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Abstract— This paper presents an algebraic approach to
design the control law of a LTI observer used to stabilize a LTI
plant with an output delay. Different than the existing work,
we use the observer gains to influence the plant stability. This
becomes possible simply by removing the delay terms from the
observer part. Given the plant controller gains, our approach
can find the parametric regions with respect to the observer
controller gains so that gains selected from these regions
make the combined plant-observer system asymptotically stable
independent of the amount of delay in the plant. An example
with simulations is provided to demonstrate the advantages of
the proposed observer design.
Keywords: Time-Delay System, Delay-free Observer, Algebraic
approach, Delay-independent Stability.

I. INTRODUCTION

Time-delay systems (TDS) describe a wide range of dy-

namical systems [1], [2], [3], [4], and availability of system

states is crucial for designing controllers for these systems

[5], [6], [7]. In many cases, however, not all state variables

are available for measurements. Therefore, a state observer

is usually used in order to estimate the unavailable state

variables [8]. Observer design for LTI time-delay systems

(TDS) has attracted considerable interest over the years,

and several design methods have been proposed [9], [10],

[11], [12], [13], [14], including coordinate-change approach

[15], reducing transformation technique [16], polynomial

approaches [17], [18], frequency domain approaches [19],

[20], and the factorization approach [21]. There also exist

studies that propose to make observer states unaffected from

delays [22], [23]. Another useful technique is to incorporate

the delay of the plant into the observer [24]. Adding the

delay in the observer dynamics allows an elegant decou-

pling of the stability properties of the plant and observer.

Consequently, one can independently design the plant and

observer controllers [24], [25]. This decoupling idea, which

can be implemented in frequency domain, is practical as it

simplifies the control design.

In this paper, however, we do the contrary; we remove the

decoupling property. This in turns allows influencing the LTI

plant stability by using the LTI observer controller gains. In

other words, when the decoupling property is removed by not

allowing the delay term in the observer, the observer becomes

a stability facilitator for the plant. This approach not only
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leads to the design of a stable observer, but it also uses the

observer gains advantageously to make the plant dynamics

delay-independent stable. More specifically, given the plant

controller gains, our approach can find the parametric regions

with respect to the observer controller gains so that gains se-

lected from these regions make the combined plant-observer

system asymptotically stable independent of the amount of

delay in the plant. That is, the approach reveals the gain

space that achieves the stability of the combined system, no

matter how large the delay is. Moreover, the approach is able

to express the boundaries of these regions algebraically as a

function of observer controller gains. The delay-independent

stability (DIS) analysis becomes possible with the results of

Descartes on algebra [26], [27], which allow designing the

observer controller gains with sufficient stability conditions.

The rest of the paper is organized as follows. In Section II,

we introduce the main problem, the preliminaries on the sta-

bility of TDS, and Descartes rule of signs. In Section III, the

main results are presented, and a case study including time-

domain simulations and spectrum computations are given in

Section IV. Section V ends the paper with conclusions.

II. PRELIMINARIES

A. Delay-free observer design

The focus in this paper is on the control of the following

LTI plant with a single output delay τ ≥ 0,

ẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t− τ), (1)

u(t) = Kx̃(t),

where A ∈ R
n×n and B ∈ R

n×m are the constant system

and control matrices, respectively, C ∈ R
q×n is the output

matrix, x(t) ∈ R
n is the system state vector, u(t) is the

control input to the plant, y(t) ∈ R
q is the output vector, and

K = {kiv} is the plant control law, where kiv ∈ R are the

controller gains of the plant. In (1), the system states x(t) are

unavailable, hence the prediction of the states x̃(t) ∈ R
n is

used to control the plant. The prediction x̃(t) can be obtained

from the delay-free observer,

˙̃x(t) = Ax̃(t) +Bu(t) + K̃(ỹ(t)− y(t)), (2)

ỹ(t) = Cx̃(t),

where ỹ(t) ∈ R
q is the observer output vector, and K̃ =

{k̃iv} is the observer control law, where k̃iv ∈ R are the

controller gains of the observer. Different from the literature,
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the observer output ỹ(t) in (2) is not affected by τ . The

dynamics of the combined system then becomes[
ẋ(t)
˙̃x(t)

]
= A∗

[
x(t)
x̃(t)

]
+B∗

[
x(t−τ)
x̃(t−τ)

]
, (3)

with

A∗ =
[
A BK
0 A+BK+K̃C

]
and B∗ =

[
0 0

−K̃C 0

]
, (4)

where 0 is an n×n matrix with all its entries zero. Since we

propose a delay-free observer, the observer dynamics cannot

be decoupled from that of the plant. Therefore, the combined

system in (3) should be considered as a whole. It must be

noted that the selected LTI plant and its observer do not

have disturbances and uncertainties. These conditions can be

relaxed in future work.
Remark 1: It is important to note that system (3) can be

considered as the homogenous part of an output tracking

problem, in which input reference will not influence stability.

Once the stability of (3) is achieved, tracking performance

measured by transient and steady state characteristics can be

studied with respect to k̃iv and τ .

B. Stability of the single-delay system in (3)
Stability of (3) is studied over its characteristic equation

given by

f(s, τ, k̃iv) = |sI−A∗ −B∗e−τs| = 0, (5)

where kiv is assumed to be known, τ and k̃iv are unknown

parameters, I is the 2n× 2n identity matrix, s is the Laplace

variable, and delay τ appears in the exponent in Laplace

domain. The characteristic equation (5) can be written as

f(s, τ, k̃iv) =

c∑
r=0

Pr(s, k̃iv)e
−rτs = 0, (6)

where Pr are polynomials in terms of s and the entries of

K̃, and c represents the order of commensuracy of τ , which

is c = rank(B∗) [28].
Stability analysis requires to detect critical values τ∗ for

which at least one characteristic root of (6) lies on the

imaginary axis, s = jω, where ω ≥ 0 without loss of

generality [29]. For finding the stability transitions of the

system with respect to the delay parameter, the movement

of s = jω across the imaginary axis should be checked as τ∗

infinitesimally increases. Roots crossing the imaginary axis

from left to right (or from right to left) favor instability (or

stability). This information can be used to account for the

unstable roots of the system, leading to the stability analysis

with respect to τ [30].
Solving s = jω roots from the transcendental character-

istic equation (6) is cumbersome [29], yet several enabling

manipulations can be done. For instance, we can convert

the infinite dimensional characteristic equation (6) to a

finite dimensional characteristic equation that has continu-

ous coefficients. This conversion does not lose the infinite

dimensional nature of the problem, and can be done via the

exact Rekasius transformation [31],

e−τs ≡ 1−Gs

1 +Gs
, G ∈ R, s = jω, ω ≥ 0, (7)

which has a back-transformation rule from (G,ω) domain to

τ domain [28] via the following

τ =
2

ω
[arctan(ωG)± Lπ], (8)

where L = 0, 1, 2, . . ., and 0 ≤ arctan(·) < π. With the

Rekasius substitution of (7) into (6), and with a manipu-

lation to remove the fractions, we obtain the transformed

characteristic equation on the imaginary axis s = jω as

g(jω,G, k̃iv) =

(
f

∣∣∣∣e−jωτ= 1−Gjω
1+Gjω

)
(1 +Gjω)

c
= 0, (9)

where g is a polynomial in terms of its arguments.

Property 1: It is crucial to note that (7) is not a Padé

approximation, but it is an exact transformation for the

imaginary roots of (6). The imaginary roots s = jω∗ of

f and the imaginary roots s = jω∗ of g are identical to each

other, and they are finite numbered. That is, each and every

s = jω∗ root of f is also a root of g, and vice versa. All

G = G∗ ∈ R values that are solutions of g for s = jω∗

have a mapping to τ domain: (G∗, ω∗) −→ τ∗ [32]. This is

a one-to-infinity mapping as can be seen from (8).

Remark 2: For delay-independent stability of TDS, it is

necessary that the uncontrolled system and the delay-free

controlled system are Hurwitz stable [14], [30]. This auto-

matically guarantees that ω = 0 cannot be a feasible solution

of the characteristic equation for both τ = 0 and any finite

τ . Hence, ω = 0 solutions are ignored in the rest of the text.

C. On algebraic polynomials

We present an interesting result from the theory of polyno-

mials. The theoretical development in the main results sec-

tion will reformulate the stability problem introduced above

as the analysis of a single-variable algebraic polynomial.

At that point, the following definition will be essential to

establish the delay-independent stability property of (3).

Property 2: (Descartes Rule of Signs [26], [27]): For any

non-zero real polynomial A, the number of sign variations,

var(A), in the coefficient sequence of the polynomial is

less than or equal to the number of positive real zeros of

A, counting multiplicities, by a non-negative even integer

[33]. That is, if var(A) = 0, then the polynomial A is

guaranteed to have no positive real zeros, and if var(A)
is odd, then A is guaranteed to have at least one positive

real zero. When var(A) is even, Descartes rule of signs is

however inconclusive on the number of positive real zeros

of A. In such a case, A has either no positive real zeros, or

has even number of positive real zeros.

III. MAIN RESULTS

In this section, we develop an algebraic approach to

select the observer controller gains k̃iv . For this objective,

we connect the transformed equation (9) to the results of

Descartes. Recall that the imaginary spectrum of (3) is

converted to s = jω roots of g in (9). This is where we

start. We first represent g as follows,

g(jω,G, k̃iv) = gR(ω,G, k̃iv) + jgI(ω,G, k̃iv) = 0, (10)
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where gR and gI are respectively the real and imaginary parts

of g, and are given by,

gR(ω,G, k̃iv) =

c∑
r=0

αr(ω, k̃iv)G
r, (11)

gI(ω,G, k̃iv) =

c∑
r=0

βr(ω, k̃iv)G
r. (12)

Given k̃iv , in order to solve (ω,G) pairs from (10), one

should guarantee that gR = 0 and gI = 0, concurrently. At

this step, we can eliminate G from these two equations to

simplify the analysis. The elimination can be done by using

the resultant theory [34]. A 2c-order Sylvester matrix, S,

is constructed by using the coefficients of G in (11) and

(12). In other words, the unknowns in S are ω and k̃iv .

For the common ω solutions of (11) and (12), Sylvester

matrix S is singular (but not vice versa). That is, the resultant

RG(ω, k̃iv), which is the determinant of S, should be studied

for its zeros,

det(S) = RG(ω, k̃iv) =

∣∣∣∣∣∣∣∣∣

αc αc−1 . . . α0 0 0 0
0 αc αc−1 . . α1 α0 0 0
. . . . . . . . .
. . . . . . . α1 α0

βc βc−1 . . . β0 0 0 0
0 βc βc−1 . . β1 β0 0 0
. . . . . . . . .
. . . . . . . β1 β0

∣∣∣∣∣∣∣∣∣
.

(13)

Excluding ω = 0 zeros of RG, it is easy to see that RG is an

even polynomial with respect to ω. Hence, we can express

RG by defining a new variable y with y = ω2, where the

number of real zeros of RG is equal to the number of positive

real zeros of the new polynomial Φ(y, k̃iv). Hence, we can

inspect the existence of the positive real roots of Φ(y, k̃iv) =
0 for a given set of observer gains. If no roots are positive,

this implies that no admissible y = ω2 > 0 roots exist,

hence a stability switch is impossible. If, by construction, the

conditions in Remark 2 also hold, we can then conclude that

the system remains stable independent of the amount of delay

τ . Presence of at least one positive real zero of Φ(y, k̃iv),
however, requires checking whether G ∈ R solution exists

satisfying (10). If such a G exists, then delay-independent

stability can not be rendered. If such a G does not exist,

then we can still declare delay-independent stability.

As reviewed in the previous section, Descartes rule of

signs is a method that can assess the number of positive

real roots of a polynomial with real coefficients, without

solving for these roots. The following theorem establishes

the connections between delay-independent stability (DIS),

the resultant, and Descartes rule of signs.

Theorem 1: LTI-TDS in (3) is DIS in the delay parameter

space τ with observer gain K̃, if

i) |sI−A∗| is Hurwitz stable,

ii) |sI−A∗ −B∗| is Hurwitz stable,

iii) var(Φ) = 0.

Proof: For the system in (3) to be delay-independent

stable, it is necessary that the uncontrolled system and the

delay-free controlled system (τ = 0) are Hurwitz stable

as per Remark 2. These conditions correspond to (i)-(ii)

in Theorem 1. Furthermore, a system can never change its

stability/instability behavior with respect to delay τ if it

does not possess any characteristic roots on the imaginary

axis. That is, s = jω, ω ∈ R, should not be a root of

the corresponding characteristic equation f . Based on the

derivations above, s = jω root of f does not exist if

y = ω2 > 0 roots of Φ = 0 do not exist, which is guaranteed

by (iii) of Theorem 1 as per Descartes rule of signs.

We note that, given A∗, B∗, K̃, delay-independent stability

test can be completed by checking only the conditions (ii)-

(iii) of Theorem 1, since these conditions guarantee that con-

dition (i) holds. Notice also that application of Descartes rule

of signs leads to sufficient conditions for delay-independent

stability regions in the observer gain space [35]. Study of

delay-independent stability with both necessary and suffi-

cient conditions is left to a future study.

Theorem 2: There exists at least one observer control law

K̃ that makes the combined system in (3) delay-independent

stable if A∗ is Hurwitz.

Proof: Let K̃ = 0. In this case, we have A∗ =[
A BK
0 A+BK

]
and B∗ = 0. Under this condition, the sys-

tem in (3) is Hurwitz stable for a given K, if and only

if A∗ is Hurwitz stable. The critical observation is that

system in (3) is Hurwitz stable for all the delay values,

τ ≥ 0. This is possible since B∗ is zero, which con-

sequently means that (3) is delay-independent stable for

K̃ = {k̃11, · · · , k̃iv, · · · , k̃nm} = 0 if A∗ is Hurwitz stable.

In other words, the point {k̃11, · · · , k̃iv, · · · , k̃nm} = 0 lies

in the DIS region in the parameter space of the observer

controller gains. It is then straightforward to show from the

continuity of the characteristic roots of the system [36] that

there exist observer gains k̃iv = ε̃iv , |ε̃iv| � 0 such that the

combined system (3) remains DIS.

Theorem 2 gives the rule by which the plant controller

K can also be designed along with K̃. Moreover, Theorem

2 indicates that as long as A∗ is Hurwitz stable, we will

always find an admissible parametric region in observer

controller gain space, where the combined system (3) is DIS.

Notice however that since Descartes rule of signs is based

on sufficient conditions, this rule cannot identify the DIS

regions when var(RG) is an even number in the DIS region

neighboring K̃ = 0. Consideration of this problem is left to

a future study.

IV. CASE STUDY

Consider the plant dynamics

A =

[
−27 3.6 6
9.6 −12.5 0
0 9 −5

]
, B =

[
0.26 0
0.9 0.8
0 −0.18

]
, (14)

C = [ 0 1 0 ] .

Let us set the plant and observer controllers as,

K =
[

0 −10 0
−10 −50 −20

]
, K̃ =

[
−k̃1

−k̃2−10

]
. (15)

A∗ and B∗ matrices are suppressed here as they can be

constructed using (14) and (15) in (4). In this problem, we

have n = 3 and c = rank(B∗) = 1. The objective is to

find the regions in the parameter space of k̃1 − k̃2 so that a
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pair (k̃1, k̃2) selected from these regions guarantees delay-

independent stability of (3).

Following the procedure explained in the previous section,

we start with the characteristic equation of the coupled plant-

observer system given by

f(s, τ, k̃1, k̃2) = P0 + P1e
−τs = 0, (16)

where P0 and P1 are polynomials in s with coefficients in

terms of k̃1 and k̃2. After the Rekasius substitution in (16),

and substituting s = jω, the real and imaginary parts of the

transformed characteristic equation are found as,

gR(ω,G, k̃1, k̃2) =

⎛
⎝ 6∑

�=2

a1�(k̃1, k̃2)ω
�

⎞
⎠G (17)

+

⎛
⎝ 6∑

�=0

a0�(k̃1, k̃2)ω
�

⎞
⎠ ,

gI(ω,G, k̃1, k̃2) =

⎛
⎝ 7∑

�=1

b1�(k̃1, k̃2)ω
�

⎞
⎠G (18)

+

⎛
⎝ 5∑

�=1

b0�(k̃1, k̃2)ω
�

⎞
⎠ ,

where a0� , a1� , b1� and b1� are suppressed for conciseness.

The Sylvester matrix formed by using (17) and (18), and by

eliminating G is a 2× 2 matrix

S =

[∑6
�=2 a1�(k̃1,k̃2)ω

� ∑6
�=0 a0�(k̃1,k̃2)ω

�

∑7
�=1 b1�(k̃1,k̃2)ω

� ∑5
�=1 b0�(k̃1,k̃2)ω

�

]
, (19)

from which we calculate the resultant by computing the

determinant of S. It is given by

Φ(y, k̃1, k̃2) =

6∑
i=0

γi(k̃1, k̃2)y
i = 0, (20)

where y = ω2, and ω = 0 solutions are dropped as per

Remark 2.

For DIS regions to exist in k̃1 − k̃2 plane, it is necessary

that A∗ is Hurwitz stable, see Theorem 1. Using the well-

known Routh-Hurwitz stability criterion [8], we find that A∗

remains stable in the light-gray-shaded region in Figure 1.

Next, we find the DIS regions of the plant-observer system

in k̃1 − k̃2 plane using Theorem 1 on (20).

A. Extraction of DIS regions; Sufficient conditions using
Descartes rule of signs

According to Descartes rules of signs, all γi(k̃1, k̃2) in

(20) must have the same sign so that Φ = 0 is guaranteed

not to have any positive real y roots. To apply the rule,

one can first draw the boundaries γi(k̃1, k̃2) = 0 in the

observer gain plane. Next, by testing one point in each arising

region, we can determine the parametric regions where all

γi(k̃1, k̃2) have the same sign. With the information provided

in Property 2, the identification leads to three types of regions

Fig. 1. Hurwitz stable region (light gray) in (k̃1, k̃2) for the combined
system when τ = 0.

in Figure 2, namely, the delay-independent stable region

identifiable by Descartes rule of signs (dark gray), the region

where DIS is impossible since A∗ is not Hurwitz (white

region), and light gray regions where Descartes rule of signs

is either inconclusive (since var(Φ) is even) or concludes

that DIS property is impossible (since var(Φ) is odd).

Fig. 2. DIS region of the combined system (dark gray) in (k̃1, k̃2) found
by using Theorem 2. The curves are determined by γi = 0.

Some interesting observations on Figure 2 are as follows.

The DIS region (dark gray) can neighbor a region that does

not lead to Hurwitz stability of the delay-free system (white

region). The boundaries that separate such regions present

significant lack of robustness. This observation also con-

cludes that the delay-free controlled system can have stable

eigenvalues that are significantly close to the imaginary axis,

but the system can still be made DIS by selecting k̃1 and

k̃2 from the dark gray region. This is again a consequence

of proposing a delay-free observer, which strengthens the

stability of the system against the delay τ .

B. Simulations

We implement the designed observer controller gains in

time domain simulations in order to inspect the output
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response y(t). For this, we choose k̃1 = −20 and k̃2 = −1,

which is a point in the DIS region (dark gray) shown in

Figure 2. We next simulate the combined system using MAT-

LAB/Simulink. With appropriate settings of the numerical

integration method and with different initial conditions in the

plant and the observer, the simulation results are obtained,

see Figure 3 and Figure 4 for τ = 0.5 and τ = 3 sec cases,

respectively.

0 1 2 3 4 5 6 7 8 9 10
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Time (sec)

Fig. 3. Output response y(t) of the coupled system model. Here k̃1 = −20,

k̃2 = −1, and τ = 0.5.

0 2 4 6 8 10 12 14 16 18 20
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Time (sec)

Fig. 4. Output response y(t) of the coupled system model. Here k̃1 = −20,

k̃2 = −1, and τ = 3.

C. Rightmost root computation

We revisit our analytical results in Figure 2. We select

points from different regions of this figure to show the

spectrum of the system. Notice that detecting the spectrum

of LTI time-delay systems is not a trivial task, and it is a

research topic alone [24], [37].

In this paper, we use the TRACE DDE toolbox developed

in [37] to compute the rightmost roots of the system at hand.

The objective is to test the behavior of the rightmost roots of

the system for two different choices of (k̃1, k̃2) pairs. First

pair p1 = (k̃1, k̃2) = (0,−11) is selected inside the DIS

region (dark gray in Figure 2) and sufficiently close to the

white regions (unstable system for τ = 0). The second pair

p2 = (k̃1, k̃2) = (0,−3.7) is selected in the neighborhood of

-0.2 -0.15 -0.1 -0.05 0

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

Fig. 5. Twenty rightmost characteristic roots of the combined system for
k̃1 = 0, k̃2 = −11, and τ = 20.

the DIS region but in the light gray region, where we know

that DIS does not hold but the controlled system is stable

for τ = 0.

 

 

Fig. 6. Real part of the rightmost characteristic root of the combined
system for delay 0 ≤ τ ≤ 10. The observer controller gains are selected at
p2 = (k̃1, k̃2) = (0,−3.7) from the light gray region in Figure 2.

The rightmost roots of the system with τ = 20 and the

observer controller gains at p1 are shown in Figure 5. It

is clear that the system is stable for τ = 20 since the

real part of the rightmost root is negative, as expected from

our DIS analysis. The information in Figure 5 is obviously

inconclusive to conclude DIS property. To further test DIS,

we next compute the real part of the rightmost root with

respect to τ for the given gains at p1 and for τ ∈ [0, 1000].
The results are again consistent with our DIS analysis and

thus suppressed.

We study the rightmost root behavior for the gains at p2,

Figure 6. We see that for delay values in the range of [0, 10],
the real part of the rightmost characteristic root will change

sign past a critical delay value. That is, the system will

become unstable. This result confirms the analytical findings

that the point p2 does not guarantee delay-independent

stability of the system.

It is important to note that it would be hard to fully confirm
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the DIS property of a TDS using rightmost root computation.

On the other hand, these computational tools make it possible

to reliably test stability in a finite range of τ .

V. CONCLUSION

This paper presents an algebraic approach to design ob-

server controller gains for stabilizing a LTI plant with an

output delay. The design is achieved by constructing a delay-

free observer, which then enables delay-independent stability

(DIS) of the controlled plant. Using algebraic tools, we reveal

the parametric space of the observer controller gains such

that DIS holds, and we express the boundaries of these

regions in terms of these gains. An example case study is

provided to demonstrate the approach and its advantages.

The designed observer can be useful in controlling nonlinear

systems and for controlling systems with delays where the

amount of delays are unknown.
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