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Abstract

In decentralized control problems, a standard approach is
to specify the set of allowable decentralized controllers as
a closed subspace of linear operators. This then induces a
corresponding set of of Youla parameters. Previous work
has shown that quadratic invariance of the controller set
implies that the the set of Youla parameters is convex. In
this short note, we prove the converse. We thereby show
that the only decentralized control problems for which
the set of Youla parameters is convex are those which
are quadratically invariant.

1 Introduction

In this paper, we consider the feedback control of linear
plants subject to structural information constraints on
the set of admissible controllers. In particular, we are in-
terested in knowing when the optimal controller is linear,
and when finding it can be reduced to a convex optimiza-
tion problem. In general, such decentralized controlller
synthesis problems are hard [1], and even when the noise
is Gaussian and the cost function is quadratic, the opti-
mal controller may not be linear. Furthermore, finding
the optimal linear controller amounts to solving a non-
convex optimization problem [7].

Despite this difficulty, some problems in this class are
tractable, and much work has been done in recent years
to characterize them. See for example [5] and references
therein. In recent work [5, 3], the notion of quadratic in-
variance is developed. This condition guarantees that the
optimal controller will be linear, and, when the quadratic
invariance condition holds, finding the optimal controller
amounts to solving a convex optimization problem.

This result holds in great generality. For example, in
the matrix case, suppose G ∈ Rm×n and S ⊂ Rn×m is a
subspace, and define the set

h(S) =
{
−K(I −GK)−1

∣∣ K ∈ S}
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Suppose that I −GK is invertible for all K ∈ S, so that
h(S) is well-defined. The idea, in the setting of more
general linear operators, is that S is the set of controllers
with the desired decentralization structure, and h(S) is
the set of corresponding Youla parameters.

The set S is called quadratically invariant if

KGK ∈ S for all K ∈ S

Previous results have shown that if S is quadratically
invariant, then h(S) = S , and the converse of this result
is also true. The practical importance of this result is
that if the set of controllers S is quadratically invariant,
then the corresponding set of Youla parameters is convex.

Notice however that this result does not preclude the
possibility that h(S) is convex, but not equal to S. The
convexity of h(S) is of tremendous importance in decen-
tralized control; if h(S) is convex, then one may find the
optimal controller via convex optimization.

Main result. The question thus arises whether, given
the system G, there is any non-quadratically-invariant
set S for which h(S) is convex. Informally, such sets
would correspond to convex decentralized control prob-
lems which are not quadratically invariant.

In this paper we show that the answer is negative. We
show that if h(S) is convex, then S must be quadrat-
ically invariant. This therefore implies that quadratic
invariance is necessary and sufficient for the set h(S) to
be a convex set. We prove the result in a general setting
where G and K are bounded linear operators on Banach
spaces.

1.1 Preliminaries

If X and Y are Banach spaces, we denote by L(X ,Y)
the set of all bounded linear operators A : X → Y. We
abbreviate L(X ,X ) to L(X ). A map A ∈ L(X ) is
called invertible if there exists B ∈ L(X ) such that
AB = BA = I. Define the resolvent set ρ(A) =
{λ ∈ C | (λI −A) is invertible}. This set is always open,
and possibly disconnected, though it contains all suffi-
ciently large λ ∈ C. We will denote by ρuc(A) the un-
bounded connected component of ρ(A).

In this paper, we will use the same framework as
in [4]. Suppose U ,W,Y,Z are Banach spaces over R.
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We can think of these spaces as the controlled in-
puts, disturbances, measurements, and regulated out-
puts, respectively. Suppose we also have the plant P ∈
L(W ×U ,Z × Y) and controller K ∈ L(Y,U). We par-
tition P in the obvious way, and connect the controller
to the plant as in Figure 1. For the remainder of this
paper, we will use G = P22 as an abbreviation.

z wP11 P12

P21 P22

K

uy

Figure 1: Closed-loop interconnection between a plant P
and controller K

The resulting closed-loop map (from w to z) is given by
the linear fractional transform f(P,K) ∈ L(W,Z),where

f(P,K) = P11 + P12K(I −GK)−1P21

This interconnection is well-posed whenever I − GK is
invertible. More formally, we may define the set of ad-
missible controllers M ⊂ L(Y,U) as:

M = {K ∈ L(Y,U) | (I −GK) is invertible}

Here, we only consider controllers which are bounded lin-
ear operators. Define the set N ⊂M , which we will need
later

N = {K ∈ L(Y,U) | 1 ∈ ρuc(GK)}

1.2 Optimization

It is convenient to define the function hG : M →M

hG(K) = −K(I −GK)−1

We will often omit the subscript G when it is clear by
context. Note that h is an involution . That is, h is its
own inverse: h(h(K)) = K for all K ∈M . It follows that
h is a bijection from M to M .

Our goal is to solve the optimization problem

minimize
∥∥P11 + P12K(I −GK)−1P21

∥∥
subject to K ∈ S ∩M

(1)

Where S ⊂ L(Y,U) is a closed subspace. Define the
Youla parameter Q = h(K) and use the involution prop-
erty of h to rewrite (1) as

minimize
∥∥P11 − P12QP21

∥∥
subject to Q ∈ h(S ∩M)

(2)

Formulation (1) optimizes a potentially nonconvex func-
tion; though the constraint set S is a subspace. Viewed
this way, the complexity of the optimization arises be-
cause of the non-convexity of the objective function.

Formulation (2) optimizes a convex function, but the
feasible set could be nonconvex. Using this change of
variables, the objective function is now convex, but there
is a non-convex constraint. In the next section, we define
quadratic invariance, a property that ensures that the set
h(S ∩M) is convex.

1.3 Quadratic Invariance

Definition 1. The subspace S ⊂ L(Y,U) is said to be
quadratically invariant with respect to G if KGK ∈ S
for all K ∈ S.

Theorem 2 (from [4]). Suppose that G ∈ L(U ,Y), and
S ⊂ L(Y,U) is a closed subspace. Further suppose that
N ∩ S = M ∩ S. Then S is quadratically invariant with
respect to G if and only if h(S ∩M) = S ∩M .

So if S is quadratically invariant with respect to G, the
optimization problem (2) is equivalent to

minimize
∥∥P11 − P12QP21

∥∥
subject to Q ∈ S ∩M

(3)

If Q∗ solves this problem, then the K∗ that solves (1) is
found via K∗ = h(Q∗). In most practical problems of
interest, well-posedness requirements force the optimal
Q to lie within M , and so we may find it by solving the
convex optimization problem

minimize
∥∥P11 − P12QP21

∥∥
subject to Q ∈ S

(4)

2 Main Result

The original motivation was to find conditions which en-
sure convexity of the set {P11 − P12h(K)P21 | K ∈ S},
assuming h(K) is well-defined for all K ∈ S. Quadratic
invariance achieves this by finding a necessary and suffi-
cient condition under which h(S) = S. But in principle,
one could also achieve convexity if h(S) is any convex
set. In this section, we show that this never occurs. If
h(S) = T where T is convex, then T = S.

Definition 3. Suppose X is a Banach space over R, and
S ⊂ X . We call S a double-cone if for all x ∈ S and
α ∈ R, we have αx ∈ S.

Note that every subspace is a double-cone, but not all
double-cones are subspaces.

Definition 4. Suppose X is a Banach space over R, and
T ⊂ X . We call T a star-set if for all x ∈ T and
α ∈ [0, 1], we have αx ∈ T .

Note that every convex set is a star-set, but not all star-
sets are convex.

We now present our main result: h(S ∩M) is either
nonconvex, or equal to S ∩M .
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Theorem 5. Suppose S ⊂ L(Y,U) is a closed double-
cone, T ⊂ L(Y,U) is a star-set, and h(S ∩M) = T ∩M ,
then T ∩M = S ∩M .

Proof. Fix some K ∈ S ∩M . Since K ∈ M , I − GK
is invertible, and 1 ∈ ρ(GK). The resolvent set of a
bounded linear operator is an open set, so there exists a
sufficiently small ε > 0 such that 1 − α ∈ ρ(GK) for all
0 ≤ α < ε. For any such α, it follows that I− (1−α)GK
is invertible. It follows that (I − (1− α)GK) (I−GK)−1

is invertible as well. Expanding this expression, we find
that it is equal to I − αGh(K). Thus αh(K) ∈M .

Also, K ∈ S, h(K) ∈ T , and so αh(K) ∈ T whenever
0 ≤ α ≤ 1, because T is a star-set. It follows that for
α ∈ [0, ε), αh(K) ∈ T ∩M .

Now apply h to both sides: h(αh(K)) ∈ h(T ∩M) =
S ∩ M , where we made use of the involutive property
of h. Expanding h(αh(K)), we find that it is equal to
αK(I− (1−α)GK)−1. Since S is a double-cone, we may
multiply this expression by −1/α, and the result will still
lie in S. Thus, −K(I − (1 − α)GK)−1 ∈ S. Now define
the function g : [0, ε)→ L(Y,U) by

g(α) = −K(I − (1− α)GK)−1.

Since S is closed, and g(α) ∈ S for α ∈ [0, ε), then

lim
α→0+

g(α) ∈ S.

Since (I − GK) is invertible, g is right-continuous at 0.
So we may take the limit α → 0+ by simply evaluating
g at α = 0. Thus, we conclude that h(K) ∈ S. Now
h is a bijection from M to M , and so we actually have
h(K) ∈ S ∩ M . Since K was an arbitrary element of
S ∩M , it follows that h(S ∩M) ⊂ S ∩M . Using the
involutive property of h once more, h(S ∩M) = S ∩M ,
as required.

Corollary 6. Suppose S ⊂ L(Y,U) is a closed subspace,
T ⊂ L(Y,U) is convex, and h(S ∩M) = T ∩M . Then
h(S ∩M) = S ∩M .

Proof. This follows from Theorem 5, since all subspaces
are double-cones, and all convex sets are star-sets.

Corollary 7. Suppose G ∈ L(U ,Y) and S ⊂ L(Y,U) is
a closed subspace such that I − GK is invertible for all
K ∈ S, and M = N . Then the set{

K(I −GK)−1
∣∣ K ∈ S}

is convex if and only if S is quadratically invariant with
respect to G.

Proof. Note that N ∩ S = M ∩ S = S in this case. Suf-
ficiency is immediate from Theorem 2. Necessity holds
because Theorem 5 implies that if h(S) is convex, then
h(S) = S. Then Theorem 2 implies that S must be
quadratically invariant with respect to G.

3 Conclusion

The main result shows that quadratic invariance is neces-
sary and sufficient for the change of variables Q = h(K)
to yield a convex optimization problem. However, this is
still only a sufficient condition for tractability.

Indeed, it can happen that S is not quadratically in-
variant with respect to G, yet the set of achievable closed-
loop maps f(P, S) = {P11 − P12h(K)P21 | K ∈ S} is
affine. A trivial example is the case where P12 = 0 or
P21 = 0; here any choice of S works.

Two nontrivial examples are the internally quadrati-
cally invariant cases [2], and those derived using variable
elimination by Shin et al. [6]. In both of these cases,
h(S) is not a convex set, as predicted by Theorem 5.
The general question of characterizing when f(P, S) is
convex remains an open problem.
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