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Abstract— The problem of remotely stabilizing a noisy first
order linear time invariant system with an arbitrary distributed
initial state over a general half-duplex white Gaussian relay
channel is addressed. We propose to use linear and memoryless
communication and control strategies which are based on the
Schalkwijk-Kailath coding scheme. By employing the proposed
scheme over the general half-duplex Gaussian relay channel,
we derive sufficient conditions for mean square stability of the
noisy first order linear time invariant dynamical system.

I. INTRODUCTION

The problem of remotely controlling dynamical systems

over communication channels has gained significant attention

in recent years. Such problems ask for interaction between

stochastic control theory and information theory [1, 2]. The

minimum data rate below which the stability of an LTI

system is impossible has been derived in stochastic and

deterministic settings in [2–4], where they considered quan-

tization errors and noise-free rate-limited channels. In [5,

6] are necessary rate conditions required to stabilize an

LTI plant almost surely. However, from [7] we know that

the characterization by Shannon capacity is not enough for

sufficient conditions for moment stability in closed-loop

control. In [8] a simple coding scheme is proposed to mean

square stabilize an LTI plant over noise-free rate-limited

channels. The mean square stability of discrete plant over

signal-to-noise ratio constraint channels is addressed in [9,

10]. In [11] the authors considered noisy communication

links between both observer–controller and controller–plant.

In [12] the necessary and sufficient conditions are derived

for mean square stability of an LTI system over time varying

feedback channels.

In this paper we find sufficient conditions for stabilizing

a scalar first order noisy LTI plant over half-duplex white

Gaussian relay channels. The relay channel consists of one

sender (source), one receiver (destination) and an interme-

diate node (relay) whose sole purpose is to help the com-

munication between the source and the destination [13]. The

achievable information rate over the relay channel depends

on the processing strategy of the relay. The most well known

relaying strategies are amplify-and-forward (AF), compress-

and-forward, and decode-and-forward [14]. AF strategy is
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Fig. 1. The unstable plant has to be controlled by the actions of
observer/encoder (O/E) and decoder/controller (D/C) over the AWGN
relay channel.

well suited for delay sensitive closed-loop control appli-

cations and is therefore addressed in this paper. For com-

munication and control we propose to use the Schalkwijk-

Kailath based coding strategy [15] which is suitable for

channels with feedback [16, 17]. We used the Schalkwijk-

Kailath based scheme to obtain stability regions for control

over multiple-access and broadcast channels in [18]. In [19]

we derived rate sufficient conditions for stabilizability of a

noiseless plant with Gaussian distributed initial state over

non-orthogonal full-duplex and orthogonal half-duplex relay

channels. In [20], the authors obtained sufficient conditions

for stability over a Gaussian relay and cascade channels.

In this paper we extend our results to stabilizability of a

noisy plant with an arbitrary distributed initial state over

a general half-duplex relay channel. The objective of this

work is to derive sufficient conditions for stability of an LTI

plant in mean square sense [3, 7, 8, 12] over half-duplex relay

channels.

II. PROBLEM FORMULATION

We consider a scalar discrete-time LTI system, whose state

equation is given by

Xt+1 = λXt + Ut +Wt, (1)

where {Xt} ⊆ R, {Ut} ⊆ R, and {Wt} ⊆ R are state,

control, and plant noise processes. The process noise {Wt}
is a zero mean white Gaussian noise sequence with variance

nw. We assume that the open-loop system is unstable (λ > 1)
and the initial state X0 is a random variable with variance

α0 and an arbitrary probability distribution. We consider

a remote control setup, where the observed state value is

transmitted to the controller over an AWGN relay channel

as shown in Fig. 1. We assume that there is no measurement

noise. In order to communicate the observed state value Xt

over the noisy channel, an encoder E is lumped with the

observer O and a decoder D is lumped with the controller

C. In addition there is an intermediate relay node R within

the channel to support communication from E to D. At any
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time instant t, Se,t and Rt are the input and the output of

the AWGN relay channel and Ut is the control action. Let

ft denote the observer/encoder policy, then we have Se,t =
ft(X0, X1, ..., Xt, U1, U2, ..., Ut−1) which must satisfy an

average power constraint limT→∞
1
T

∑T−1
t=0 E[S2

e,t] ≤ PS .

Further let γt denote the decoder/controller policy, then

Ut = γt(R1, R2, ..., Rt). The objective in this paper is to

find a sufficient condition on the system parameters so that

the system in (1) can be mean square stabilized.

Definition 2.1: A system is said to be mean square stable

if there exists a constant M < ∞ so that E[X2
t ] < M for

all t.
There can be various configurations of the relay channel.

In this work we focus on a half-duplex relay channel where

the relay cannot receive and transmit signals simultaneously.

Moreover, we consider an instantaneous linear and memo-

ryless (amplify-and-forward) relaying strategy which is in

particular suitable for delay sensitive closed-loop control

applications, although we know that linear strategies are

not optimal in general for multi-sensor settings [21–23]. In

amplify-and-forward strategy, the relay amplifies the received

signal under an average power constraint PR and forwards

it to the decoder/controller. A general half-duplex AWGN

relay channel is depicted in Fig. 2, where the variables Se,t

and Sr,t denote the transmitted signals from the encoder E
and the relay R at any discrete time step t. The variables

Zr,t and Zt denote the mutually independent white noise

components at the relay and at the decoder respectively with

Zr,t ∼ N (0, Nr) and Zt ∼ N (0, N). The information

transmission from the encoder consists of two phases as

shown in Fig. 2. In the first transmission phase the encoder

E transmits message with an average power 2βPS , where

0 < β ≤ 1 is a parameter that allocates power to the

two transmission phases. In this transmission phase the relay

R receives a noisy signal Yt from the encoder but it does

not transmit any signal. In the second transmission phase

both the encoder E and the relay R transmit with average

powers 2(1−β)PS and Pr respectively. The relay transmits

an amplified version of the noisy signal Yt−1 received during

the first transmission. The amplification at the relay is done

under an average power constraint PR. Therefore the relay

transmit signal at the discrete time step t is given by

Sr,t = aYt−1 =

√
Pr

PS +NR

(Se,t-1 + Zr,t-1), (2)

where the amplification factor a is chosen equal to
√

Pr

PS+NR

in order to satisfy the average power constraint i.e., E[S2
r,t] =

Pr ≤ PR. Accordingly the relay channel output at the

decoder is Rt which is given by

Rt = hSe,t + Zt t = 1, 3, 5, . . .

Rt = hSe,t + Sr,t + Zt, t = 2, 4, 6, . . .

where h ∈ R denotes the gain of E − D link. Generally

speaking, the relay channel is more useful if the direct link

is weak i.e., |h| is small compared to the gains of E −R and

R−D links.

Zt

Zr,t

Se,t

Yt

RtE D

R

(a) First transmission phase.

Zt

Se,t

Sr,t

RtE D

R

(b) Second transmission phase.

Fig. 2. Half-duplex AWGN relay channel.

III. STABILITY RESULTS

We will first present our main results in a comprehensive

fashion and then provide the proofs in the next section.

Theorem 3.1: The scalar linear time invariant system

in (1) can be mean square stabilized over the half-duplex

AWGN relay channel if

log (λ) <

1

4
max
0<β≤1

0≤Pr≤PR

(

log

(

1 +
2h2βPS

N

)

+ log

(

1 +
M̃(β, Pr)

Ñ(β, Pr)

))

(3)

where Ñ(β, Pr) = PrNR

2βPS+NR
+ N , M̃(β, Pr) =

(√

2h2(1− β)PS +
√

2βPSPrN
(2βPS+NR)(2h2βPS+N)

)2

, and β ∈
[0, 1].

Proof: The proof is given in Sec. IV.

Remark 3.1: Optimal choices of the power allocation

parameter β at the encoder and the relay transmit power

Pr which maximize the term on the right hand side of (3)

depend on the quality (i.e., SNR) of E−D, E−R, and R−D
links.

Remark 3.2: The term on the right hand side of (3) is the

information rate over the half-duplex AWGN relay channel

with noiseless feedback. This is shown in Appendix I.

Remark 3.3: The condition in (3) does not depend on

the process noise {Wt}. Further it is shown in Sec. IV

that the sufficient condition for mean square stability of a

system without process noise is identical to that with process

noise. Although the sufficient conditions are identical, the

second moment of the state process of a noiseless system

(nw = 0) converges to zero as time goes to infinity, i.e.,

limt→∞ E[X2
t ] = 0, which is not possible in the noisy case.

By choosing certain values of the parameters β and h we

get special cases of the general half-duplex relay channel. A

relay channel is said to be orthogonal if the signal spaces of

the encoder and the relay are orthogonal. The given half-

duplex relay channel is orthogonal if β = 1, that is in

the second transmission phase the encoder stays quiet and

only the relay transmits. For this channel the noisy signal

amplified and forwarded by the relay is not superimposed at
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the decoder to the signal coming directly from the encoder,

therefore the optimal choice is to use the maximum available

transmit power at the relay i.e., Pr = PR.

Corollary 3.1: The scalar linear time invariant system in

(1) can be mean square stabilized over an orthogonal half-

duplex AWGN relay channel if

log (λ)<
1

4

(

log

(

1 +
2h2PS

N

)

+ log

(

1 +
M̃(1, PR)

Ñ(1, PR)

))

,

where the term on the right hand side of the inequality is an

achievable information rate over the orthogonal half-duplex

AWGN relay channel.

A relay channel is said to be two-hop when there is no

direct communication link from the encoder to the decoder

and the information can be communicated only via the relay.

The given half-duplex relay channel becomes two-hop if h =
0. Naturally for this case we choose β = 1 and Pr = PR.

Corollary 3.2: The scalar linear time invariant system in

(1) can be mean square stabilized over a two-hop half-duplex

AWGN relay channel if

log (λ)<
1

4
log

(

1 +
2PSPR

PRNR +N (2PS +NR)

)

, (4)

where the term on the right hand side of the inequality is

an achievable information rate over the two-hop half-duplex

AWGN relay channel.

For a setup which is equivalent to the two-hop relay

channel, we find a necessary condition in [11, Theorem 4.1]

which reads as

log (λ)<
1

4
min

{

log

(

1 +
2PS

NR

)

, log

(

1 +
PR

N

)}

.

Remark 3.4: The condition in (4) becomes both neces-

sary and sufficient if either the E − R link is noiseless

(NR = 0) or the R − D link is noiseless (N = 0). That

is the transmission scheme achieves capacity of a point-to-

point channel.

Remark 3.5: Consider a two-hop relay channel with a

causal noiseless feedback link from the controller to the

relay. That is, the information at the decoder is nested with

that of the encoder, therefore there is no dual effect. For this

setup, the condition in (4) becomes necessary and sufficient

if we restrict the encoder to be linear in the state. This can

be observed from [24, 25].

IV. PROOF

In order to prove Theorem 3.1 we propose a linear

and memoryless communication and control scheme. This

scheme is based on the well-known Schalkwijk-Kailath

coding scheme [15, 16]. By employing the proposed linear

scheme over the given half-duplex relay channel, we then find

conditions on the system parameters λ which are sufficient

to mean square stabilize the system in (1).

The control and communication scheme for the half-

duplex relay channel works as follows.

Initial time step, t = 0: At time step t = 0, the encoder

E observes X0 and transmits Se,0 =
√

PS

α0
X0. The decoder

D receives R0 = hSe,0 + Z0. It then estimates X0 as

X̂0 =
1

h

√
α0

PS

R0 = X0 +
1

h

√
α0

PS

Z0.

The controller C then takes an action U0 = −λX̂0 which

results in

X1 = λX0 + U0 +W0 = −λ

h

√
α0

PS

Z0 +W0. (5)

The new plant state X1 ∼ N (0, α1), where α1 = λ2N
h2PS

α0+
nw.

First transmission phase, t = 1, 3, 5, ...: The encoder E
observes Xt and it then inputs Se,t =

√
2βPS

αt
Xt to the

relay channel. The relay R listens but remains silent. The

decoder D observes Rt = hSe,t + Zt and computes the

MMSE estimate of Xt, which is given by

X̂t = E[Xt|R1, R2, ..., Rt]

(a)
= E[Xt|Rt]

(b)
=

E[XtRt]

E[R2
t ]

Rt

(c)
=

(
h
√
2βPSαt

2h2βPS +N

)

Rt,

where (a) follows from the orthogonality principle of MMSE

estimation (that is E[XtRt−j ] = 0 for j ≥ 1) [26]; (b)
follows from the fact that the optimum MMSE estimator

for a Gaussian variable is linear [26]; and (c) follows from

E[XtRt] =
√

2h2βPSαt and E[R2
t ] = 2h2βPS +N .

The controller C takes an action Ut = −λX̂t which results in

Xt+1 = λ(Xt−X̂t)+Wt. The new plant state Xt+1 is linear

combination of zero mean Gaussian variables {Xt, X̂t,Wt},

therefore it is also zero mean Gaussian with the following

variance

αt+1 , E[X2
t+1] = λ2

E[(Xt − X̂t)
2] + E[W 2

t ]

= λ2

(
N

2h2βPS +N

)

αt + nw, (6)

where the last equality follows from E[XtX̂t] = E[X̂2
t ] =

2h2βPSαt

2h2βPS+N
(by computation).

Second transmission phase, t = 2, 4, 6, ...: The encoder

E observes Xt and it then inputs Se,t =
√

2(1−β)PS

αt
Xt

to the relay channel. The relay transmits Sr,t =
√

Pr

(2βPS+NR) (Se,t−1 + Zr,t−1). The decoder D observes

Rt = hSe,t + Sr,t + Zt = L1Xt + L2Xt−1 + Z̃t, (7)

where L1 =
√

2(1−β)h2PS

αt
, L2 =

√
2βPSPr

(2βPS+NR)αt−1

, and

Z̃t = Zt+
√

Pr

2βPS+NR
Zr,t−1 with Z̃t ∼ N (0, Ñ(β, Pr)).

The decoder then computes the MMSE estimate of Xt

given all previous channel outputs {R0, R1, ..., Rt} in the

following three steps:

1) Compute the MMSE prediction of Rt from

{R1, R2, ..., Rt−1} as R̂t = L2X̂t−1, where X̂t−1 is
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the MMSE estimate of Xt−1.

2) Compute the innovation

It = Rt − R̂t = L1Xt + L2(Xt−1 − X̂t−1) + Z̃t

=

(
λL1 + L2

λ

)

Xt −
L2

λ
Wt−1 + Z̃t, (8)

which follows follows from Xt=λ
(

Xt−1−X̂t−1

)

+Wt−1.

3) Compute the MMSE estimate of Xt given

{R1, R2, ..., Rt−1, It}. The state Xt is independent of

{R1, R2, ..., Rt−1}, therefore we can compute the estimate

X̂t based on It only without any loss of optimality, that is

X̂t = E[Xt|It]
(a)
=

E[XtIt]

E[I2t ]
It

(b)
=

λ (λL1 + L2)αt

(λL1 + L2)
2
αt + L2

2nw + λ2Ñ(β, Pr)
It, (9)

where (a) follows from an MMSE estimation of a Gaussian

variable; and (b) follows from E[XtIt] =
(
λL1+L2

λ

)
αt and

E[I2t ] =
(
λL1+L2

λ

)2
αt +

L2

2
nw

λ2 + Ñ(β, Pr).

The controller C takes an action Ut = −λX̂t which

results in Xt+1 = λ(Xt − X̂t) + Wt. The new plant state

Xt+1 is linear combination of zero mean Gaussian variables

{Xt, X̂t,Wt}, therefore it is also zero mean Gaussian. The

variance of the new plant state Xt+1 is given in (10) on the

top of the next page. In the computation of (10), (a) follows

from E[XtX̂t] = E[X̂2
t ] = (λL1+L2)

2αt

(λL1+L2)
2αt+L2

2
nw+λ2Ñ(β,Pr)

;

(b) follows by substituting the values of L1 and L2; and

(c) by substituting αt

αt−1
from (6) and by defining k ,

N
2h2βPS+N

, k1 ,
2βPSPr

2βPS+NR
, k2 ,

√

2h2(1− βPS).

We want to find the values of the system parameter λ for

which the second moment of the state remains bounded, i.e.,

the sequence {αt} has to be bounded. Rewriting (6) and (10),

the variance of the state at any time t is given by

αt = λ2

(
N

2h2βPS +N

)

αt−1 + nw, t = 2, 4, 6, ...

(11)

αt = λ2
(
λ2kαt−2 + nw

)
f(αt−2) + nw, t = 3, 5, 7, ...

(12)

where α1 = λ2N
h2PS

α0 + nw and f(αt−2) ,

( (
nwk1

λ2
) 1

αt−2
+Ñ(β,Pr)

(k2+

√

k1k+
nwk1

λ2

1

αt−2
)2+(

nwk1

λ2
) 1

αt−2
+Ñ(β,Pr)

)
. If the

odd indexed sub-sequence {α2t+1} in (12) is bounded,

then the even indexed sub-sequence {α2t} in (11) is also

bounded. Therefore it is sufficient to consider the odd

indexed sub-sequence {α2t+1}. We will now construct

a sequence {α′
t} which upper bounds the sub-sequence

{α2t+1}. Then we will derive conditions on the system

parameter λ for which the sequence {α′
t} stays bounded

and consequently the boundedness of {α2t+1} will be

guaranteed. In order to construct the upper sequence {α′
t},

we work on the term f(αt−2) in (12) and make use of the

following lemma.

Lemma 4.1: Consider a function f(x) =
a+ b

x

(c+
√

d+ b

x
)2+a+ b

x

defined in the interval [0,∞), where

a, b, c, d ≥ 0. The function f(x) can be upper

bounded as f(x) ≤ f∞ + m
x

for some m > 0, where

f∞ , limx→∞ f(x) = a

(c+
√
d)2+a

.

Proof: The proof can be found in Appendix II.

Starting from (12) and by using the above lemma, we write

the following series of inequalities

αt = λ2
(
λ2kαt−2 + nw

)
f(αt−2) + nw

(a)

≤ λ2
(
λ2kαt−2 + nw

)
(

f∞ +
m

αt−2

)

+ nw

= λ4kf∞αt−2 +
λ2nwm

αt−2
+ nwf∞ + λ4mk + nw

(b)

≤ λ4kf∞αt−2 + λ2m+ nwf∞ + λ4mk + nw , g(αt−2),
(13)

where (a) follows from Lemma 4.1 and f∞ ,

limα→∞ f(α) =
(

Ñ(β,Pr)

(k2+
√
k1k)2+Ñ(β,Pr)

)

; and (b) follows

from the fact that αt ≥ nw for all t, which is obvious from

(11) and (12) that the value of αt can never be less than nw.

Since g(α) in (13) is a linearly increasing function, it can

be used to construct the sequence {α′
t} which upper bounds

the odd indexed sub-sequence {α2t+1} given in (12). We

construct the sequence {α′
t} as

α2t+1 ≤ α′
t+1 = g(α′

t), for all t ≥ 1

(a)
= λ4kf∞α′

t + λ2m+ nwf∞ + λ4mk + nw

(b)
=
(
λ4kf∞

)t
α′
0

+ (λ2m+ nwf∞ + λ4mk + nw)

t−1∑

i=0

(
λ4kf∞

)i
, (14)

where (a) follows from (13) and (b) follows by recursively

applying (a). We observe from (14) that if
(
λ4kf∞

)
=

(
λ4kÑ(β,Pr)

(k2+
√
k1k)2+Ñ(β,Pr)

)

< 1, then the sequence {α′
t} con-

verges to a limit point as t → ∞ and consequently the

original sequence {αt} is guaranteed to stay bounded. Thus

the system in (1) can be mean square stabilized over the

half-duplex relay channel if

λ4 <

(

(k2 +
√
k1k)

2 + Ñ(β, Pr)

kÑ(β, Pr)

)

(15)

⇒ log(λ)<
1

4
log

(

log

(
1

k

)

+log

(

1+
(k2+

√
k1k)

2

Ñ(β, Pr)

))

=
1

4

(

log

(

1+
2h2βPS

N

)

+log

(

1+
M̃(β, Pr)

Ñ(β, Pr)

))

, (16)

where in the last equality we substituted k = N
2h2βPS+N

and

M(β, Pr) = (k2+
√
k1k)

2 in order to show the dependencies

on the average relay power Pr and the power allocation

parameter β at the encoder. Since the relay node amplifies

the desired signal as well as the noise which is then super-

imposed at the decoder to the signal coming directly from
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αt+1 , E[X2
t+1] = λ2

E[(Xt − X̂t)
2] + E[W 2

t ]
(a)
= λ2αt

(

L2
2nw + λ2Ñ(β, Pr)

(λL1 + L2)
2 αt + L2

2nw + λ2Ñ(β, Pr)

)

+ nw

(b)
= λ2αt






(
2βPSPr

2βPS+NR

)
nw

αt−1
+ λ2Ñ(β, Pr)

(

λ
√

2h2(1− βPS) +
√

2βPSPr

2βPS+NR

αt

αt−1

)2

+
(

2βPSPr

2βPS+NR

)
nw

αt−1

+ λ2Ñ(β, Pr)




+ nw

(c)
= λ2

(
λ2kαt−1 + nw

)






(nwk1)
1

αt−1

+ λ2Ñ(β, Pr)
(

λk2 +
√

k1

λ2 (λ2k + nw
1

αt−1
)
)2

+ (nwk1)
1

αt−1
+ λ2Ñ(β, Pr)




+ nw

= λ2
(
λ2kαt−1 + nw

)






(
nwk1

λ2

)
1

αt−1

+ Ñ(β, Pr)
(

k2 +
√

k1k + nwk1

λ2

1
αt−1

)2

+
(
nwk1

λ2

)
1

αt−1

+ Ñ(β, Pr)




+ nw, (10)

the encoder, an optimal choice of the relay transmit power

0 ≤ Pr ≤ PR depends on the relay channel parameters

{PS , NR, N, h, β}. Moreover an optimal choice of the power

allocation factor β at the encoder also depends on the relay

channel parameters {PS, Pr, NR, N, h}. Therefore we can

rewrite (16) as (3.1), which completes the proof of Theorem

3.1. �

It is interesting to see that the sufficient condition for mean

square stability does not depend on the process noise. This

provides motivation to study stabilizability of the system in

(1) without process noise, i.e., Wt = 0. In the absence of the

process noise in (1), the state variance of the noiseless system

at any time step t is then given by substituting nw = 0 in

(10), that is

αt =

(
λ2N

2h2βPS +N

)

αt−1, t = 2, 4, 6, ...

αt =

(

λ4kÑ(β)

(k2 +
√
k1k)2 + Ñ(β)

)

αt−2, t = 3, 5, 7, ...

Since α1 = λ2N
h2PS

α0+nw, the state variance αt → 0 as t →
∞ if

(
λ4kÑ(β)

(k2+
√
k1k)2+Ñ(β)

)

< 1. This is the same condition

as in (15). Thus by using the proposed linear coding and

control scheme, we obtain identical sufficient conditions for

mean square stability of noisy and noiseless first LTI system

over half-duplex relay channel.

APPENDIX I

INFORMATION RATE

The given scheme can be seen as a point-to-point

communication channel, where R2t-1 is the channel out-

put corresponding to the input Se,2t-1 and I2t is the

channel output corresponding to the input Se,2t. Since

P (I2t, R2t-1|Se,2t, Se,2t-1) = P (I2t|Se,2t)P (R2t-1|Se,2t-1),
the channel is memoryless. The information rate is

lim
T→∞

1

2T
I
(

{Se,2t-1, Se,2t}Tt=1 ; {R2t-1, I2t}Tt=1

)

(a)
= lim

T→∞

1

2T

[ T∑

t=1

(

h (R2t-1) + h (I2t)

− h (R2t-1|Se,2t-1)− h (I2t|Se,2t)

)]

(b)
= lim

T→∞

1

2T

[

T

(

h (R2t-1) + h (I2t)

− h (R2t-1|Se,2t-1)− h (I2t|Se,2t)

)]

=
1

2
(I (Se,2t-1;R2t-1) + I (Se,2t; I2t)) , (17)

where (a) follows from the definition of mutual information

and the fact that the channel is memoryless, E[R2l-1R2k-1] =
E[I2lI2k] = 0 for k 6= l, and E[R2l-1I2k] = 0 for all l, k =
1, 2, 3, ..; and (b) follows from the fact that R2t-1 and I2t are

i.i.d. variables.

For the first transmission phase the mutual information

between the transmitted variable and the received variable is

given by

I (Se,2t-1;R2t-1) = h(R2t-1)− h(R2t-1|Se,2t-1)

= h(R2t-1)− h(Z2t-1)
(a)
=

1

2
log

(

1 +
2h2βPS

N

)

, (18)

where (a) follows from R2t-1 ∼ N (0, 2h2βPS + N) and

Z2t-1 ∼ N (0, N). In the second phase the decoder computes

the innovation It according to (8). The mutual information

between the transmitted variable and the innovation variable

is then given by

I (Se,2t; I2t) =
1

2
log

(

1 +
M̃(β, Pr)

Ñ(β, Pr)

)

, (19)

which follows from I2t ∼ N (0, M̃(β, Pr) + Ñ(β, Pr))
and Z̃2t ∼ N (0, Ñ(β, Pr)). From (18), (19), and (17) the

information rate is equal to

1

4

(

log

(

1 +
2h2βPS

N

)

+ log

(

1 +
M̃(β, Pr)

Ñ(β, Pr)

))

. (20)

For channels with feedback directed information is a

useful quantity [27]. The directed information rate for the

2244



relay channel under discussion is given by

lim
T→∞

1

2T
I
(

{Se,2t-1, Se,2t}Tt=1 → {R2t-1, I2t}Tt=1

)

(a)
= lim

T→∞

1

2T

[
T∑

t=1

(I (Se,2t-1;R2t-1) + I (Se,2t; I2t))

]

(b)
= lim

T→∞

1

2T
[T (I (Se,2t-1;R2t-1) + I (Se,2t; I2t))]

=
1

2
(I (Se,2t-1;R2t-1) + I (Se,2t; I2t)) , (21)

where (a) follows from the [27, Theorem 2] and orthogonal-

ity of the channel output sequence {R2t-1, I2t}Tt=1; and (b)
follows from the fact that R2t-1 and I2t are i.i.d. variables.

Comparing (21) and (17), the directed information rate is

equal to the information rate which is due to orthogonality

of the channel output sequence.

APPENDIX II

PROOF OF LEMMA 4.1

Consider the function f(x) =
a+ b

x

(c+
√

d+ b

x
)2+a+ b

x

defined in

the interval [0,∞), where 0 ≤ a, b, c, d < ∞. We want to

show that f(x) ≤ f∞ + m
x

in the interval [0,∞) for some

m > 0, where f∞ , limx→∞ f(x) = a

(c+
√
d)2+a

. In the

following we show that −f(x) + f∞ + m
x

is greater than or

equal to zero for some m ≥ 0.

− f(x) + f∞ +
m

x

= − ax+ b

(c
√
x+

√
dx+ b)2 + ax+ b

+
a

(c+
√
d)2 + a

+
m

x

=
1

((

c+
√
d
)2

+ a

)((
c
√
x+

√
dx+ b

)2
+ ax+ b

)

x

×
[

− (ax2 + bx)

((

c+
√
d
)2

+ a

)

+ ax

((

c
√
x+

√
dx+ b

)2

+ ax+ b

)

+m

((

c+
√
d
)2

+ a

)((

c
√
x+

√
dx+ b

)2

+ ax+ b

)]

(22)

The denominator term in (22) is always positive for x ∈
[0,∞), therefore we focus on the numerator term. The

numerator term after simplification is equal to

m(c4 + c2d+ 2c3d+ c2d+ d2 + 2cd
3

2 + 2ad+ ac2

+ 2ac
√
d+ a2)x− (bc2 + bd+ 2bc

√
d)x

+ 2ac(x
√

dx2 + bx−
√
dx2)

︸ ︷︷ ︸

≥0

+ ϑ
︸︷︷︸

≥0

, (23)

where ϑ is the summation of the remaining

terms, which are all non-negative and therefore

their sum is also non-negative. If we choose

m ≥ (bc2+bd+2bc
√
d)

(c4+c2d+2c3d+c2d+d2+2cd
3

2 +2ad+ac2+2ac
√
d+a2)

in

(23), the non-negativity of (22) in the interval [0,∞) will

be guaranteed. �
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[11] S. Yüksel and T. Basar, “Control over noisy forward and reverse
channels,” IEEE Trans. Automat. Control, vol. 56, 2011.

[12] P. Minero, M. Franceschetti, S. Dey, and G. N. Nair, “Data rate
theorem for stabilization over time varying feedback channels,” IEEE

Trans. Automat. Control, vol. 54, no. 2, pp. 243–255, 2009.
[13] T. Cover and J. Thomas, Elements of information theory. John Wiley

Sons, Inc., 2006.
[14] G. Kramaer, I. Maric, and R. Yates, “Cooperative communications,”

Foundations and Trends in Networking, vol. 1, no. 3–4, pp. 271 –425,
2006.

[15] S. Bross and M. Wigger, “On the relay channel with receiver-
transmitter feedback,” IEEE Trans. Inform. Theory, vol. 55, no. 1,
pp. 275–291, 2009.

[16] Schalkwijk and T. Kailath, “A coding scheme for additive noise
channels with feedback–I: No bandwidth constraint,” IEEE Trans.

Inform. Theory, vol. 12, no. 2, pp. 172–182, 1966.
[17] R. G. Gallager and B. Nakiboglu, “Variations on a theme by schalkwijk

and kailath,” IEEE Trans. Inf. Theory, vol. 56, no. 1, pp. 6–17, 2010.
[18] A. A. Zaidi, T. J. Oechtering, and M. Skoglund, “Sufficient conditions

for closed-loop control over multiple-access and broadcast channels,”
in IEEE CDC, 2010, pp. 4771–4776.

[19] ——, “Rate sufficient conditions for closed–loop control over AWGN
relay channels,” in IEEE ICCA, June 2010, pp. 602–607.

[20] U. Kumar, V. Gupta, and J. N. Laneman, “Sufficient conditions for
stabilizability over Gaussian relay channel and cascade channels,” in
IEEE CDC, December 2010, pp. 4765–4770.
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[25] S. Yüksel, “On optimal causal coding of partially observed markov
sources under classical and non-classical information structures,” in
IEEE ISIT, 2010, pp. 81–85.

[26] M. Hayes, Statistical digital signal processing and modelling. John
Wiley Sons, Inc., 1996.

[27] J. L. Massey, “Causality, feedback and directed information,” in IEEE

ISITA, 1990.

2245


