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Abstract— We propose a decentralized control law for multi-
agent formations in two dimensions that allows the participating
vehicles to display intricate periodic and quasi-periodic geo-
metric patterns. Inspired by the “standard” consensus protocol
ẋ=−Lx, these controls rely only on the relative position between
the networked agents which are neighbors in the underlying
communication graph. Several examples are presented, result-
ing in non-trivial geometric patterns described by trochoidal
curves, similar to those generated by kids around the world
using a spirograph. These paths can be useful for coordinated,
distributed surveillance and monitoring applications, as well as
for the sake of their own aesthetical beauty.

I. AN EXTENDED CONSENSUS PROTOCOL

Consensus problems have been extensively used in the

past in the area of distributed computing and management

science. Their recent popularity in the controls community

stems from their utilization in formulating and solving a

variety of multi-agent, mobile network problems [1], [2].

In this paper we propose a generalization of the standard

consensus algorithm used widely in the literature [3], [4],

[5], and we show how it can be utilized to generate intricate

geometrical patterns for the ensuing agent paths. Using

minimal assumptions, the proposed feedback control is able

to generate geometric patterns for the agent trajectories that

go beyond formation-type geometric models, which deal

mainly with identical agents in cycle pursuit [6], [7], [8],

[9].

Our inspiration comes from gyroscopic control strategies

used in the wheeled robotics community [10] for obstacle

avoidance. Since the proposed control law introduces cir-

culation, it cannot be derived from a scalar potential, and

hence it does not belong to the family of consensus control

laws that are gradient-based. As an added benefit of the

proposed extension, it is shown that this control law results

in consensus points that lie outside the convex hull of the

initial positions of the agents. This may be useful for obstacle

avoidance and/or consensus with deception, for instance.

In the second part of the paper we particularize the

proposed control law to the case of periodic and quasi-

periodic pattern generation and show how it can be used

to generate elaborate, aesthetically beautiful patterns, similar

to those obtained using a spirograph.
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II. MOTIVATING EXAMPLE

In order to demonstrate the main idea, we start with the

simplest of cases, namely, two agents (N = 2) in the plane.

The extension to the case of an arbitrary number of agents

follows readily from this case and it is given in the next

section, along with the stability analysis of the closed-loop

system. To this end, assume a given global coordinate frame

E with origin O and two agents at locations ~r1 and ~r2

respectively. The kinematic equation for each agent is given

by

~̇ri =~ui, i = 1,2. (1)

We assume that only the relative distance ~r12 =~r1 −~r2 is

known to agent no. 1 and, similarly, the relative distance

~r21 = −~r12 is available to agent no. 2. It can be easily

shown [5] that the control law

~u1 =−γ1~r12, ~u2 =−γ2~r21, γ1 + γ2 > 0 (2)

achieves consensus. Furthermore, with this control law, the

two agents will meet somewhere along the line segment

initially connecting ~r1(0) and ~r2(0). Our first objective is

to modify (2) in order to allow convergence of the agents

to points that do not necessarily belong to the line segment

(in general, the convex hull) defined by the initial position

vectors.

The main observation here is that the control law (2) does

not make use of all available geometric information to each

agent. For instance, agent no. 1 knows not only the vector~r12

but also all vectors (directions) perpendicular to ~r12, which

can then be used in a feedback strategy. Similarly for agent

no. 2. This additional information in the control law, inferred

from–but distinct than–the relative position vector between

the agents, can lead to more flexibility for trajectory design.

To this end, let~q12 and~q21 be such that~q12 ·~r12 =~q21 ·~r21 = 0,

and assume the following control laws1

~u1 =−γ1~r12 +β1~q12, ~u2 =−γ2~r21 +β2~q21 (3)

Later it is shown that this control law also achieves consensus

for γ1 + γ2 > 0 and β1,β2 ∈ R.

In preparation for the general case, let us now introduce

coordinates, with respect to a global frame E , leading to

[~ri]E
△
= xi ∈R

2, (i = 1,2) and [~r12]E = [~r1]E − [~r2]E = x1−x2.

Let the error vector z ∈ R
2 of the relative distance between

the two agents be

z
△
= x1 − x2 = d11x1 +d21x2 = (DT ⊗ I2)x, (4)

1Owing to the freedom in choosing ~q12 and ~q21, we define a “position
orientation” such that ~r12 ×~q12 =~r21 ×~q21.
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where D =
[

1 −1
]

T

and where x = [xT

1, xT

2]
T ∈ R

4. Further-

more, let [~q12]E
△
= p = Sz where S is the skew symmetric

matrix

S =

[

0 −1

1 0

]

. (5)

It is clear that pTz = zT p = 0. It can then be easily seen that

the control law (3) can be written compactly, as follows

u =−(Γ⊗ I2)(D⊗ I2)z+(B⊗ I2)(D⊗ I2)Sz

=−(ΓD⊗ I2)z+(BD⊗S)z, (6)

where u = [uT

1, uT

2]
T ∈ R

4 and Γ = diag(γ1,γ2) and B =
diag(β1,β2). From (4) it follows that the error equation is

given by

ż = (DT ⊗ I2)ẋ = (DT ⊗ I2)u

=−(DT ⊗ I2)(Γ⊗ I2)(D⊗ I2)z+(DT ⊗ I2)(B⊗ I2)(D⊗ I2)Sz

=−
(

(DTΓD)⊗ I2

)

z+
(

(DTBD)⊗S
)

z.

Stability is determined by the eigenvalues of the matrix

ACL =−((DTΓD)⊗ I2)+((DTBD)⊗S). A simple calculation

shows that spec(ACL) = {−(γ1 + γ2)± i(β1 + β2)}. Hence

consensus is achieved asymptotically as long as γ1 + γ2 >
0. The “classical” consensus control law (2) corresponds

to the case when β1 = β2 = 0. When B 6= 0 stability is

still maintained, however, the transient response is differ-

ent. Furthermore, the point where consensus is achieved

can be selected to lie outside the line segment connecting

x1(0) and x2(0) by a proper choice of the gains β1 and

β2. This is demonstrated in Fig. 1 where the result of a

simulation with the data x1(0) = (−1,1)T,x2(0) = (2,3)T,Γ=
diag(0.1,1),B= diag(−0.5,2) is shown. For this example the

two agents meet at the point with coordinates (−2,1).
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Fig. 1. Numerical example with “skew-symmetric” feedback. The skew-
symmetric term creates a vector field with circulation.

III. EXTENSION TO N AGENTS IN THE PLANE

For the general case, consider N agents in the plane.

Assume that their location is given by the state variables

xi ∈ R
2 for i = 1, . . . ,N, expressed in the same, common

global frame E , satisfying the differential equations

ẋi = ui, i = 1, . . . ,N. (7)

To the N agents we associate a graph G that describes

the communication topology between the agents. That is, G

has N nodes and M edges (links), with each edge denoting

knowledge of the relative position between the corresponding

agents. We can define the incidence matrix D ∈ R
N×M with

elements as follows [11]. We assign di j =+1 (−1) if the ith

node is the head (tail) of jth edge, and di j = 0 otherwise.

If the ith agent is a neighbor with the jth agent, then they

are connected by an edge, and we have the difference (error)

variable

zk =
N

∑
ℓ=1

dℓkxℓ =

{

xi − x j, if i is the head,

x j − xi, if j is the head,
(8)

where zk ∈ R
2 for k = 1, . . . ,M. If the columns of D are

linearly independent, that is, if the graph does not contain

cycles, then the vectors zk are linearly independent [11]. Note

also that the graph is connected if and only if rankD = N −
1 [3], [12]. Introducing the stack vector x=

[

xT

1 · · · xT

N

]

T

∈
R

2N , the state equations (7) can be written compactly as

ẋ = u, (9)

where u=
[

uT

1 · · · uT

N

]

T

∈R
2N . Following (6), we propose

the control law

u =−(ΓD⊗ I2)z+(BD⊗S)z, (10)

where z =
[

zT

1 · · · zT

M

]

T

∈ R
2M , and where Γ =

diag(γ1, . . . ,γN) and B = diag(β1, . . . ,βN). The standard con-

sensus algorithm results as a special case of (10) where

B = 0.

Convergence Analysis

From (8) it can be easily shown that the error vector z can

be written compactly as follows

z = (DT ⊗ I2)x. (11)

From (10) the differential equation for x is then given by

ẋ =−(ΓD⊗ I2)(D
T ⊗ I2)x+(BD⊗S)(DT ⊗ I2)x

=−
(

(ΓDDT)⊗ I2 − (BDDT)⊗S
)

x

=−
(

(ΓL)⊗ I2 − (BL)⊗S
)

x, (12)

where L
△
=DDT ∈R

N×N is the graph Laplacian [5]. Let 1N
△
=

(1,1, . . . ,1)T ∈ R
N denote the N-dimensional column vector

of ones, and recall that L1N = 0 [5], [12]. For any ν ∈ R
2

we have that
(

(ΓL)⊗ I2−(BL)⊗S
)

(1N ⊗ν) = (ΓL1N)⊗ν−
(BL1N)⊗ (Sν) = 0. It follows that the vector 1N ⊗ν spans

the null space of the matrix in (12). The equilibrium point

x̄∞ of the linear differential equation (12) therefore satisfies

the condition x̄∞
△
= limt→∞ x(t) = 1N ⊗x∞ for some x∞ ∈R

2,

from which it follows that limt→∞ x1(t) = limt→∞ x2(t) =
· · ·= limt→∞ xN(t) = x∞, thus achieving consensus.

Let the coordinates of the final consensus point be x∞ =
[x∞ y∞]

T ∈ R
2. We have the following proposition.

Proposition 1 ([13]): Let v1,v2 ∈ R
2N be such that

span{v1,v2} = R⊥
(

(ΓL)⊗ I2 − (BL)⊗ S
)

. The final ren-

dezvous point is given by

x∞ =

[

x∞

y∞

]

=

[

vT

1(1N ⊗ I2)
vT

2(1N ⊗ I2)

]−1 [
vT

1x(0)
vT

2x(0)

]

. (13)
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IV. PERIODIC AND QUASI-PERIODIC TRAJECTORIES

Given an interconnection topology, the particular choices

of the gain matrices Γ and B can be used to generate specific

trajectory patterns for the agent paths. Since we are mainly

interested in periodic or quasi-periodic trajectories, next we

restrict the discussion to the case Γ = 0. By letting Γ = 0 in

(12) the closed-loop system reduces to

ẋ = ((BL)⊗S)x. (14)

The shape and frequencies of the resulting paths/trajectories

are therefore determined by the eigenvalues and eigenvectors

of the matrix (BL)⊗ S. Recall from the properties of the

Kronecker product that the eigenvalues of the matrix (BL)⊗S

are of the form λ µ where λ ∈ spec(BL) and µ ∈ specS.

Additionally, the corresponding eigenvectors are of the form

v⊗u where v∈C
3 is the eigenvector of the matrix BL associ-

ated with λ and u∈C
2 is the eigenvector of the matrix S as-

sociated with µ . Since det(λ IN −BL) = det(λ IN −BDDT) =
det(λ IM − DTBD) it follows that the nonzero eigenvalues

of the matrix BL coincide with the nonzero eigenvalues of

DTBD. Because the latter matrix is symmetric, all eigenvalues

of BL are real. Consequently, all eigenvalues of (BL)⊗S lie

on the imaginary axis. It follows that the solutions of (14)

consist, in general, of a superposition of sine and cosine

functions, perhaps multiplied by polynomials in t (in the case

of multiple eigenvalues).

Let BL = V JV−1 be the spectral decomposition of the

matrix BL. It can be easily shown that

e((BL)⊗S)t = (V ⊗ I2)e(J⊗S)t (V−1 ⊗ I2). (15)

The spectral decomposition of the matrix BL thus provides all

information needed to investigate the nature of the solutions

of (14). In fact, additional information can be gathered owing

to the special structure of the state matrix in (14).

Lemma 1: Let A be an n× n square matrix and let S be

the 2×2 skew symmetric matrix given in (5). Then

eA⊗S = cosA⊗ I2 + sinA⊗S. (16)

Proof: Notice that S2k = (−1)kI2 and S2k+1 = (−1)kS,

k = 0,1,2, . . . and recall that

eA⊗S =
∞

∑
k=0

1

k!

(

A⊗S
)k
.

The rhs of the previous equation can be expanded as follows

∞

∑
k=0

1

(2k)!

(

A⊗S
)2k

+
∞

∑
k=0

1

(2k+1)!

(

A⊗S
)2k+1

=
∞

∑
k=0

1

(2k)!

(

A2k ⊗S2k
)

+
∞

∑
k=0

1

(2k+1)!

(

A2k+1 ⊗S2k+1
)

=
(

∞

∑
k=0

(−1)k

(2k)!
A2k

)

⊗ I2 +
(

∞

∑
k=0

(−1)k

(2k+1)!
A2k+1

)

⊗S.

Making use of the fact that for a square matrix A,

cosA =
∞

∑
k=0

(−1)k

(2k)!
A2k, sinA =

∞

∑
k=0

(−1)k

(2k+1)!
A2k+1,

the result of the lemma follows immediately.

We therefore have the following Proposition.

Proposition 2: The solution of (14) is given by

x(t) =
(

cos(BLt)⊗ I2 + sin(BLt)⊗S
)

x(0), (17)

= (V ⊗ I2)
(

cos(Jt)⊗ I2 + sin(Jt)⊗S
)

(V−1 ⊗ I2)x(0),

for all t ≥ 0 and all x(0) ∈ R
2N .

The structure of the state matrix in (14) (e.g., its eigen-

values and eigenvectors) thus can provide a great deal of

information regarding the paths followed by the agents in the

Cartesian coordinate frame, as well as the relative location

of the agents on these paths (i.e., their relative phasing). For

instance, one can ensure that the agent trajectories either

form closed paths with given phasing, or they form a dense

set of trajectories, ensuring that almost every point in a given

region will be visited at least once by one or more agents.

V. ORBIT PATTERN GENERATION

A. A Family of Achievable Paths

The solutions in (17) fall in the general class of trochoidal

curves, which includes ellipses (and circles), epitrochoids,

hypotrochoids, as well as cardioids, astroids, limaçons, and

all polar coordinate roses [14]. An epitrochoid curve is

generated by a point P attached at a radial distance d from

the center of a circle of radius r, which is rolling without

slipping around a circular track of radius R. The distance

d can be smaller, equal, or greater than the radius r of the

rolling circle. The ratio of the circular two tracks k = R/r

indicates the number of points at which the agent is closest

to the center of the circular track. These are referred to as

crests. In the special case when r = d, the curve becomes

an epicycloid with k cusps; at these points, the curve is not

differentiable. Note that ellipsoidal paths correspond to the

case when k = 0. A hypotrochoid is generated by a point P

attached at a distance d from the center of a circle of radius

r, which rolls inside a circle of radius R. Again, the distance

d can be smaller, equal, or greater than the radius r of the

rolling circle; this radius, however, cannot exceed that of the

circle R.

B. Illustrative Example: Three Agents

In this section we investigate in greater detail the simple

non-trivial case, namely, three agents in the plane (N = 3),

connected either in a path graph (M = 2) or a complete graph

(M = 3). For a path graph interconnection the incidence

matrix is given by

D =





−1 0

1 −1

0 1



 . (18)

A straightforward calculation shows that the two nonzero

eigenvalues of the matrix BL for this case are given by

β1

2
+β2 +

β3

2
±

√

β 2
1 −2β1β3 +4β 2

2 +β 2
3

2
.

For the complete graph the incidence matrix is given by

D =





−1 0 1

1 −1 0

0 1 −1



 . (19)

3852



The nonzero eigenvalues of the matrix BL for this case are

given by

β1 +β2 +β3 ±
√

β 2
1 +β 2

2 +β 2
3 −β1β2 −β2β3 −β3β1.

The ratio of the two nonzero eigenvalues is equal to k+1 for

an epitrochoid or k−1 for a hypotrochoid. Note that if k turns

out to be an irrational number, then the number of crests is

infinite, which means that the curve does not close; instead,

the trajectories form a dense subset of the space [15]. An

orbit redesign can yield periodic orbits of a particular shape

that can be used for coordinated, distributed surveillance and

perimeter monitoring applications; see, for instance, Fig. 2.

Such an orbit redesign will require however, in general, a

complete interconnection topology [13].

Fig. 2. Three agents patrolling a pentagon.

An interesting case occurs when the closed loop system

has two zero eigenvalues at the origin. In this case the

trajectories exhibit secular motion. Figure 3(a) shows the

trajectories when B = diag(0.5,−1,−1). It can be easily

verified that in this case the relative orbits for the three agents

are all circles; see Fig. 3(b).
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Fig. 3. B = diag(0.5,−1,−1) and initial conditions x1(0) = (6,8),x2(0) =
(−7,5),x3(0) = (5,−10) (path graph interconnection). The figure on the
right shows the relative orbits.

VI. A GALLERY OF ORBITS

Clearly, one can generate a myriad of beautiful geometric

patterns by changing the gain matrix B and by choosing a

suitable graph Laplacian L in (14). Figures 4-7 provide a

glimpse on the plethora and variety of geometric patterns

generated using the consensus control law in (14) for the case

of three and four agents. We urge the reader to try his/her

own skills at generating visually pleasing curves using (14).

VII. CONCLUSIONS

We have presented an extension of the classical consensus

algorithm for multi-agent systems to achieve consensus out-

side the convex hull of the initial conditions of the agents. As

a by-product of this idea, we have shown how to generate

agent trajectories leading to intricate geometric patterns in

the plane using only relative, local information. Future work

will concentrate on developing a general theory for orbit

design for an arbitrary number of agents in two, and three

dimensions. Apart from their inherent aesthetical appeal,

these orbits can have immediate applications in the area of

coordinated, persistent surveillance and monitoring using a

team of agents interacting using local information.
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Fig. 4. A menagerie of orbits with three agents using the extended
consensus protocol; path graph.
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Fig. 5. A menagerie of orbits with three agents using the extended
consensus protocol; complete graph.
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(a) B = diag(2,0.1826,−0.6126,2).
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(b) B = diag(2,0.1826,−0.6126,2).
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(c) B = diag(2,1.7141,−0.8257,2).
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(d) B = diag(2,3.622,2.336,−1).

−30 −20 −10 0 10 20 30 40 50

−30

−20

−10

0

10

20

30

x

y

(e) B= diag(−1,−1.145,1.297,−1).
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(h) B = diag(0,−1,−3,0).
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(j) B = diag(0.15,−1,0.15,1).
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(l) B = diag(5,−2,−2,5).

Fig. 6. Sample orbits with four agents using the extended consensus
protocol; path graph.
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(a) B = diag(−1,−1,+1,−1).
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(c) B = diag(−1,−1,+1,−1).
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(e) B =
diag(−2,−4.133,−2.074,+2).
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(f) B =
diag(−2,−4.133,−2.074,+2).
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(g) B = diag(−2,−2,−2,−2).
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(j) B = diag(5,−2,−2,5).

−6 −4 −2 0 2 4

−4

−3

−2

−1

0

1

2

3

4

5

6

x

y

(k) B = diag(5,−0.866,−3.208,5).

−8 −6 −4 −2 0 2 4

−6

−4

−2

0

2

4

x

y
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Fig. 7. Sample orbits with four agents using the extended consensus
protocol; complete graph.
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