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Abstract— This paper studies how to place a minimum num-
ber of sensors in discrete event systems modeled by partially
observed Petri nets while maintaining structural observability.
When the sensors are constrained to be associated with specific
sets of transitions (which could be the result of physical or
geographical constraints), the resulting constrained optimal
sensor selection problems are shown to be reducible to the
optimal place sensor selection (OPSS) problem introduced in
previous work. These reductions establish the central role
that the OPSS problem plays in our sensor selection problem
formulation. Therefore, in order to obtain a solution with
known performance guarantees (that we precisely characterize),
we propose in this paper a heuristic method based on a
reduction from the OPSS problem to the set cover problem.

I. INTRODUCTION

A discrete event system is a dynamic system that evolves

in accordance with the abrupt occurrence, at possibly un-

known and irregular intervals, of events [1]. Such systems

arise in a variety of contexts, ranging from energy distri-

bution networks and automated manufacturing systems to

communication networks and air traffic control systems.

Applications that involve monitoring and controlling of such

systems rely on information conveyed by various types

of sensors that are available in the system. Usually it is

unnecessary/impossible to place sensors everywhere because

sensors may be unavailable or prohibitively expensive for

certain state transitions and/or partial system states. There-

fore, selecting a minimum number of sensors (or a set

of sensors of minimal cost) that meet the system design

requirements is critical and often mandatory.

Optimal sensor selection problems have been studied

extensively in discrete event systems that can be modeled as

finite state machines, in which only partial state transitions

can be observed (e.g., [2]). In contrast, there is limited previ-

ous work on sensor selection problems when the underlying
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model is a Petri net [3], [4]. In [3], observability notions

based on inputs and outputs (namely, partial state infor-

mation) are used as criteria when optimizing the selection

of sensors in bounded interpreted Petri net models. In [4],

both partial state and partial transition information can be

observed, and structural observability (refer to Definition 3)

is considered a necessary requirement when optimizing the

selection of sensors in general Petri net models. The general

sensor selection problem (in which both place and transition

sensors can be selected) is difficult; therefore, the optimal

place sensor selection (OPSS) problem with fixed transition

sensors, and the optimal transition sensor selection problem

with fixed place sensors, are considered in [4] to gain a better

understanding of sensor selection problems.

In this paper we further study the optimal transition sensor

selection problem and the general sensor selection problem

by considering constraints that are imposed on the way

transitions can share sensors. We show that both constrained

problems can be converted to an OPSS problem, which

establishes the central role that the OPSS problem plays

in these sensor selection problems. Then, we propose a

heuristic method by establishing a reduction from the OPSS

problem to the set cover problem (SCP) and by utilizing a

well-known greedy algorithm for SCP [5]. The advantage

of this method over the top-down and bottom-up methods

introduced in [4] is that it offers performance guarantees. In

addition, we establish a reduction from SCP to the OPSS

problem, which proves the NP-completeness of the OPSS

problem (following a route different from the one in [4]).

II. PRELIMINARIES

Definition 1 [6] A Petri net structure is a 4-tuple N =
(P, T, F,W ), where P = {p1, p2, ..., pn} is a finite set of n

places; T = {t1, t2, ..., tm} is a finite set of m transitions;

F ⊆ (P×T )∪(T×P ) is a set of arcs; W : F → {1, 2, 3, ...}
is a weight function; P ∩ T = ∅ and P ∪ T 6= ∅.

A marking is a function M : P → N0 that assigns to each

place a nonnegative integer number of tokens (N0 denotes

the set of nonnegative integers); M(p) denotes the number

of tokens in place p. Pictorially, places are represented by

circles, transitions by bars, and tokens by black dots, as

shown in Fig. 1. A Petri net G = 〈N,M0〉 is a Petri net

structure N with an initial marking M0.

A transition t is said to be enabled at marking M if each

input place p of t (i.e., each place p such that (p, t) ∈ F ) is

marked with at least W (p, t) tokens; this is denoted by M [t〉.
The firing of an enabled transition t removes W (p, t) tokens
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Fig. 1. A partially observed Petri net Q [4].

from each input place p and adds W (t, p′) tokens to each

output place p′ (i.e., each place p′ such that (t, p′) ∈ F ),

resulting in a marking M ′; this is denoted by M [t〉M ′.

In this paper, we assume that at most one transition can

fire at any instant. Notation S = ts1ts2 · · · tsk denotes a

k-length firing sequence from marking M if tsi ∈ T and

M [ts1〉M1[ts2〉M2 · · · [tsk〉M
′; this is denoted by M [S〉M ′.

Marking M ′ can also be written as M ′ = M + Dσ,

where (i) D is the n×m incidence matrix of N satisfying

D(i, j) = −W (pi, tj)+W (tj , pi) (if W (pi, tj) or W (tj , pi)
is not defined for a specific place pi and transition tj , it is

taken to be 0), and (ii) σ is the m×1 firing vector of S with

its ith entry being the number of times transition ti appears

in S. In this paper, we assume that Petri nets do not have

self-loops (however, this assumption is not essential since a

Petri net with self-loops can be transformed into a Petri net

without self-loops [6]).

Definition 2 [4] A partially observed Petri net Q is a 3-

tuple (N,Po, To), where

• N = (P, T, F,W ) with |P | = n;

• Po ⊆ P , is the set of observable places; without loss

of generality, Po is taken to be {p1, p2, ..., pn1
} with

0 ≤ n1 ≤ n;

• To ⊆ T , is the set of observable transitions.

Observable places can have sensors (e.g., vision sensors)

that indicate the number of tokens in a particular place, but

unobservable places (denoted by Puo = P\Po) cannot. The

association between sensors and places is captured by the

place sensor configuration V = (v1 v2 ... vn1
)T , where

vi = 1 if a place sensor is selected for place pi and vi = 0
otherwise. ||V || :=

∑n1

i=1 vi ≤ n1 denotes the total number

of sensors in the place sensor configuration V . Given a

place sensor configuration V , the ||V || × m matrix DV is

constructed by keeping the rows of D that correspond to

observable places with sensors.

Similarly, Tuo = T\To denotes the set of unobservable

transitions. Observable transitions can have sensors (e.g.,

motion sensors) that indicate when a transition in a given

subset of transitions has fired, but unobservable transitions

cannot. In general, the association between sensors and

transitions is captured by the labeling function L : T →
Σ∪{ε}, which assigns a label to each transition and satisfies

L(t) = ε for any t ∈ Tuo. Here, Σ is the set of labels and

ε is the empty label. We define Σ so that, for each e ∈ Σ
there exists t ∈ To satisfying L(t) = e. Therefore, |Σ| is the

total number of transition sensors in use and could be zero if

no transition sensor is used. When an observable transition

t with a sensor fires, the label L(t) is observed. If L(t) = ε,

then the firing of transition t is not observed at all. We define

Te := {t ∈ T : L(t) = e} for any e ∈ Σ ∪ {ε}.

Example 1 The net in Fig. 1 is a partially observed Petri net

with Po = {p1, p2, p3} and To = {t1, t2, t3, t4}. Suppose

V = (0 0 1)T , L is defined as L(t1) = L(t2) = a,

L(t3) = L(t4) = b, and L(t5) = ε. If M0 = (2 0 1 0)T and

t3t5 occurs, then the system trajectory is M0[t3〉M1[t5〉M2,

where M1 = (0 0 2 0)T and M2 = (0 0 1 1)T . The

available sensing information is 1 → b → 2 → 1, where

→ denotes the temporal order of observations. In general,

the sensing information of state transition Mi[t〉Mi+1 is

MV
i → L(t) → MV

i+1, where MV
i is obtained by keeping

any jth entry of Mi for which V (j) = 1. Note that if

L(t) = ε, MV
i → L(t) → MV

i+1 reduces to MV
i → MV

i+1

(or MV
i ) if MV

i 6= MV
i+1 (or MV

i = MV
i+1). In particular,

note that unobservable transitions that do not cause token

changes in places with sensors go unrecorded. �

III. PROBLEM FORMULATION

Definition 3 [4] Given a place sensor configuration V and

a labeling function L, a partially observed Petri net Q is

structurally observable if for an arbitrary but known initial

state M0 and any firing sequence from M0, the system state

M at any given time step can be determined uniquely based

on observations from place sensors and transition sensors up

to that time step.

Structural observability requires the accurate determina-

tion of the current system state at any given time step,

and is motivated by applications where it is necessary to

accurately represent the underlying system state (for details,

refer to [4]).

We assume without loss of generality that there are no

identically behaving transitions (namely, transitions that have

identical columns in the incidence matrix D) in the Petri

net, so that structural observability is essentially equivalent

to transition distinguishability as introduced in [4]. The

following proposition can be derived from Propositions 1 and

2 in [4], and is used to determine structural observability.

Proposition 1 Given a place sensor configuration V and

a labeling function L, a partially observed Petri net Q is

structurally observable if and only if i) for each label e ∈ Σ,

all columns of De
V are pairwise different, and ii) for ε, all

columns of Dε
V are nonzero and pairwise different, where

De
V for e ∈ Σ ∪ {ε} is obtained by keeping the columns in

DV that correspond to transitions in Te.

Given a partially observed Petri net, the general sensor

selection problem consists of choosing a place sensor con-

figuration V and a labeling function L such that ||V ||+|Σ| is

minimized (or, more generally, the total cost of all sensors in

use is minimized) and the system is structurally observable

under V and L. To gain a better understanding of the general

sensor selection problem, we have studied the following

subproblem.
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Problem 1 [4] (Optimal Place Sensor Selection (OPSS))

Given a partially observed Petri net Q and a fixed labeling

function L, find V such that i) the system is structurally

observable under V and L, and ii) V minimizes the number

of place sensors ||V ||.

Checking the existence of a feasible solution to the OPSS

problem is provided in Theorem 1 of [4]. Naturally, one can

obtain the other subproblem called optimal transition sensor

selection by fixing a place sensor configuration V . In the

optimal transition sensor selection problem, we implicitly

assume that a nonempty label can be associated to any subset

of observable transitions. However, this assumption may not

be realistic in certain applications due to topological, or

other constraints; for instance, it might be the case that only

physically close transitions (in distributed systems) can share

the same label. To capture such requirements, we introduce

the following constraints on transition sensors: i) there are d

types of transition sensors T1, T2, ..., Td; and ii) each type

Ti covers a subset of observable transitions while some

transitions may not be covered and some transitions may

be covered by more than one type of sensors. If a transition

t is covered by a type Ti transition sensor, then the label

eTi
will be observed if t fires; if t is covered by more than

one type of transition sensors (e.g., covered by both type

Ti and type Tj transition sensors), then all associated labels

will be simultaneously observed if t fires (e.g., labels eTi
and

eTj
will be observed simultaneously, or equivalently, a single

label eTiTj
will be observed). Now, we define a transition

sensor configuration W = (w1 w2 ... wd)
T , where wi = 0

if no type Ti transition sensor exists for transitions in Ti and

wi = 1 otherwise. We use ||W || :=
∑d

i=1 wi ≤ d to denote

the total number of transition sensors in the configuration W .

Given a transition sensor configuration W , we can construct

an equivalent labeling function LW as shown in the following

example.

Example 2 For the partially observed Petri net shown in

Fig. 1, suppose there are two types of transition sensors:

T1 = {t1, t2} (which means the sensor covers transitions t1
and t2) and T2 = {t2, t3}. If W = (1 1)T , then the equivalent

labeling function LW is LW (t1) = eT1
, LW (t2) = eT1T2

,

LW (t3) = eT2
, LW (t4) = LW (t5) = ε. The labeling

function is equivalent to the transition sensor configuration

in the sense that the outputs from both are essentially the

same given the same system activities. It is straightforward

to generalize the construction of LW to an arbitrary transition

sensor configuration W . �

Problem 2 (Constrained Optimal Transition Sensor Selec-

tion (COTSS)) Given a partially observed Petri net Q, a fixed

place sensor configuration V and d types of transition sensors

T1, T2, ..., Td, find W such that i) the system is structurally

observable under V and LW , and ii) W minimizes the

number of transition sensors ||W ||.

Problem 3 (Constrained General Sensor Selection (CGSS))

Given a partially observed Petri net Q, and d types of

transition sensors T1, T2, ..., Td, find V and W such that i)

the system is structurally observable under V and LW , and

ii) V and W minimize the number of sensors ||V ||+ ||W ||.

IV. CONSTRAINED SENSOR SELECTION

A. Constrained Optimal Transition Sensor Selection

In the COTSS problem, we can construct a labeling

function LV which provides essentially the same sensing

information as the place sensor configuration V . Before

introducing the construction, we look at the partition of T

generated by V .

Definition 4 Given a partially observed Petri net Q and

a fixed place sensor configuration V , the partition of T

generated by V is defined to be Ω(V ) = {S0, S1, S2, ..., Sk},

where i) k is equal to the number of distinct nonzero columns

in the matrix DV , ii) S0 ∪ S1 ∪ S2 ∪ · · · ∪ Sk = T and

Si ∩ Sj = ∅ if i 6= j, iii) S0 is a (possibly empty) set with

all transitions tj , · · · , tl ∈ T that satisfy DV (:, j) = · · · =
DV (:, l) = 0||V ||, where DV (:, j) denotes the jth column of

matrix DV and 0||V || is an all 0 vector with dimension ||V ||;
iv) Si for i = 1, 2, ..., k is a non-empty set with the maximal

number of transitions {tj , ..., tl}, tj , · · · , tl ∈ T , that satisfy

DV (:, j) = · · · = DV (:, l) 6= 0||V ||.

The firings of transitions in S0 cannot generate any place

sensor output; equivalently, we could assign the empty label

to all transitions in S0, i.e., LV (t) = ε for t ∈ S0. For each

Si, i = 1, 2, ..., k, the firings of transitions in Si generate a

unique combination of token changes among all places with

sensors in V (but this combination can be generated by any

of these transitions). Equivalently, we could assign the label

eSi
to all transitions in Si, i.e., LV (t) = eSi

for t ∈ Si.

Once we have the equivalent labeling function, we can

construct an instance of the OPSS problem given a COTSS

instance, as illustrated in the following example.

Example 3 Consider the partially observed Petri net Q in

Fig. 1 with V = (0 0 1)T , and two types of transition

sensors with T1 = {t1, t2} and T2 = {t2, t3}. The partition

of T generated by V is S0 = {t1, t2}, S1 = {t3, t4}
and S2 = {t5}, as can be readily obtained from matrix

DV = (0 0 1 1 −1). The equivalent labeling function

LV is LV (t1) = LV (t2) = ε, LV (t3) = LV (t4) = eS1
,

and LV (t5) = eS2
. Clearly, with this change, the COTSS

problem can be interpreted as follows: given a labeling

function LV and two types of transition sensors T1 and T2,

find a transition sensor configuration W = (w1 w2)
T such

that all transitions are distinguished (refer to Proposition 1)

and ||W || is minimized.

Now we construct an instance of the OPSS problem from

this COTSS problem. Consider a partially observed Petri net

Q′ with 5 observable transitions t′1, ..., t
′
5 corresponding to

t1, ..., t5, 2 observable places p′1, p
′
2 corresponding to the two

types of transition sensors, and labeling function defined as

L′(t′1) = L′(t′2) = ε, L′(t′3) = L′(t′4) = eS1
, L′(t′5) = eS2

,

which is essentially LV . The incidence matrix D′ is

D′ =

[

1 1 0 0 0
0 1 1 0 0

]
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and is constructed based on the coverage of different types

of transition sensors; for example, as sensor type T1 covers

t1, t2, the place p′1 corresponding to T1 can distinguish t′1, t
′
2

from other transitions and1 D′(p′1, :) = (1 1 0 0 0). Since

transitions t′4 and t′5 are identically behaving transitions, one

could add “dummy” unobservable place p′3 with2 D′(p′3, :) =
(0 0 0 1 −1) to resolve this issue. The goal in the constructed

OPSS problem is to find V ′ with a minimum number of

sensors such that all transitions can be distinguished. For this

example, it is easy to see that Q being structurally observable

under V and LW is equivalent to Q′ being structurally

observable under V ′ := W and L′. �

In general, given an instance of the COTSS problem, one

can construct an instance of the OPSS problem as shown in

Algorithm 1. Now we briefly argue the correctness of the

reduction. Note that for any transition sensor configuration

W in Q, there is a place sensor configuration V ′ := W in

Q′ because observable place p′i in Q′ corresponds to the type

of transition sensors Ti in Q, and vice versa. Also, Q being

structurally observable under V and LW is equivalent to Q′

being structurally observable under L′ and V ′ := W because

the construction of L′ provides the same distinguishability

on transitions as the given V (also note that L′ is constructed

from LV and that LV is equivalent to V ). It can be verified

that Algorithm 1 has complexity O(nm2 + dm), where d is

the number of different types of transition sensors.

Algorithm 1 Reduction from COTSS to OPSS

Input: An instance of Problem 2

Output: An instance of Problem 1

1: Calculate Ω(V ) = {S0, S1, ..., Sk} based on Defini-

tion 4, and construct the labeling function LV satisfying

LV (t) = ε if t ∈ S0 and LV (t) = eSi
if t ∈ Si.

2: Construct Q′: T ′ = T ′
o = {t′1, t

′
2, ..., t

′
m}, P ′

o =
{p′1, p

′
2, ..., p

′
d}, L′(t′i) = LV (ti), and D′ satisfying

D′(p′i, t
′
j) = 1 (for i = 1, ..., d and j = 1, ...,m) if

tj is covered by Ti and D′(p′i, t
′
j) = 0 otherwise.

3: Check if there are identically behaving transitions. If

so, then add unobservable place p′d+1 (i.e., P ′ = P ′
o ∪

{p′d+1}) and assign D′(p′d+1, :) so that identically be-

having transitions are eliminated; otherwise, P ′ = P ′
o.

4: Output the OPSS problem instance with Q′ and L′.

B. Constrained General Sensor Selection

Example 4 Consider the partially observed Petri net Q in

Fig. 1 with 2 types of transition sensors satisfying T1 =
{t1, t2} and T2 = {t2, t3}. The CGSS problem asks to

obtain a place sensor configuration V and a transition sensor

configuration W such that Q is structurally observable under

V and LW , and ||V ||+ ||W || is minimized.

1The constraint we have regarding D′(p′
1
, :) is that the first two entries

should be the same and nonzero, and the last three entries should all
be zero. Therefore, other choices are also possible (e.g., D′(p′

1
, :) =

(−1 −1 0 0 0)).
2The only constraint we have regarding D′(p′

3
, :) is that D′(p′

3
, t′

4
) and

D′(p′
3
, t′

5
) should be different.

Now we can construct an instance of the OPSS problem

from this CGSS problem. Consider a partially observed

Petri net Q′ with 5 observable transitions t′1, ..., t
′
5 corre-

sponding to t1, ..., t5; 6 places p′′1 , p
′′
2 , p

′
1, p

′
2, p

′
3, p

′
4 in which

p′′1 , p
′′
2 correspond to the two types of transition sensors,

p′1, p
′
2, p

′
3, p

′
4 correspond to p1, p2, p3, p4 in Q, and only p′4 is

unobservable; labeling function defined as L′(t′1) = L′(t′2) =
L′(t′3) = L′(t′4) = L′(t′5) = ε. The incidence matrix D′ is

(UT DT )T , where D is the incidence matrix of Q and U is

the same as D′ in Example 3. Since there are no identically

behaving transitions in Q, neither are there in Q′. The goal

in the constructed OPSS problem is to find V ′ such that

all transitions can be distinguished. For this example, it is

easy to see that Q being structurally observable under V and

LW is equivalent to Q′ being structurally observable under

V ′ := (WT V T )T and L′. �

In general, given an instance of the CGSS problem, one

can construct an instance of the OPSS problem as shown in

Algorithm 2. Now we briefly argue the correctness of the

reduction. Note that for any place sensor configuration V

and any transition sensor configuration W in Q, there is a

place sensor configuration V ′ := (WT V T )T in Q′ because

observable place p′′i in Q′ (for i = 1, ..., d) corresponds to

the type of transition sensors Ti in Q and observable place p′j
in Q′ (for j = 1, ..., n1) corresponds to observable place pj
in Q, and vice versa. Also, Q being structurally observable

under V and LW is equivalent to Q′ being structurally

observable under L′ and V ′ = (WT V T )T because the

labeling function L′ essentially outputs nothing, and the

construction of V ′ provides the same distinguishability on

transitions as the combination of V and W . It can be verified

that Algorithm 2 has complexity O(dm+ nm).

Algorithm 2 Reduction from CGSS to OPSS

Input: An instance of Problem 3

Output: An instance of Problem 1

1: Construct Q′: T ′ = T ′
o = {t′1, t

′
2, ..., t

′
m},

P ′ = {p′′1 , p
′′
2 , ..., p

′′
d , p

′
1, p

′
2, ..., p

′
n} of which only

p′n1+1, ..., p
′
n are unobservable, L′(t′i) = ε for any t′i ∈

T ′, and D′ = (UT DT )T where D is the incidence

matrix of Q, and U(p′′i , t
′
j) = 1 (for i = 1, ..., d and

j = 1, ...,m) if tj is covered by Ti and U(p′′i , t
′
j) = 0

otherwise.

2: Output the OPSS problem instance with Q′ and L′.

V. OPSS: APPROXIMATION ALGORITHM

A. Reduction from OPSS to SCP

Problem 4 [5] (Set Cover Problem (SCP)) Given a universe

U of q elements, and a collection of subsets of U , S =
{S1, ..., Sk}, find a minimum number of subsets of S that

cover all elements of U .

Example 5 Consider the partially observed Petri net Q in

Fig. 1 with L satisfying L(t1) = a, L(t2) = L(t3) = b,

L(t4) = c and L(t5) = ε. The OPSS problem requires

a place sensor configuration V such that Q is structurally
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observable under V and the given L, and ||V || is minimized.

An equivalent binary integer programming (BIP) problem

can be constructed as follows [4]:

min cTx s.t. Ax ≥ b

where c = (1 1 1)T , x = V = (v1 v2 v3)
T (as p1, p2 and

p3 are all observable), b = (1 1)T , and3

A =

[

−1 6= −2 1 6= 0 0 6= 1
0 6= 0 0 6= 0 −1 6= 0

]

=

[

1 1 1
0 0 1

]

.

The first constraint captures the requirement that V distin-

guish t2 from t3, while the second constraint captures the

requirement that V detect unobservable transition t5.

Let k = n1 which is 3, q = 2 which is the number of

constraints in the BIP problem. Set U = {1, 2}, and S1 =
{1}, S2 = {1} and S3 = {1, 2} (these subsets are obtained

by reading the nonzero entries in each column of the matrix

A; for example, S1 contains only the element 1 because only

the 1st entry of A(:, 1) is 1). With this construction, each

constraint in the BIP problem is equivalent to the requirement

on these subsets to cover the corresponding element in

U . Since the objective function of the BIP formulation is

equivalent to minimizing the number of subsets in SCP, the

constructed SCP is equivalent to the OPSS problem. �

Given an instance of the OPSS problem, one could con-

struct an instance of SCP as shown in Algorithm 3. Now

we briefly show the correctness of the reduction. Note that

for any place sensor configuration V , there is a unique

combination of subsets of U (namely {Si | V (i) is 1}), and

vice versa. Also, Q being structurally observable under V

and L is equivalent to satisfying AV ≥ 1q (as shown in [4]),

which is equivalent to the requirement that the combination

of subsets of U (corresponding to V ) covers each element

of the universe U . It can be verified that Algorithm 3 has

complexity O(nm2).

Algorithm 3 Reduction from OPSS to SCP

Input: An instance of Problem 1

Output: An instance of Problem 4

1: Set q = |Tε|+
∑

e∈Σ∪{ε},|Te|≥2
|Te|(|Te|−1)

2 , and k = n1.

2: Set U = {1, 2, ..., q}.

3: Set A to be a q × n1 binary matrix with two kinds of

rows: a) ∀e ∈ Σ ∪ {ε} with |Te| ≥ 2, for each pair

tj , tk ∈ Te (j 6= k), there is a row of the form (D(1, j) 6=
D(1, k) D(2, j) 6= D(2, k) · · · D(n1, j) 6= D(n1, k));
b) for each tj ∈ Tε, there is a row of the form (D(1, j) 6=
0 D(2, j) 6= 0 · · · D(n1, j) 6= 0).

4: Set Si = {j | j ∈ U and A(j, i) is 1} for i = 1, 2, ..., n1.

5: Output the set cover problem.

One can also reduce SCP to OPSS. Given an instance

of Problem 4, here is a sketch of a procedure to construct

an instance of Problem 1: i) construct a partially observed

Petri net with T = {t1, t2, ..., t2q} and k observable places,

3Here, for integers a and b, a 6= b has value 1 if a is not equal to b, and
0 otherwise.

ii) let Σ = {e1, e2, ..., eq} and define L as L(t2i−1) =
L(t2i) = ei for i = 1, ..., q, iii) define the incidence matrix

D as follows: D(j, 2i − 1) 6= D(j, 2i) if Sj covers the

element i in U , and D(j, 2i − 1) = D(j, 2i) otherwise, for

j = 1, ..., k and i = 1, ..., q, iv) add one unobservable place

pk+1 if there are identically behaving transitions and set

P = {p1, p2, ..., pk+1}; otherwise, set P = {p1, p2, ..., pk}.

The correctness of this reduction can be verified based on the

following observations: i) the subset Sj covers the element

i if and only if a sensor on place pj distinguishes transition

t2i−1 from t2i; and ii) minimizing the number of subsets

that cover all elements of U is equivalent to minimizing the

number of place sensors in a place sensor configuration under

which the system is structurally observable. It can be verified

that this is a polynomial reduction. Since the set cover

problem is NP-complete [5], this reduction also establishes

the NP-completeness of the OPSS problem (following a

route different from reducing the vertex cover problem to

OPSS in [4]).

B. Greedy Algorithm for OPSS

A well-known greedy algorithm for the set cover problem

selects, at each time, the subset Si that can cover the most

elements in the universe that have not been covered so far,

and terminates when all elements are covered. The algorithm

is guaranteed to provide a solution within OPT ∗ Hq [5],

where OPT is the optimal (smallest) number of subsets and

Hq = 1 + 1
2 + ...+ 1

q
(note that Hq is O(ln q)).

Once we reduce the OPSS problem to the set cover

problem and utilize the known greedy algorithm, the method

guarantees a place sensor configuration with the num-

ber of place sensors within OPT ∗ Hq , where OPT is

the optimal number of place sensors and q is |Tε| +
∑

e∈Σ∪{ε},|Te|≥2

(

|Te|
2

)

as given in Algorithm 3. Note that

the factor Hq is roughly O(lnm) because q is O(m2).

VI. EXAMPLE

In this section, we consider the OPSS problem in a flexible

manufacturing cell, which includes three workstations, two

part-receiving stations and one completed part station. The

Petri net model (with 64 places and 53 transitions) of the

cell is shown in Fig. 2 of [7] (for our simulations on sensor

selection, we do not need the control places in that figure).

We use this example to compare heuristic methods, i.e.,

the top-down method, the bottom-up method, the combined

method (applying the top-down method after the bottom-up

method), and the method based on the reduction to the set

cover problem (called the SCP based method). The first three

heuristic methods are proposed in [4] but the performance

of the combined method was not studied in [4].

As in [4], we model the cell as a partially observed Petri

net and assume that all places and transitions are observable

so that there is at least one solution to the constructed OPSS

problems. To test the effectiveness of our approximation

methods, we generate labeling functions in the following

way: i) we first specify the number of transition labels i,

ii) then, we let i take values 10, 13, 16, 20, 24, 30, and for
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each value of i, we randomly generate 5 labeling functions

by allowing each transition t to have any of the i labels with

equal probability. In total, we have 30 randomly generated

labeling functions; then we solve the 30 OPSS problems

using the four heuristic methods and the BIP based method

as introduced in [4]. Simulation programs were written in

Matlab and were run on a 1.4Ghz laptop. The results are

shown in Table I, in which i refers to the number of transition

labels, q is defined in Algorithm 3 (note that q captures the

number of constraints in the BIP formulation), and OPT ∗Hq

is the performance guarantee for the SCP based method as

mentioned in Section V-B. The results suggest that the four

heuristic methods run much faster than the BIP based method

especially when there are less transition sensors. Among

these four heuristic methods, the SCP based method is the

fastest one. The number of sensors generated by the SCP

based method indeed satisfies the bound OPT ∗Hq as shown

in the table.

We compare the four heuristic methods with the BIP-

based method and Table II shows the comparison results

when considering the difference ∆ between the number of

sensors given by heuristic methods and the number given

by the BIP-based method. The combined method has the

best performance among all heuristic methods: 28 out of 30
simulations give a very close solution (namely, ∆ ≤ 1). In

contrast, the SCP based method performs even worse than the

top-down method (but comes with performance guarantees).

VII. CONCLUSION

In this paper, we studied the constrained sensor selection

problems in discrete event systems modeled by partially

observed Petri nets. We showed that constrained sensor

selection problems can be converted to the OPSS problem,

and proposed a heuristic method for the OPSS problem with

known performance guarantees. In future work, we would

like to directly establish the performance guarantees for the

bottom-up method we proposed earlier. We would also like

to relax the notion of structural observability to incorporate

the initial state of the Petri net, take possible permanent

or intermittent faulty sensors into account, and associate

different costs with place sensors and transitions sensors.
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TABLE I

SIMULATION RESULTS OF 4 HEURISTIC METHODS AND BIP BASED

METHOD

Top-down Bottom-up Combined

i time (s) # sensors time (s) # sensors time (s) # sensors

30

0.343 14 1.688 15 1.751 15

0.328 17 1.922 16 1.984 16

0.359 15 1.735 15 1.814 15

0.344 18 1.812 15 1.874 15

0.359 17 1.844 16 1.907 15

24

0.406 18 2.203 18 2.297 18

0.391 16 2.125 16 2.219 16

0.390 17 2.156 17 2.250 17

0.359 17 2.063 16 2.141 16

0.391 18 2.343 17 2.421 17

20

0.422 20 2.547 18 2.640 18

0.406 19 2.266 17 2.360 17

0.407 18 2.235 17 2.328 17

0.438 18 2.703 18 2.813 18

0.406 18 2.250 18 2.344 18

16

0.406 20 2.437 21 2.546 19

0.406 21 2.890 20 3.030 20

0.406 20 2.219 20 2.297 20

0.391 19 2.219 20 2.297 20

0.359 21 2.281 19 2.375 19

13

0.390 22 2.453 21 2.562 21

0.406 22 2.234 21 2.343 21

0.406 22 2.282 21 2.376 21

0.390 21 2.562 21 2.656 21

0.390 21 2.266 22 2.376 21

10

0.390 23 2.360 23 2.470 22

0.438 23 2.219 22 2.313 22

0.406 23 2.469 22 2.563 22

0.391 22 2.297 22 2.406 22

0.422 23 2.375 22 2.485 22

SCP based Method BIP based Method

i time (s) # sensors time (s) # sensors q OPT ∗ Hq

30

0.046 33 0.203 13 38 55.0

0.047 44 0.609 15 52 68.1

0.047 27 0.156 14 41 60.2

0.047 25 0.640 15 44 65.6

0.047 29 0.266 14 42 60.6

24

0.094 40 8.266 17 70 82.2

0.047 36 7.000 16 49 71.7

0.062 22 0.812 15 49 67.2

0.062 28 1.703 16 51 72.3

0.063 31 1.562 16 56 73.8

20

0.078 27 30.984 18 69 86.7

0.078 36 6.781 17 61 79.8

0.078 39 1.562 17 65 80.9

0.063 29 36.297 18 59 83.9

0.156 50 256.328 18 70 87.0

16

0.125 34 296.719 19 87 96.0

0.109 32 280.437 19 74 92.9

0.141 39 127.359 19 91 96.8

0.093 30 67.390 19 79 94.1

0.094 36 49.875 19 93 97.2

13

0.094 31 75.406 20 97 103.1

0.109 39 136.547 20 115 106.5

0.125 54 313.656 20 113 106.2

0.093 32 419.547 20 89 101.4

0.125 40 275.390 20 110 105.6

10

0.157 28 1703.9 22 143 122.0

0.188 52 5351.2 22 143 122.0

0.125 24 4410.2 22 116 117.4

0.171 52 3898.8 22 132 120.2

0.156 50 2238.3 22 143 122.0

TABLE II

COMPARISON OF HEURISTIC METHODS WITH BIP BASED METHOD

OVER 30 SIMULATIONS

∆ Top-down Bottom-up Combined SCP

0 5 13 15 0
1 13 12 13 0
2 10 5 2 1

≥ 3 2 0 0 29
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