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Abstract— A new approach to multi-target data association is
presented. In this new approach, the problem of correctly asso-
ciating measurements to the object from which they originate is
viewed as an impulse optimization. In the systems considered,
a single sensor attempts to measure a pre-specified object of
interest. Interpolating the discrete set of measurements, it is
possible to compute a “measurement trajectory.” The action of
the sensor randomly measuring a system target other than the
object of interest is viewed as an impulse in the measurement
trajectory. It is possible to correctly associate measurements by
determining the times at which the impulses occur. The main
contribution of the work presented in this paper is to provide
a method for estimating the total number of impulses.

I. INTRODUCTION

Multi-target data association is an area of interest in many
different fields [4], [5], [8], [10], [11], [12]. The work
presented in this paper provides a new approach, referred
to as impulsive data association (IDA), to the multi-target
problem that utilizes the maximum principle to efficiently
search the space of possible solutions.

Figure 1 presents the basic structure upon which IDA is
based. In Figure 1, two separate trajectories associated with
two different objects are represented. The dotted trajectory
represents the object of interest and the dashed trajectory
some object nearby. There is a sensor that attempts to
measure the trajectory of the object of interest at all times.
The sensor makes a single measurement at each time a mea-
surement is taken. The solid black line in Figure 1 represents
the portions of the two trajectories that are measured by
the sensor. Viewing the solid black line as a trajectory, at
time t = 1, an impulse of magnitude δ1 occurs in the path
of the trajectory. This impulse models the sensor switching
from measuring the trajectory of the object of interest to
measuring the trajectory of some object nearby. At time
t = 2, another impulse, of magnitude δ2, occurs. This
impulse models the action of the sensor switching back to
measuring the trajectory of the object of interest.

In the work presented in this paper, we assume that the
total number of objects present in the system is known to
be two. The assumption that the total number of objects is
known a priori is similar to the assumption in single-scan
Markov chain Monte Carlo data association (MCMCDA)
[9]. The main difference between IDA and single scan
MCMCDA is that no information about the second object,
i.e., not the object of interest, other than its dynamics are
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Fig. 1: Deterministic trajectories of two objects. The dotted
line represents the trajectory of a pre-specified object of
interest and the dashed line an object nearby. The solid line
represents the portions of the two trajectories that a single
sensor measures. Considering the solid black line as a single
trajectory, an impulse of magnitude δ1 occurs in the signal
at time t = 1. A second impulse of magnitude δ2 occurs at
time t = 2.

assumed to be known. Thus, we have no initial distribution
information with respect to the second object.

Optimizing over the times at which the impulses occur
is the process through which the problem of correctly asso-
ciating measurements to their object of origin is solved. In
previous work [13] it was assumed that the total number of
impulses was known a priori. The main contribution of the
work presented in this paper is to provide an algorithm for
estimating the total number of impulses.

The total number of impulses is estimated using a tra-
jectory optimization algorithm. The trajectory optimization
algorithm is similar to a continuous-time analogue of the
probabilistic data association filter (PDAF) [1]. The main
theoretical difference between the PDAF and the trajectory
optimization procedure presented in this work is that the
entire measurement history is taken into account at the same
time in the trajectory optimization, as opposed to recursively.
As shown in Section IV, this distinction has important
implications when the number of incorrect measurements
received consecutively is large.

The structure of this paper is as follows. In Section II,
the multi-target data association problem is analytically
defined. Section III-A contains the main contribution of
this paper, which is a trajectory optimization algorithm that
provides a way to estimate the number of impulses that
occur. Section III-B is a short summary of the second-
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order method derived in [13], where the technical details
of the optimization over the impulse times are provided.
In Section IV, IDA is compared to the probabilistic data
association filter. Lastly, Section V contains conclusions and
directions of future work.

II. PROBLEM DEFINITION

The systems of interest to the work presented in this paper
contain two objects that share the same dynamics (which
will in general be nonlinear). There is a single sensor that
attempts to measure the position of a pre-specified object of
interest at all times. At unknown random times, the sensor
inadvertently measures the other object. Neither the times
at which the sensor measures the position of the second
object nor the total number of times that it occurs are known.
The goal of the data association problem in this work is to
determine both.

Analytically, the systems considered are described by

ẋi = f(xi(t), t), xi(0) = xi0, where i = {1, 2}
z = h(xi(t), t) + w(t), (1)

where z is the measurement, and w(t) is a noise term. In
general, none of the results presented in this work depend
on the distribution from which the noise term w(t) originates.
Note that the measurement in (1) always originates from a
single one of the two targets in the system.

Let us assume that the object of interest has dynamics
described by ẋ1 = f(x1(t), t), x1(0) = x1

0. The goal of the
data association problem for this work is to then determine
the times at which measurements originate from the second
object in the system.

III. IMPULSIVE DATA ASSOCIATION (IDA)
This section is split into two separate subsections. The

first subsection contains the main contribution of this work,
which is a trajectory optimization procedure that serves the
purpose of estimating the total number of impulses that
occur in the system. The second subsection contains a brief
analytical description of the second-order derivative used in
the subsequent optimization over the impulse times [13].

A. Trajectory Optimization

First consider the infinite dimensional space of curves L,
where ξ ∈ L and ξ = (α, µ). Next define the cost function

S(η) =
∫ T

0

`(s, x(s), U(s))ds (2)

where η ∈ T and T ⊂ L is a trajectory manifold [7] defined
such that η = (x, U) satisfies ẋ = F (x, U) subject to the
initial condition x(0) = x0.

The constraint on the trajectory manifold, ẋ = F (x, U),
defines a projection operator P : L → T [6]

η = P (ξ) :
{
ẋ = F (x, U), x(0) = x0

U = µ+K(α− x) (3)

where U is a diagonal matrix function that is linear in the
state and

ẋ = F (x, U) = U(t)f(x, t). (4)

The exact details of obtaining the control U in (3) are left
to the references [6], [7], but it should be mentioned that the
linear optimal control signal is found in a very similar way to
the optimal control in the linear quadratic regulator (LQR).
Note that regardless of whether or not the dynamics (1) are
linear or not, the overall trajectory optimization described
in this section is nonlinear. This multiplicative structure is
chosen so that the control is nominally equal to the identity
when the reference signal does not experience an impulse.

Having defined the projection operator, let us return to
the cost (2) and explicitly state the trajectory optimization
problem. Since the ultimate goal of this optimization is
to find curves η ∈ T , let us first state the constrained
optimization

min
η∈T

S(η). (5)

The purpose of defining the projection operator (3) is so
that the constrained optimization (5) can be rewritten as an
unconstrained problem

min
ξ∈L

S(P (ξ)), (6)

since L is an infinite dimensional manifold of curves.
Steepest descent is the method chosen to solve the uncon-

strained optimization defined in (6). In order to apply the
steepest descent algorithm, we must first find several curves:
ζ = (β, ν) such that ζ ∈ TξL and γ = (z, v) such that
γ ∈ TηT , where TξL is the tangent space of L at ξ and
TηT is the tangent space to T at η. Equation (3) also defines
another operator DP : TξL → TηT such that

γ = DP (ξ) ◦ ζ :
{
ż = Az +Bv, z(0) = z0
v = ν +K(β − z)

where the control v is linear in the state (as in (3) the process
of determining K is again similar to the LQR problem). The
rest of the technical details of the implementation of the
optimization of (6) are left to [3], [6], [7].

Here we focus on the implementation of the trajectory
optimization. For example, consider the system where each
of the two objects have dynamics described by

ẋ1 = ω1(t) cos(θ(t))
ẋ2 = ω1(t) sin(θ(t))
ẋ3 = ω2(t),

where ω1(t) as well as ω2(t) are constant, and the initial con-
ditions between the two objects vary in the x2−coordinate
This difference in initial conditions leads to an impulse
that also occurs in the x2−coordinate. The measurement is
assumed to be of the full state under the identity mapping.
For this example, U(t) in (4) is defined to be

U(t) =

 u1 0 0
0 u(t) 0
0 0 u3

 , (7)

where u1 = u3 = 1 due to the fact that the impulse always
occurs in the x2−direction.
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The scenario considered for this ex-
ample system is illustrated at the link
http://www.youtube.com/watch?v=MPg7mSmRh2I. This
link shows a movie of two objects, assumed to be airplanes,
moving through three periods on circular trajectories.
The sensor is represented by the grey circle located at
(x1, x2) = (0, 0.5). When the sensor is correctly measuring
the position of the object of interest, the line from the sensor
to the planes is green. When the second object occludes
the sensor’s view of the object of interest, the line from the
sensor to the planes turns red. We assume that there are
three intervals over which the second object, i.e., not the
object of interest is the object that is measured. The solid
black line in Figure 2(a) shows the measurement signal
produced by the sensor over a single period. The dotted line
represents the trajectory of the object of interest and the
dashed line the trajectory of the second object. Note that the
portion of the solid black measurement signal at the bottom
of Figure 2(a), which roughly falls on top of the dashed
trajectory, represents the portion of the measurement signal
that originates from the second object. Figure 2(b) shows
the control signal, in the x2−direction, that results from
applying the trajectory optimization. Due to the fact that
there are three intervals over which incorrect measurements
are received, we expect there to be six impulses modeling
the switching between measuring the trajectories of the two
objects (one impulse switching from the trajectory of the
object of interest to the trajectory of the second object and
another to switch back, three separate times). The impulses
in the measurement signal show up as peaks in the control
signal in the trajectory optimization. In order to detect these
peaks automatically, we need to threshold the control signal
u(t).

In order to threshold the control signal, we need to
make the assumption that the probability of detection, i.e.,
the probability that the correct measurement is received, is
known. Knowing the total time over which measurements
are received as well as the probability of detecting a correct
measurement, it is possible to estimate the total time over
which correct measurements are received.

In order to facilitate the thresholding procedure, it is
helpful to first low-pass filter the control signal u(t). The
result of low-pass filtering the control signal shown in Figure
2(b) is shown in Figure 3(a). The maximum deviation in the
filtered signal u′(t) away from the nominal value u′(t) = 1
can be used to define upper and lower bounds for a window
around u′(t) = 1. In the current example, the upper bound
of this window is u′(t) = 1.0778 and the lower bound is
u′(t) = 0.9222. The thresholding procedure is performed
by evenly shrinking this window around u′(t) = 1 until the
percentage of the total measurement time enclosed by the
window is equal to the probability of association. Figure 3(b)
shows the result of applying this procedure. The dashed lines
in Figure 3(b) represent the boundaries of the window around
u′(t) = 1 such that the percentage of the time enclosed
by these bounds is equal to the probability of association.
As shown in Figure 3(b), six peaks, corresponding to the

(a)

(b)

Fig. 2: (a) Measurements for the two-plane example (solid
line). The dotted line represents the trajectory of the object
of interest and the dashed line the trajectory of some plane
nearby. (b) The control signal that results from applying the
trajectory optimization to the two-plane system when six
total impulses occur.

six impulses in the measurement signal, are detected by this
thresholding procedure.

A natural question is what happens to the thresholding
described in this section when the amount of relative noise
in the measurement signal is increased? Figure 4(a) shows
the same picture as that in Figure 2(a), except that the initial
conditions of the two airplanes are closer together. The dotted
line again represents the trajectory of the object of interest,
the dashed line the trajectory of the second object, and the
solid line the measurement signal. The distribution from
which noise is sampled is the same for the measurement
signals shown in Figures 2(a) and 4(a). Decreasing the dis-
tance between the two airplanes increases the relative amount
of noise present in the measurement signal. This increase
can be seen by comparing the control signals that result
from applying the trajectory optimization shown for the case
where the airplanes are relatively far apart, Figure 2(b), and
relatively close together, Figure 4(b). Note that the distance
between the two airplanes in the example represented in
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(a)
(b)

Fig. 3: (a) Filtered control signal and (b) thresholding applied
to the filtered signal.

Figure 4 is equal to twice the standard deviation of the
distribution from which the noise in the measurement signal
is sampled (we are assuming that the standard deviation is
equal in both the x1− and x2−directions). The distance
between the airplanes in the example presented in Figure 2
is about four times the standard deviation.

Figure 5(a) shows the result of low-pass filtering the con-
trol signal shown in Figure 4(b). Figure 5(b) shows the result
of applying the thresholding procedure described above to
the filtered signal shown in Figure 5(a). Figure 5(b) shows
that we are still able to identify six peaks corresponding to
the six impulses in the measurement signal, but it is clear
that the local minima in the filtered signal u′(t) around the
threshold values (represented by the dashed lines) are making
this procedure less clear.

B. Optimization Over Impulse Times

As mentioned earlier, the trajectory optimization proce-
dure in Section III-A serves the purpose of providing an
estimate of the total number of impulses that occur in the
multi-target systems that are the focus of this work. The
estimate of the number of impulses serves as input for a
second optimization procedure.

The second optimization in the IDA algorithm is over the
times at which the impulses occur. The purpose of optimizing
over the impulse times is to determine the intervals over
which measurements originate from an object other than the
object of interest [13].

In this subsection, second-order adjoint equations for the
second-order derivatives of the cost are provided. The reason
for providing the adjoint equations are that they drastically

(a)

(b)

Fig. 4: (a) Measurements for the two-plane example (solid
line) where the relative distance between the two airplanes
is relatively small when compared to the standard deviation
of the distribution from which the noise in the measurement
signal is sampled. The dotted line represents the trajectory
of the object of interest and the dashed line the trajectory
of another plane nearby. (b) The control signal that results
from applying the trajectory optimization.

reduce the number of computations needed for calculating
the derivatives of the cost when there are even a small
number impulses in the system.

Define the cost function

J(·) =
∫ tf

t0

`(x(s), s)ds (8)

where `(x(s), s) = (xd(s)− x(s))T (xd(s)− x(s)).
The second derivative of the cost function J(·) with

respect to the switching time τj where τi ≥ τj is

DτjDτiJ(·) ◦ (∂τj , ∂τi) =

D1`(x(τ−i ), τ−i ) ◦ (Dτj
xd(τ−i ) ◦ ∂τi

∂τj
−Dτj

x(τ−i ) ◦ ∂τj)
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(a)
(b)

Fig. 5: (a) Filtered control signal and (b) thresholding applied
to the filtered signal when the distance between the two
airplanes is small compared to the standard deviation from
which the noise in the measurement signal is sampled.

−D1`(x(τ+
i ), τ+

i )◦(Dτj
xd(τ+

i )◦ ∂τi
∂τj
−Dτj

x(τ+
i )◦∂τj)

−D1`(x(τi), τi) ◦Xi∂τiδ
j
i + ψ(tf , τi) ◦Xi,j

+ Ω(tf , τi) ◦ (Φ(τi, τj) ◦Xj , Xi) (9)

where Ω(t, τ)◦(U, V ) : Rn×Rn → R is the bilinear operator
found by integrating

Ω(t, t) ◦ (U, V ) = 0n×n (10a)
∂

∂τ
Ω(t, τ) ◦ (U, V ) = −D2

1`(x(τ), τ) ◦ (U, V )

− ψ(t, τ) ◦D2
1f(x(τ), τ) ◦ (U, V )

− Ω(t, τ) ◦ (D1f(x(τ), τ) ◦ U, V )
− Ω(t, τ) ◦ (U,D1f(x(τ), τ) ◦ V ) (10b)

backwards over τ from tf to τi and Xi,j is an initial condi-
tion that results from taking the derivative of Dτi

x(t) ◦ ∂τi
with respect to τj . The proof of (9), (10a), and (10b) are left
to the reference [13].

Convergence results for the impulse optimization over six
impulse times (Figure 2(b)) using a second-order method
are shown in Figure 6. The horizontal axis in Figure 6 is the
iteration number of the algorithm and the vertical axis is the
first derivative of the cost associated with the impulse times
plotted on a log scale; quadratic convergence is achieved.

IV. COMPARISON TO PDAF

In this section we compare the performance of a Kalman
filter used in conjunction with IDA to the PDAF. The

Fig. 6: Second-order convergence results of applying impulse
optimization to the two plane, six impulse system.

PDAF is a recursive method and is less computationally
burdensome than IDA, thus, some explanation as to why
this comparison is being made is required. Due to the fact
that we are assuming no a priori knowledge of the second
object in the system, and are considering only a single
scan through the data, comparison to single scan MCMCDA
[9] is not possible. While it is possible to compare to the
multiple hypothesis tracker (MHT) [2], the computational
complexity of MHT goes up as 2n with the number of
measurements. Adding measurements in the IDA algorithm
amounts to integrating over a longer time period, and thus
there is no exponential growth (with respect to the number
of measurements received) in computational complexity.

Figure 7 shows a second scenario for the two airplane
example. In Figure 7(a) the dotted line represents the trajec-
tory of the object of interest, the dashed line the trajectory
of a second object, and the solid line the portions of the
two trajectories that are measured over a single period of
the circular trajectories.

The solid black line in Figure 7(b) represents the measure-
ment signal. The dashed line represents the result of applying
the PDAF to the measurement signal, and the dotted line
the result of applying a Kalman filter used in conjunction
with IDA. The black point represents the final measurement
originating from the object of interest before the impulse
occurs, i.e., before the trajectory of the second object is
measured.

Figure 8 shows an RMS error comparison between the
PDAF (dashed line) and the Kalman filter used in conjunc-
tion with IDA (dotted line). The horizontal axis represents
the measurement number and the vertical axis the RMS
error. The solid black point represents the last measurement
originating from the object of interest before the second
object begins to be measured. Figure 8 shows that when
using the PDAF the RMS error is higher due to the addition
of measurements from the second object (i.e., not the object
of interest). IDA leads to reduced error because we are
not including the measurements determined to be from the
second object into the updated state calculated when using
the Kalman filter in conjunction with IDA; we are thus
partitioning the set of measurements. We are thus able to
accomplish this partitioning without the added complexity
inherent in MHT or multi-scan MCMCDA.
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(a)

(b)

Fig. 7: Results of applying PDAF (dashed line) as well as
IDA (dotted line) to a set of noisy measurements (solid line)
over a single period of the counterclockwise-circular trajec-
tories shown. The large point represents the last measurement
from the object of interest before the first impulse is detected
by IDA.

V. CONCLUSIONS AND FUTURE WORK

This paper introduces an impulse-based data association
method that provides an estimate of the number of impulses
as well as the times at which they occur. This information
serves as an input for an optimization procedure which
optimizes over impulse times. This optimization determines
the periods over which measurements not originating from
an object of interest are received. It was shown that by
treating every measurement received at the same time, i.e.,
by optimizing over the entire “measurement trajectory,” an
advantage in terms of RMS error can be achieved over

Fig. 8: RMS error comparison between the Kalman filter
used in conjunction with IDA (dotted line) and the PDAF
(dashed line). The large point corresponds to the measure-
ment at which the first impulse is detected by IDA. Note
that the large point in Figure 7 corresponds to the same
measurement as it does here.

recursive methods (PDAF).
A future direction of this work is to optimize over the

impulse magnitudes as well as the impulse times. Optimizing
over the impulse magnitudes, it is possible to eliminate any
assumptions on the number of system targets. The resulting
algorithm would perform multi-target data association with
similar results to multi-scan MCMCDA [9].
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