G(s) =





(s2 + 5s + 5)/(s3 + 9s2 + 17s + 9)
−1/(s4 + 12s3 + 45s2 + 68s + 36)
(−2s − 3)/(s3 + 11s2 + 33s + 27)

(2s2 + 7s + 6)/(s4 + 10s3 + 26s2 + 26s + 9)
−3/(s5 + 13s4 + 57s3 + 113s2 + 104s + 36)
(s2 + 2s)/(s4 + 12s3 + 44s2 + 60s + 27)

(−s2 − 7s − 8)/(s4 + 10s3 + 26s2 + 26s + 9)
(s + 7)/(s5 + 13s4 + 57s3 + 113s2 + 104s + 36)

1/(s3 + 9s2 + 17s + 9)



 (22)

The Nyquist Array of G(s) is shown in Figure 1. The
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Fig. 1. Nyquist Array for uncompensated G(s)

first column is already dominant, but the second and third

columns are clearly not dominant at all. We begin be setting,

O1 =





0 0 0
0 0 0
0 0 0



 (23)

This will correspond to a completely static pre-compensator

(zero order for all elements). The solution in this case was

found to be,

K1 =





1 −0.1308 −0.2449
2 1 1.459
1 0.6837 1



 (24)

The Nyquist Array of G(s)K1 is shown in Figure 2. Notice

that the first column has been completely decoupled, but

the second two columns retain some interactions. We may

therefore wish to increase the order of the elements of the

second and third columns and set,

O2 =





0 1 1
0 1 1
0 1 1



 (25)

Using O2, the pre-compensator (26) is obtained,

0.2 0.4 0.6 0.8

−0.6

−0.4

−0.2

0

−0.02 0 0.02 0.04 0.06

−0.04

−0.02

0

0.02

−0.05 0 0.05

−0.04

−0.02

0

0.02

0.04

−1 0 1 2 3

x 10
−16

−3

−2

−1

0

x 10
−16

−0.1 0 0.1

−0.1

0

0.1

−0.02 0 0.02 0.04 0.06

−0.06

−0.04

−0.02

0

−15 −10 −5 0 5

x 10
−17

−5

0

5

x 10
−17

0 0.02 0.04 0.06 0.08

−0.04

−0.02

0

0 0.1 0.2 0.3

−0.1

0

0.1

Fig. 2. Nyquist Array for G(s)K1

K2(s) =





1 −0.001184s+ 1.042 −2
2 −0.01757s+ 1 s+ 3
1 0.96s+ 1.385 1



 (26)

Even though all elements of the third column were allowed

to be up to first order, only the k2,3 element is first order

in K2(s) and the other two elements in the third column

remain static. Clearly, from the user point of view this is

important since if the order of an element is set higher than

it ought to be, the algorithm will automatically return a null

coefficient. The Nyquist Array of G(s)K2(s) is shown in

Figure 3. The third column has now also been completely

decoupled. Since both the first and third columns have been
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Fig. 3. Nyquist Array for G(s)K2

completely decoupled, if we wish to reduce the interactions

further, the only option left is to increase the order of the
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second column. We find that for,

O3 =





0 1 0
0 1 1
0 2 0



 (27)

The solution which is obtained will completely decouple the

system. The pre-compensator in this case is,

K3(s) =





1 s+ 2 −2
2 s+ 1 s+ 3
1 s2 + 3s+ 2 1



 (28)

The decomposition can be verified by forming the product
G(s)K3(s) as shown below,

G(s)K
3
(s) =





1/(s + 1) 0 0
0 1/(s2 + 4s + 4) 0
0 0 1/(s + 3)



 (29)

IV. THE DISTRIBUTED GENERATION (DG) CASE STUDY

A. System Description

The use of distributed generation (DG) units such as photo-

voltaic arrays, wind turbines, and fuel cells provides several

advantages for the utility distribution grid. For instance, the

DG systems decrease the cost of energy production, increase

power quality of the distribution system, and reduce the

environmental and economical problems. Figure 4 shows the

schematic of an electronically-coupled DG unit. The DG unit

is represented by a DC voltage source, a power electronics

converter (VSC) which has a fast dynamic response and used

as an interface to connect a DG unit to a utility grid, a series

filter, and a step-up transformer. Rt and Lt represent both the

series filter and the step-up transformer parameters. The local

load is represented by a balanced three-phase parallel RLC

network at the point of common coupling (PCC). Parameters

of the system shown in Figure 4 are summarized in Table I.

A DG unit normally operates in a grid-connected mode when

the CB switch in Figure 4 is closed, i.e., the DG unit and its

dedicated load are part of the distribution grid. In the grid-

connected mode, the host grid assumes a supervisory role

and determines the voltage amplitude and frequency values

of the load at the PCC. Consequently, the DG unit is only

responsible for control of its real/reactive power components.

Often this is based on the well-known dq-current control

methodology [13]. The DG unit and the local load form an

islanded system when switch CB is open. In this mode, grid

control of voltage and frequency is no longer present, leading

to possible instabilities [14]. Evidently, to maintain voltage

and frequency stability (and desired response characteristics)

it is necessary to activate replacement control systems.

B. DG Model and linearization

Application of Kirchhoff’s voltage and current laws for the

islanded DG system (Figure 4) gives rise to a nonlinear set

Fig. 4. Schematic diagram of an islanded DG unit

TABLE I

PARAMETERS OF THE STUDY SYSTEM OF FIG. 4

Quantity Value

VSC filter resistance, Rt 1.5 mΩ (0.010 pu)
VSC filter inductance, Lt 300 µH (0.785 pu)

VSC terminal voltage, base voltage 600 V (l-l) (1 pu)
PWM carrier frequency 1980 Hz

DC bus voltage, Vdc 1500 V
VSC rated power 2.5 MW

Load nominal resistance, R 76 Ω (1 pu)
Load nominal inductance, L 111.9 mH (0.554 pu)
Load nominal capacitance, C 62.86 µF (1.805 pu)

Frequency set-point 60 Hz
Voltage set-point 11267

of equations. The equations are described by,






dItd

dt
= ω Itq +

Vtd

Lt
−

Rt

Lt
Itd −

Vd

Lt
dItq

dt
= −ω Itd +

Vtq

Lt
−

Rt

Lt
Itq

dVd

dt
=

Itd

C
−

ILd

C
−

Vd

RC
dILd

dt
= ω ILq +

1

L
Vd −

Rl

L
ILd

dILq

dt
= −ω ILd −

Rl

L
ILq

ω =
Itq − ILq

CVd

(30)

The state vector, x, control input, u, and control output, y,

are
x = [Itd Itq Vd ILd ILq]

T

u = [Vtd Vtq]
T , y = [Vd ω]T

The state space equations of (30) represent a multi-input,

multi-output nonlinear autonomous forced system. The chief

requirement of the controller would be to regulate the output

at around the same value (11267 volts and 60 Hz). The fact

that the control problem is only a regulatory one permits the

use of linear techniques provided it can be demonstrated that

a linear and nonlinear model are matched reasonably well for

typical expected variations around the specified output set-

points. Therefore, the approach taken here is to linearize the

model at the nominal output and load values. This gives rise

to the following linear set of equations,

ẋ(t) = Ax(t) +B u(t)

y(t) = C x(t) (31)
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Fig. 5. Comparison of the linear approximation (dashed) with the
nonlinear model (solid) with respect to step changes in control inputs

where A ∈ R
5×5, B ∈ R

5×2 and C ∈ R
2×5 are constant

matrices as follows,

A =


















−

Rt

Lt

(2Itq−ILq)
CVd

(ILq−Itq)Itq

C(Vd)
2

−

1
Lt

−

Itq

CVd
0

(ILq−Itq)
CVd

−

Itd
CVd

−

Rt

Lt

(Itq−ILq)Itd

C(Vd)
2

Itd
CVd

0
1
C

0 −

1
RC

0 −

1
C

0 −

ILd

CVd

(Itq−ILq)ILd

C(Vd)
2

ILd

CVd
−

Rl

L

(ILq−Itq)
CVd

0 ILq

CVd

(ILq−Itq)ILq

C(Vd)
2

+ 1
L

(Itq−2ILq)
CVd

−

Rl

L



















B =













1
Lt

0

0 1
Lt

0 0
0 0
0 0













,C =

[

0 0 1 0 0

0 1
CVd

(ILq−Itq)

C(Vd)
2

−

1
CVd

0

]

(32)

To verify the accuracy of the linearized models, independent

set-point changes around the specified point are. The voltage

is subjected to a ±10% change whilst the change in the

frequency is ±1Hz. These are well within permissible ranges

of allowed power fluctuations. The results are shown in

Figure 5. It is clear that the linear model follows the non-

linear response very well. Subsequent analysis of the open-

loop linear model show that the system is open-loop stable,

but with significant amounts of interaction especially in the

frequency loop. In order to proceed, preliminary processing

is carried out in accordance with standard multivariable

design steps. Thus for example; the inputs and outputs are

paired according to the RGA criteria, and the model’s inputs

and outputs are made dimensionless to reveal the true extend

of system interactions [15][3].

C. Pre-compensator design for the DG system

The range of frequency point ω for the design of the pre-

compensator is chosen to be 50 logarithmically spaced points

between 10−2 and 102 which adequately cover the entire

bandwidth of the system. The aim is to keep the order as

low as possible in this case. It was found that a purely

static design was not sufficient to achieve decent levels

of dominance. However a precompensator with complexity

matrix,

O =

(
1 1
0 0

)

(33)

was found to give acceptable performance. The TFM of the

optimizing QP pre-compensator was found to be,

K(s) =

(
0.03806s+ 1 0.002343s+ 0.1189
−0.9271 1

)

(34)

which is transformed by column scaling into the rational

form given below,

K
nl
QP (s) =

(
−1.0786 0.1189

1

0.03806s+ 1

1

0.0197s+ 1

)

(35)
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Figures 6 and 7 respectively show the Nyquist Array of the

DG before and after application of pre-compensator (35).

The figures clearly show the amount of gained dominance.

To compare the QP design, we also use Evolutionary Al-

gorithms for parameter optimization [8] of a dynamic pre-

compensator with a similar structure to (35) . Each candidate

pre-compensator transfer function matrix is encoded in a

chromosome comprising m2 concatenated sub-chromosomes

that each represents an element of the m×m compensator

matrix with its respected dynamical complexity. Entire pop-

ulations of chromosomes of such candidate pre-compensator

matrices are caused to evolve subject to the actions of

mutation, crossover, and selection: the measure of fitness

used in such algorithms in the present context is simply the

reciprocal of the cost function defined in equation (3). The
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solution was found to be,

K
nl
EA(s) =

(
−0.9997 0.1189

1

0.03968s+ 1

1

0.01971s+ 1

)

(36)

Comparison of (36) and (35) reveals that the QP solution

is extremely close to the global optimum of the original

nonlinear dominance ratio cost function. The second column

is almost identical with minor differences in the first column.

Of course the QP was computed significantly faster than the

EA solution. To see the differences consider Figure 8 which

shows the plot of the Perron root of the uncompensated plant,

together with those compensated by the EA and QP pre-

compensators. The column dominance ratios for the three

cases are also shown in Figures 9 and 10.
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Fig. 8. Perron Frobenius eigenvalue of plant (dashed), and compen-
sated plant with QP (solid) and EA algorithms (dotted)
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V. CONCLUSION

This paper has proposed a new technique for the design of

dynamic pre-compensators. We believe the technique repre-

sents a significant and important contribution to the existing

family of methods. In particular it combines the design ver-

satility and flexibility of direct optimization methodologies

(such as EAs or optimization by PSQ, SA, etc..), while

at the same time offering the efficiency of computation

offered by the convex optimization methods (such as LMIs).

The technique has been demonstrated through application

to two examples. In the design verification example it was
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Fig. 10. Column dominance ratio of frequency loop -plant (dashed),
QP (solid), EA (dotted)

shown how the designer is able to gradually increase the

order of each element as required and until sufficient or

desired amounts of diagonal dominance are achieved. The

method was also able to find the globally optimal design that

completely decoupled the system (but there are no guarantees

this is always possible). In the DG case study, a design

comparison with Evolutionary Algorithms demonstrated that

the QP solution is extremely close to the global optimum

of the original column dominance ratio minimization. The

method has also been applied to models of other real-

life systems with larger size and complexity with similar

excellent results.
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