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Abstract—This paper introduces an anomaly detection 

method based on a combination of nonparametric models of 

the process and multivariate analysis of residuals.  This 

method basically intends to recognize abnormal conditions in 

the operation of a monitored system, considering for this 

purpose the definition of “baseline” operation through 

historical datasets. In particular, the proposed anomaly 

detector utilizes similarity–based modeling (SBM) techniques 

to represent the process behavior and principal component 

analysis (PCA) for the study of model residuals. The 

methodology not only helps to detect changes in the operation 

of the system, but also provides a structured algorithm for 

the inclusion of representative samples in the data set that is 

used to define the baseline of the system. The method is 

validated using data from a power generation plant.   

I. INTRODUCTION 

HE implementation of adequate monitoring systems 
have become a key issue in a world where the 

economic impact of system reliability and cost-effective 
operation of critical assets is steadily increasing. In this 
sense, anomaly detectors are one of the first and most 
important steps needed to ensure operational continuity of 
the process, plant safety, as well as high production quality 
standards.  

An anomaly detector [1] is a module that basically 
intends to recognize abnormal conditions in the operation 
of a monitored system. In most real applications, the 
anomaly detector is required to perform this task while 
minimizing both the probability of false alarms and the 
detection time (time between the initiation of a fault and 
its detection), given a fixed threshold. Conventional 
anomaly detection and fault diagnosis algorithms [1]-[2] 
provide a solution to the problem of monitoring a finite 
number of fault modes that are deemed to be severe, 
frequent and “testable” on the basis of a Failure Modes, 
Effects, and Criticality Analysis (FMECA).   

Classical fault detection and identification (FDI) 
methods rely on an accurate model of the system under 
consideration and the utility of an innovation or 
“discrepancy” between the actual plant output and the 
model output, for all possible operating conditions, to 
detect an unanticipated fault [2][3]. The innovation (or 
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residual) method captures the fault signature, and suggests 
which residuals are normal or which ones result from fault 
conditions. A variety of techniques have been proposed 
based on estimation theory, failure sensitive filters, 
multiple hypothesis filter detection, generalized likelihood 
ratio tests, model-based approach, statistical analysis, and 
information theory [3]-[11]. 

Availability of historical data is always assumed for 
purposes of defining an appropriate baseline. In fact, 
whenever parametric models are used to describe the 
system under analysis, this information helps to determine 
both the most appropriate structure for these models and to 
estimate adequate initial conditions for their parameters. 
However, if the actual system dynamics are not well 
understood, then verification, calibration, and validation of 
parametric models represent a difficult challenge. In 
contrast to the aforementioned problem, nonparametric 
models offer a direct representation of nonlinear systems 
based on historical data. In this manner, the definition of 
“baseline” operation is done only by selecting of a number 
of samples where the process behaved accordingly to a 
particular set of requirements or standards, avoiding the 
need of a particular structure or linear/Gaussian 
assumptions.  

This work implements a system monitoring scheme to 
identify different operation conditions utilizing a 
nonparametric modeling approach known as Similarity-

based Modeling (SBM). The supporting concept to 
implement this approach is to estimate the system output 
with SBM and compare it with the actual, measured, 
output when available; if this comparison reveals that the 
system is not performing according to a known, historical, 
database; or even if the modeling structure is not capable 
to replicate the system behavior, it is possible that the 
database being considered does not represent all of the 
possible operation conditions of the system under study. If 
this is the case, it will be necessary to complement the 
database with new samples in order to reduce the error 
associated to the system modeling, which is also a 
measure of how deviated is the system w.r.t a known 
database.  

On the other hand, if the modeling structure properly 
replicates the system behavior, (under a given criteria) in 
multivariate systems it is also necessary to verify that the 
known relationships between variables still hold. Due to 
the large number of variables to estimate in most of the 
systems, the assessment of the system behavior cannot be 
performed purely considering each variable estimation 
error, consequently, multivariate analysis techniques such 
as Principal Component Analysis (PCA) must be 
employed in order to reduce the space dimension. 
Additionally, once the PCA has been applied, hypothesis 
testing resources such as the Hotelling’s Test can be 
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considered to ensure that the modeling errors remain in a 
statistically acceptable region. 

An extension of the proposed methodology is to 
determine faulty conditions, since in case that the system 
could not be modeled with the extended database, the 
system could be operating under an abnormal condition. In 
this regard there must be noted that, in case of 
implementing a fault detection scheme, the addition of 
new samples to the database must be done with special 
attention of not incorporating samples corresponding to 
these abnormal conditions, since if this is done, the SBM 
algorithm will consider faulty conditions as known, and 
hence, normal. On the order hand, if the objective is to 
replicate system behavior given any operation condition, 
all of the samples should be considered. As a final remark, 
it is important to note that the proposed anomaly detection 
scheme also provides a structured algorithm for the 
inclusion of representative samples in the data set that is 
used to define the baseline of the system, a critical matter 
in complex time-varying/nonlinear systems.     

This paper is organized as follows, Section II presents 
the necessary theoretical resources for the implementation 
of our system monitoring scheme this is the fundamentals 
of SBM, principal component analysis, and the Hotelling’s 
test. Section III explains the considerations regarding the 
data preprocessing, the justification for the implementation 
of the proposed techniques, and the results of the 
estimation routine with a two different databases 
associated to power generation plants. Finally, Section IV 
states the concluding remarks of the works and suggests 
the guidelines of future research work in this field. 

II. THEORETICAL BACKGROUND 

The proposed anomaly detector uses a combination of 
several well known methods to achieve its objective. This 
section focuses on presenting the theoretical framework 
for each one of these tools.      

A. Similarity-based Modeling for System Monitoring 

One advantage of the nonparametric modeling 
techniques is that they do not require an a priori 
knowledge of the system, since its implementation is 
based on the identification of similarities and relationships 
between a given data set and online observations, instead 
of the construction of algebraic structures based upon 
these observed data. A particular case of such structures is 
the Similarity-based Model (SBM), which estimates the 
system output by comparing online measurements and a 
historical data base which represents the system under 
study. SBM has proven to be a successful estimator when 
used in high dimension systems using considerably low 
number of training samples [13]. 

In order to understand the SBM basic concept for 
systems modeling, consider the static system defined by 
(1): 
 � = ����, � ∈ 	
� , � ∈ 	
�																											�1� 
where  � and � are the system input and output 
respectively, and ��. � is an unknown function. 

When input and output measurements are available for 
the system in (1), it is possible to define the following 
training matrices (input and output matrices respectively) 
according to (2): 

�� = ����� …��� ∈ 	
�×� ,																									�2. �� �� = ����� …��� ∈ 	
�×�,																										�2. �� 
 

where �� = �����, ∀� = 1. . �, and the pairs ���, ������..� 
accurately represent the system behavior; i.e., they span 
the regions containing the system operations points. 

Hence, SBM assumes that for a given an input �∗, it is 
possible to estimate �∗ = ���∗� by a linear combination of 
the columns of ��  denoted by �!∗. Consequently, the 
problem of estimating �∗ = ���∗� can be regarded as the 
determination of a vector " ∈ 
#� such that �!∗ = ��". 

This vector can be found as done in (3).  
 

" = "$
1%&' ∙ "$ ,																																																		 �3. �� 

"$ = ���'∆���+����'∆�∗�,																									�3. �� 
. 

where  ∆ is a similarity operator [13][14]. 
SBM is not restricted to any particular similarity 

operator; however, according to the literature it must have 
certain features. For two elements ,, - ∈ 
., ,∆- ∈ 
# 
must be symmetric, reach its maximum in , = -, and 
monotonically decay with ‖, − -‖.  

The literature does not provide a framework for 
choosing a suitable similarity operator based on the 
available measurements. In this regard, the designer has to 
consider the performance of several operators in order to 
implement an SBM scheme that truly captures the data 
variations and similarities. In this work, the operators that 
were considered are based on exponential functions, 
saturated linear operators, or the Epanechnikov kernel. 

As presented above, SBM is a nonparametric modeling 
technique that allows the estimation of static systems, 
however, the vast majority of the industrial systems are 
dynamic ones, and hence, they go beyond of the scope of 
the SBM algorithm if the implementation limits to what it 
has been presented so far. This problem can be 
surmounted from two different standpoints provided that 
online measurements are available; the first one involves 
the incorporation of past observations (both inputs and 
outputs) as regressors to estimate the system response, by 
doing so not only the static input-output relationships are 
captured, but also the variables sequential dependence. 
The second approach is to merely neglect the dynamic 
properties of the system, regarding it as a static one. This 
concept can only be applied when the data is acquired at a 
very high frequency w.r.t. the system variations, such as 
thermo-dynamical or mechanical systems. 

Given that a nonparametric modeling structure for 
dynamic systems is available (SBM), as well as a 
historical database representing some of the operation 
conditions, it is possible to evaluate whether the system 
behavior is within these known operation conditions or 
not. This can be performed by contrasting the online 
measurements, and the SBM estimates, specifically, as 
SBM emulates the plant behavior in normal operation 
conditions, if the estimates differ considerably from the 
actual measurements (w.r.t. a given criteria), it could be 
inferred that the system is not operating in a known 
operating point, and consequently the database must be 
extended with samples representing the unknown 
condition. 
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After the process of incorporating samples to the 
database is complete, i.e. once for every input �∗ the 
estimation error given by 
 1 = �∗ − �!∗																																																																						

= ���∗� − �� ���'∆���+����'∆�∗�
1%&' ∙ ���'∆���+����'∆�∗� ∈ 	
�					 

 
is acceptable under a specified criteria, the relationships 
between the measured variables should be assessed to 
ensure consistency with the operation conditions 
represented in the database. Due to the large number of 
variables that are present in industrial systems, 
multivariate processing algorithms should be implemented 
to verify these relationships. In the following, a broadly 
used example of these algorithms is presented.   

B. Principal Component Analysis 

Principal Component Analysis (PCA) is a 
dimensionality reduction technique for correlated 
variables, i.e. for a given a set of correlated variables, it 
aims to find a set of uncorrelated variables of smaller 
dimension. PCA performs a linear transformation of the 
data, which is optimal in terms of capturing its variability, 
and determines a new data set ordered by the level of 
representation of the entire process variance. 

Theoretically, for the following data matrix: 
 

2 = 3��� ⋯ ���⋮ ⋱ ⋮��� ⋯ ���7, 
 
which comprises � observations for each one of the 8 
variables, PCA finds a loading matrix 9 ∈ 
�×: , � ≤ �, 
which relates 2 to the first � principal components being 
contained in the score matrix  
 < = 29. 
 

Denoting the �=> column of < by ?�, the transformation 
performed by PCA holds [15]:  

1. Var�?�� ≥ Var�?�� ≥ ⋯ ≥ Var�?:�. 
2. Mean�?�� = 0, ∀�. 
3. ?�'?H = 0, ∀� ≠ J. 
4. There is no other transformation of 	� 

components that captures more variations of the 
data. 

Additionally, the projection back in 8-dimensional 
space is given by [16]: 2K = <9'  
and hence, the difference between 2	and 2K is the residual 
matrix L: L = 2 − 2K, 
 
which captures the variations of space generated by the 
remaining 8− � components, and has theoretically low 
signal-to-noise ratio. It has been formally justified [17] 
that, when � is properly chosen, these remaining 
components represent the random noise of the 
measurements, whereas the first � components describe 
dynamic variations.   

The application of PCA in our system monitoring 
framework is to reduce the dimension of the error 1 

(which is M) in order to analyze a smaller number of 
variables when identifying that the known relationships 
between the measured  variables do hold. Once the PCA 
linear transformation has been performed, one resource to 
recognize if the system is performing as expected is to run 
a hypothesis test on the deviation of the error principal 
components.  

C. Hotelling’s Test 

This test characterizes the variability of multivariate data 
by a scalar threshold, which is associated to a given level 
of significance [18]. In our case this allows to evaluate, for 
a given level of significance, if the estimation error 
(through its principal components) relies within an 
acceptable region for a selected subset of variables of 
interest. 

To properly introduce the Hotelling’s test, consider the 
sample covariance of the data matrix 2 given by 
 

N = 1� − 12'2. 
 
The Hotelling’s test states that a particular observation � ∈ 
�, could be represented by the training set, if the 
statistic <� = �'N+��, 
 
is below the threshold   
 

<O� = 8�� − 1��� + 1���� − 8� QO�8, � − 8�, 
 
where QO�R, J� is the S level of confidence of the F-
distribution with R and J degrees of freedom. 

III. ANOMALY  DETECTION IN POWER GENERATION 

PLANT USING SIMILARITY-BASED MODELING AND PCA  

The proposed monitoring scheme was implemented in a 
Chilean natural gas power generation plant, which 
measurements were composed by 14000 observations for 
each one of the variables such as pressures, temperatures, 
valves positions, voltages, speed of rotating parts, and 
Boolean states. The data, acquired using OSIsoft PI 
system, were grouped in the input matrix 2 ∈ 
�TUUU×T�, 
and the output matrix V ∈ 
�TUUU×WX; being  42 and 53 the 
number of input and output variables respectively. The �=> 
rows of the matrices 2 and V were respectively denoted by �� ∈ 
T� and �� ∈ 
WX, and the matrix containing all the 
measurements was denoted by the concatenated matrix Y = �2	V� ∈ 
�TUUU×ZW. Also, these data were processed 
sequentially in order to emulate online observations, 
where a normalization step was included in order to avoid 
biased results due to the different variables magnitude. All 
the numerical implementations of this work were 
performed in MATLAB. 

In order to implement a nonparametric (SBM) 
monitoring scheme, the literature states that a data base, 
accurately representing the different operation conditions, 
must be available. Unfortunately, in our case there is no 
database that represents the system behavior, nor 
information about the nature of the available data, i.e. 
within the matrices 2	and	V, “normal”—as well as 
“faulty”—operation conditions can be found. To overcome 
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this problem, an initial training subset within the available 
data was considered, and in base of the estimation error 
this database was extended. 

A. Preprocessing 

The first test to be done in order to justify the use of 
SBM techniques, is to verify if the available data presents 
different operation regions. In order to do so , the first 4 
principal components of the variables in Y, which capture 
the 87% of the data variation, are presented in Fig. 1 to 
identify the existence of clustered operation regions. From 
this figure well defined operation points are identified, this 
evidence suggests the use of a monitoring technique based 
on SBM, since it relies on finding the current operation 
condition of the system to estimate its output. It must be 
noted that this approach only reveals the existence of 
different operation conditions, but it does not provide any 
notion of these conditions’ nature (normal or faulty). 

 

 
 
Fig. 1. Principal component analysis (PCA) of data from power 
generation plant. Clusters are the first indication of the existence of 
several operating points within the data set. 

 
An important feature to discuss at this stage is the 

dynamic consideration of the system, and hence of the 
modeling structure. The system under study incorporates 
thermodynamical and mechanical subsystems, and more 
importantly, it is mainly used under a feedback control 
loop that ensures tracking of constant set points. These 
facts suggest the consideration of a static model such as 
the SBM presented in Section II.B, this assumption will 
indeed lead to estimation errors in case of set point 
changes, however, this time periods are not important 
when compared to the phenomena of interest (sustained 
faulty conditions).       

Being stated that the data admits the use of SBM 
techniques, and assuming that the system dynamics can be 
neglected, a suitable similarity operator should be defined 
w.r.t to the statistical properties of the measurements. 
After a preliminary study, the similarity operator that best 
captured the data variability was the saturated triangular 

operator defined in (4). 
 

,∆- = [\ − ‖, − -‖] 						‖, − -‖ ≤ \ + ]						‖, − -‖ ^ \ + ]													�4� 
 

where ] ^ 0 is a small number that ensures ,∆- ^ 0, and \ ^ 0 is a threshold depending on the observations 
variance. 

With these preliminary considerations, it is now 
possible to implement the SBM monitoring scheme, and 
according to its estimation errors, extend the database. 

B. Database Extension 

As stated above, the training matrices to be used as the 
initial database will be chosen within the available data, 
which were acquired using OSIsoft PI system. Data is 
comprised of 100 input-output pairs, evenly-spaced, 
within the first 4000 samples contained in the matrices X 
and Y, and it will be denoted by �-U. In order to avoid 
biased—and high variance—estimates due to the different 
magnitudes in the measured data, the mean and variances 
of such variables have been estimated (by the sample 
mean and variance calculated using the training set) and 
used to normalize the data. 

The Mean Squared Error (MSE) related to the 
normalized output and its SBM estimate is presented in 
Fig. 2. From this figure, it can be seen that using the 
specified database, the MSE related to the SBM estimation 
remains considerably low (provided that the signals to 
estimate are zero-mean, unit-variance) for the region that 
contain the training set (the first 4000 samples) and even 
for some regions that does not contain any training 
sample. This reveals that the training set constructed with 
samples taken in the first 4000 time instants is also 
representative of the system behavior in other periods 
(specially [10000 12000]) when using the SBM algorithm. 

 

 
Fig. 2.  Squared error associated to SBM model of power generation 
plant based on DB0  (MSE:Error = 0.22341) 

 
From Fig. 2 can also be noted that most of the high 

MSE estimates occur in reduced time periods, and hence 
they are of no interest in this analysis since they could be a 
consequence of neglecting the system dynamics, or merely 
sensor errors. However, there is a region that presents a 
sustained MSE, which could be produced by two possible 
scenarios, i) the system input is not represented in the 
training set, and hence the SBM algorithm is not capable 
of representing the output, or ii) the system input is 
recognized by the training set, but the system is actually 
behaving differently. To find out what scenario the system 
is, Fig. 3 shows the maximum—unnormalized—SBM 
weights series "$ , which is an indicator of the successful 
input recognition by the current training database. This 
figure reveals that the area around time instant 7000, the 
system inputs are not found to be similar to any sample in 
the database (the first case mentioned above). Hence, to 
make sure that this is not a faulty condition, samples 
accurately representing this period should be incorporated 
into the database in order to derive a consistent modeling 
structure. Note that the figure also shows the maximum 
weights corresponding to the training set, which are all 
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equal to 1, suggesting that the training samples are 
properly identified in the testing stage. 

 

 
Fig. 3.  Maximum unnormalized weights within SBM model of power 
generation plant as a representative measure of the identification of 
online measurements.  

 
The extended database �-� contains the samples in �-U plus two samples in the mentioned area, specifically 

 �-� = �-U ∪ a��bbUU, �bbUU�, ��bcUU, �bcUU�	d. 
 

From Fig. 4 can be seen that the MSE associated to �-� 
does not present the sustained error region due to unknown 
system inputs. This reveals that the proposed algorithm is 
capable of identifying the presence of unknown operation 
points, and incorporating them in order to perform a 
successful modeling of the system. 

 

 
Fig. 4.  Squared error associated to SBM model of power generation 
plant based on DB1 (MSE-Error = 0.17032) 

 

C. Relationship between measured variables 

To verify that, in addition to minimizing the estimation 
MSE, the proposed algorithm also captures the 
relationship between the system variables, the initial 
database has been extended to minimize the MSE 
throughout the period [1 14000]. The new database �- 
comprises 288 samples (�-U plus 188 samples) manually 
chosen based on the MSE and the unnormalized weights 
just as explained in Section III.B; note that using a training 
set of 288 samples to estimate a sequence of 14000 
observations means that about a 2% of the samples are 
being used to train the algorithm. The resulting MSE of 
this procedure (presented in Fig 5) presents lower values 
when compared to the MSE signals corresponding to �-U 
and �-�. 

Additionally, the first 4 error principal components, 
which represent the 92% of the error variation, are plotted 
in Fig. 6, where the Hotelling’s test has been run for every 
pair of components to find the 95% confidence ellipse, 
using the software SCAN developed by CONTAC 
Engineers Ltda. This figure shows the portion of the 
estimates error that is out of the confidence ellipse, and 
also suggests a possible dependency between the error 
principal components; as a matter of fact, the cross-shaped 

plots reveal the presence of—at least—as many operation 
conditions as plot axes for each pair of components. 

 

 
Fig. 5.  Squared error associated to SBM model of power generation 
plant on testing data using �- (MSE-Error = 0.11641) 
 

 Fig. 6. Hotelling’s 95% control ellipses (black) for SBM model residuals 
(grey) using the software SCAN (developed by CONTAC Engineers 
Ltda.). The corresponding components (square brackets) and the portion 
of the samples that rely out of the ellipse can be found above each plot. 

 
As the overall estimation MSE (Fig. 5) and the 

Hotelling’s test (Fig. 6) show that the system estimation is 
acceptable when appropriate samples are added to the 
training set as done in III.B, the output SBM estimates are 
presented as follows. Fig. 7 presents a comparison 
between three important normalized output signals and 
their SBM estimates, from top to bottom these variables 
correspond to a device temperature which is continuous 
and present fluctuations, an operation  condition which is 
a Boolean, and a gas temperature which is continuous but 
it presents minimum variations around its values. Despite 
the different nature of these variables, the SBM algorithm 
delivers acceptable estimates, and it can be noted that the 
estimation delay is minimum. Note that for the estimate of 
Boolean states within the system, a saturator should be 
used. 

IV. CONCLUSIONS 

This paper presents and tests a scheme to detect 
anomalies in a power generation plant by comparing the 
online system outputs, and their estimates computed by a 
nonparametric modeling algorithm known as Similarity-
based Model. The proposed scheme also allows the 
designer to include new samples in the training set in order 
to improve the estimation routine. An assessment of the 
estimation error, and the relationship between systems 
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 Fig. 7. Normalized output process (grey line) variables and their 
respective SBM representation (black dots) in a power generation plant. 
From top to bottom: device temperature, Boolean state, and gas 
temperature. 

 
variables is also provided; this is done by means of 
Principal Component Analysis, and the Hotelling test. 
Once a representative training set is constructed, the 
proposed scheme estimate the system output with low 
squared errors and it also captures the relationships 
between the variables. Another key feature of this work is 
that the data set used to estimate the system output is 
considerable small when compared with the estimation 
horizon (228 samples to estimate 14000 observations). 
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