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Abstract— Identifying a sparse approximation of a function
from a set of data can be useful to solve relevant problems
in the automatic control field. However, finding a sparsest
approximation is in general an NP-hard problem. The common
approach is to use relaxed or greedy algorithms that, under
certain conditions, can provide sparsest solutions. In this paper,
a combined ℓ1-relaxed-greedy algorithm is proposed and a
condition is given, under which the approximation derived
by the algorithm is a sparsest one. Differently from other
conditions available in the literature, the one provided here
can be easily verified for any choice of the basis functions. A
Set Membership analysis is also carried out assuming that the
function to approximate is a linear combination of unknown
basis functions belonging to a known set of functions. It is shown
that the algorithm is able to exactly select the basis functions
which define the unknown function and to provide an optimal
estimate of their coefficients. It must be remarked that exact
basis function selection is performed for a finite number of data,
whereas in standard system identification, a similar result can
only be obtained for an infinite number of data. A simulation
example, related to the identification of vehicle lateral dynamics,
is finally presented.

I. INTRODUCTION

Sparse approximation consists in approximating a function

using a “few” basis functions properly selected within a

“large” set. More precisely, a sparse approximation is a linear

combination of “many” basis functions, but the vector of

linear combination coefficients is “sparse”, i.e. it has only a

“few” non-zero elements. Deriving a sparse approximation

of an unknown function from a set of its values (possibly

corrupted by noise) is here called sparse identification.

Sparsification methods are relevant in many applications:

compressive sensing [1], [2], [3], bioinformatics [4], com-

puter vision [5], signal processing [6], [7], [8], source

separation [9], denoising [10], linear regression [11], and

regularization [12]. Analogies between sparse approximation

and support vector machines have been shown in [13].

Recently, sparsification methods have been introduced in the

automatic control field [14], [15], [16], with promising re-

sults. In this field, applications might include regularization,

basis function selection (see Sections V and VI), regressor

selection, input selection, nonlinear internal model control,

nonlinear feed-forward control, direct inverse control, and

approximation of predictive controllers for fast online im-

plementation.

The sparsity of a vector is typically measured by the ℓ0
quasi-norm, defined as the number of its non-zero elements.
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Sparse identification can be performed by looking for a coef-

ficient vector of the basis function linear combination with a

“small” ℓ0 quasi-norm that yields a “small” prediction error

evaluated on the measured data. However, the ℓ0 quasi-norm

is a non-convex function and its minimization is in general

an NP-hard problem. Two main approaches are commonly

adopted to deal with this issue: convex relaxation and greedy

algorithms, [17], [18], [19], [20]. In convex relaxation, a

suitable convex function is minimized instead of the ℓ0
quasi-norm. In greedy algorithms, the sparse solution is

obtained iteratively, [17]. A very interesting feature of these

approaches is that, under certain conditions, they provide

sparsest solutions, i.e. solutions which also minimize the ℓ0
quasi-norm [17], [18], [19], [21]. Although such conditions

give an important theoretical motivation for using these

relaxed/greedy approaches, their actual verification is often

hard from a computational point of view. A remarkable

contribution on this topic was provided in [21], [18], [20].

In [21], the conditions for a vector to be the sparsest

solution can be easily verified when the basis functions are

orthonormal or the union of incoherent orthonormal bases.

In [18] and [20], the conditions are of easy verification,

but require that the basis functions have “small” mutual

coherence.

In this paper, a combined relaxed-greedy algorithm is

proposed for sparse identification and a condition is provided,

under which the solution derived by the algorithm is sparsest.

Such a condition is easily verifiable for any choice of the

basis functions. A bound on the number of non-zero elements

of the algorithm solution which may be in excess with respect

to the sparsest solution is also derived.

A Set Membership optimality analysis is then performed

in order to assess the accuracy of the approximation obtained

by the relaxed-greedy algorithm. The noise affecting the data

is assumed bounded in norm and, as common in system

identification, [22], [23], [24], the unknown function is

assumed to be a linear combination of basis functions whose

coefficients have to be estimated. It is supposed that the

basis functions are not known but belong to a known set

of functions. It is shown that the algorithm is able to select

exactly the basis functions defining the unknown function

and to provide an optimal estimate of their coefficients. It

must be remarked that the exact basis function selection is

performed for a finite number of data, whereas in standard

system identification, a similar result can be obtained only

for an infinite number of data [22], [23], [24].

Finally, a simulation example is shown, related to the

identification of vehicle lateral dynamics.

2011 American Control Conference
on O'Farrell Street, San Francisco, CA, USA
June 29 - July 01, 2011

978-1-4577-0079-8/11/$26.00 ©2011 AACC 663



II. NOTATION AND BASIC NOTIONS

A column vector is indicated by a = (a1, a2, . . . , an) ∈
R
n×1, a row vector by aT = [a1, a2, . . . , an] ∈ R

1×n. For

a matrix/vector A ∈ R
K×n, K ∈ {1, 2, . . .}, and a set of

indices λ = {i1, i2, . . . , im} ⊂ {1, 2, . . . , n}, let us introduce

the notation

Aλ
.
= [Ai1 , Ai2 , . . . , Aim]

where Aj are the columns/elements of A.

The ℓq norm of a vector a is defined as

‖a‖q
.
= (

∑n
i=1 |ai|

q
)

1

q , q ∈ [1,∞),

‖a‖∞
.
= max
i=1,..,n

|ai| .

The ℓ0 quasi-norm of a vector a ∈ R
n is defined as the

number of its elements which are not null:

‖a‖0
.
= card (supp (a)) (1)

where card (·) is the set cardinality, and supp (a) is the

support of a, defined as the set of indices at which a is

not null:

supp (a)
.
= {i ∈ {1, 2, . . . , n} : ai 6= 0} .

The ℓ0 quasi-norm is commonly used to measure the sparsity

of a vector: the smaller is the ℓ0 quasi-norm, the sparser is the

vector. The complement of supp (a), i.e. the set of indices

at which a is null, is denoted by

supp (a)
.
= {i ∈ {1, 2, . . . , n} : ai = 0}
= {1, 2, . . . , n} \ supp (a) .

The Lp norm of a function f : X → Y , where X ⊆
R
nx and Y ⊆ R, is defined as

‖f‖p
.
=

[∫
X
|f (x)|

p
dx

] 1

p , p ∈ [1,∞),

‖f‖∞
.
= ess supx∈X |f (x)| .

Consider a generic optimization problem

a = arg min
a
J (a)

subject to g (a) ≤ 0.

If this problem admits a set of solutions, then a indicates

one of these solutions. Otherwise, a is the unique solution.

III. PROBLEM FORMULATION

Consider a nonlinear function f0 defined by

y = f0 (x) (2)

where x ∈ X ⊂ R
nx , y ∈ Y ⊂ R. Suppose that f0 is not

known but a set of noise-corrupted data D = {x̃k, ỹk}
L
k=1 is

available, described by

ỹk = f0 (x̃k) + dk, k = 1, 2, . . . , L (3)

where dk is noise. Define the following parameterized func-

tion:

fa (x) =

n∑

i=1

aiφi (x) = φ (x) a (4)

where φ (x) = [φ1 (x) , φ2 (x) , . . . , φn (x)], φi : X → Y are

known basis functions, and a = (a1, a2, . . . , an) ∈ R
n is an

unknown coefficient vector.

Problem 1: From the data set D, identify a coefficient

vector a such that

(i) a is “sparse”,

(ii) the identification error

e (fa)
.
= ‖f0 − fa‖p (5)

is “small”. �

IV. SPARSE IDENTIFICATION OF NONLINEAR FUNCTIONS

A possible solution to the sparse identification problem

(Problem 1) may be obtained by looking for the sparsest

coefficient vector which guarantees a given maximum error

ε between the measured output ỹ and the predicted output

fa (x̃) = φ (x̃) a. According to (1), minimizing the ℓ0 quasi-

norm of a vector corresponds to minimizing the number of

its non-zero elements, i.e. to maximizing its sparsity. Thus,

a solution to Problem 1 could be found by solving the

following optimization problem:

a0 = arg min
a∈Rn

‖a‖0

subject to ‖ỹ − Φa‖2 ≤ ε
(6)

where

ỹ
.
= (ỹ1, . . . , ỹL)

Φ
.
=



φ1 (x̃1) · · · φn (x̃1)

...
. . .

...

φ1 (x̃L) · · · φn (x̃L)




=
[
φ1 (x̃) · · · φn (x̃)

]
.

However, the ℓ0 quasi-norm is a non-convex function and its

minimization is in general an NP-hard problem. Two main

approaches are commonly adopted to deal with this issue:

convex relaxation and greedy algorithms, [17], [18], [19],

[20]. In convex relaxation, an optimization problem similar

to (6) is solved, where the ℓ0 quasi-norm is replaced by a

suitable convex function. The ℓ1 norm is often used, since

this norm is the convex envelope of the ℓ0 quasi-norm. In

greedy algorithms, a sparse solution is obtained iteratively,

by successively individuating the most “important” vector

elements, [17]. Under certain conditions, these approaches

give sparsest solutions, i.e. solutions which are also solution

of (6), [17], [18], [19], [21]. However, the verification of

these conditions is in general hard from a computational

standpoint, and can actually be performed only for particular

types of basis functions.

In the remaining of this section, a combined ℓ1-relaxed-

greedy algorithm is proposed for solving the sparse identifi-

cation problem 1. A theorem is presented, giving a condition

easily verifiable for any basis functions, under which the

solution derived by the algorithm is the sparsest one.

Without loss of generality, assume that the columns of Φ
are normalized: ‖φi (x̃)‖2 = 1, i = 1, 2, . . . , n. For a given
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vector w ∈ R
L, define the following norm:

|w|K
.
=

√ ∑

i∈IK

(wTφi (x̃))
2

where IK is the set of the K largest inner products wTφi (x̃).
Define also the following quantities:

δ (a)
.
= ỹ − Φa

ξ (a)
.
=

|δ(a)|
1
+|δ(a)|

2m

σ2(Φ)

r (a)
.
=

{
i1, . . . , ij : |ai1 | ≥ . . . ≥

∣∣aij
∣∣ ≥ ξ (a)

} (7)

where σ (Φ) is the minimum non-zero singular value of Φ
and m (a)

.
= ‖a‖0.

Algorithm 1:

1) Solve the optimization problem

a1 = arg min
a∈Rn

‖a‖1

subject to ‖ỹ − Φa‖2 ≤ ε
(8)

2) Compute the coefficient vector a∗ as follows:

for k = 1 : n−m
(
a1

)

ck = arg min
a∈Rn

‖ỹ − Φa‖2

subject to ai = 0, ∀i ∈ rλ
(
a1

)

λ =
{
m

(
a1

)
+ k, . . . , n

}

if
∥∥δ

(
ck

)∥∥
2
≤ ε

a∗ = ck

break

end

end

�

The above algorithm provides an estimate a∗ of a0,

the solution of the non-convex optimization problem (6).

The following theorem gives an easily verifiable condition

ensuring that a∗ has the same support as a0. The theorem

also allows the computation of a bound on the number of

non-zero elements of a∗ that are in excess with respect to

a0.

Define the following coefficient vector:

cver = arg min
a∈Rn

‖aς‖1

subject to sign (a∗i ) ai ≥ η (a∗) , ∀i ∈ ς
|ai| < η (a∗) , ∀i ∈ ς
‖ỹ − Φa‖2 ≤ ε

(9)

where

η (a)
.
= min

i∈supp(a)
|ai| (10)

ς
.
= supp (a∗)

ς
.
= supp (a∗) .

Theorem 1: Let a∗ be the coefficient vector derived by

Algorithm 1. Let Ne
.
= ‖a∗‖0 −

∥∥a0
∥∥

0
and λs

.
=

{i : |cveri | > ξ (cver)}. Then,

Ne ≤ Ne
.
= ‖a∗‖0 − card (λs) . (11)

Moreover, if

ξ (cver) < η (a∗) (12)

then Ne = 0 and

supp (a∗) = supp
(
a0

)
. (13)

Proof. See [25]. �

Verification of the condition (12) in Theorem 1 is compu-

tationally simple for any matrix Φ. Indeed, from (7) and (10),

this verification basically requires to evaluate |δ (cver)|1,

|δ (cver)|, σ2 (Φ) and to solve the convex optimization prob-

lem (9). All these operations can be easily be performed in

polynomial time. It must be remarked that condition (12)

has been derived from condition (12) of Corollary 1 in [21],

whose verification is simple when the basis functions are

orthonormal or the union of incoherent orthonormal bases.

V. PARAMETRIC SET MEMBERSHIP OPTIMALITY

ANALYSIS AND EXACT BASIS FUNCTION SELECTION

In Section IV, an ℓ1-relaxed-greedy algorithm is presented,

able to derive a “sparse” approximation of the function f0,

thus allowing the accomplishment of the requirement (i) of

Problem 1. In this section, considering a Set Membership

framework [26], [27], [28], [29], [30], [31], [32], [33], [34],

[35], this approximation is shown to have “small” identifi-

cation error, thus allowing us to satisfy also the requirement

(ii) of Problem 1.

In order to have a bounded identification error, some

assumptions have to be made on the noise affecting the

data and on the unknown function f0. In this paper, the

noise sequence d = (d1, d2, . . . , dL) in (3) is assumed to

be bounded as

‖d‖2 ≤ ε. (14)

As common in system identification, [22], [23], [24], the

function f0 is assumed to be parameterized as

f0 (x) =
n∑

i=1

a0
iφi (x) .

where φ1 (x) , φ2 (x) , . . . , φn (x) are known basis functions

and a0 = (a0
1, a

0
2, . . . , a

0
n) ∈ R

n is a “sparse” unknown

parameter vector, solution of (6).

Under these assumptions, the identification Problem 1

reduces to finding an estimate â of a0 such that

(i) supp (â) = supp
(
a0

)
,

(ii) the parametric error

epar (â)
.
=

∥∥a0 − â
∥∥

2

is “small”.

While Theorem 1 gives a condition under which supp (â)
= supp

(
a0

)
, no exact knowledge of epar (â) is available,
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being a0 unknown. However, under the above assumptions,

we have that a0 ∈ FPS, where

FPS
.
= {a ∈ R

n : supp (a) = supp
(
a0

)
,

‖ỹ − Φa‖2 ≤ ε}.

The set FPS is called Feasible Parameter Set and is the set

of all parameter vectors consistent with the prior assumptions

and the measured data. A tight bound on epar (â) is thus

given by the following worst-case parametric error:

EP (â)
.
= sup
a∈FPS

‖a− â‖2 .

This leads to the notion of optimal estimate, defined as an

estimate ac which minimizes the worst-case parametric error:

EP (ac) = inf
â∈Rn

sup
a∈FPS

‖a− â‖2 . (15)

The following result shows that, under the assumption of

Theorem 1, the estimate a∗ provided by Algorithm 1 is

optimal.

Theorem 2: Let a∗ be the parameter vector derived by

Algorithm 1. If ξ (cver) < η (a∗), then,

(i) a∗ is an optimal estimate of a0;

(ii) the worst-case parametric error of a∗ is given by

EP (a∗) = σ (Φς)

√
ε2 − ‖δ (a∗)‖

2
2 (16)

where ς = supp (a∗) and σ (Φς) is the maximum singular

value of Φς .

Proof. See [25]. �

Theorem 2 shows that the presented ℓ1-relaxed-greedy

algorithm is able to perform exact basis function selection,

i.e. to select, within a “large” set of basis functions, the

ones defining the unknown function f0. It must be remarked

that exact selection is here performed for a finite number

of data. On the contrary, in standard system identification, a

similar result can only be obtained when the number of data

tends to infinity [22], [23], [24]. Besides exact basis function

selection, the algorithm also provides an optimal parameter

estimate.

Note that the optimality notion (15) is stronger than the

“standard” worst-case optimality notion. Indeed, the “stan-

dard” worst-case estimation error is defined as EP (â)
.
=

supa∈FPS ‖a− â‖2, where FPS
.
= {a ∈ R

n :
‖ỹ − Φa‖2 ≤ ε}, [27]. The “standard” optimal estimate is

consequently defined as an estimate asc such that

EP (asc) = inf
â∈Rn

sup
a∈FPS

‖a− â‖2 . (17)

Since a0 ∈ FPS ⊆ FPS, it follows that EP (ac) ≤
EP (asc), showing that an optimal estimate ac has better

estimation accuracy (in a worst-case sense) with respect to

a “standard” optimal estimate. Note also that the classical

least squares estimate

als = arg min
a∈Rn

‖ỹ − Φa‖2 (18)

is a “standard” optimal estimate of a0, [27], and thus

EP (ac) ≤ EP
(
als

)
.

VI. EXAMPLE: IDENTIFICATION OF VEHICLE LATERAL

DYNAMICS

In recent years, vehicle lateral dynamics control has

become of great importance in the automotive field [36],

[37], [38], [39], [40]. Indeed, the use of effective control

systems may allow high vehicle performances in terms of

safety, comfort and handling. The design of such control

systems requires to have mathematical models of vehicle

lateral dynamics that are accurate in describing the nonlinear

vehicle behavior, and simple, in order to allow a not too

difficult design.

In this example, model identification of vehicle lateral

dynamics has been performed using the approach presented

in Sections IV and V. This approach indeed allows the

identification of models with “low” complexity, which also

ensure a certain level of accuracy.

The following single-track model with 2 degrees of free-

dom (see e.g. [37], [39]) has been considered for the vehicle

lateral dynamics:

β̇ (t) = −ψ̇ (t) −
cf+cr

m

β(t)
v(t) +

cf

m

αS(t)
v(t)

+
lf cf+lrcr

m

ψ̇(t)
v2(t) + w1 (t)

ψ̈ (t) = −
lf cf−lrcr

J
β (t) −

l2f cf+l2rcr

J

ψ̇(t)
v(t) + w2 (t)

(19)

where β (t) is the side-slip angle, ψ̇ (t) is the yaw rate,

v (t) is the longitudinal speed, αS (t) is the steering angle,

w1 (t) and w2 (t) are noises, m is the vehicle mass, J
is the momentum of inertia around the vertical axis, lf
and lr are the front and rear distances between wheel and

center of gravity, and cf and cr are the front and rear

axle cornering stiffnesses. The following parameter values

have been assumed: m = 1798 kg, J = 2900 kgm2,

lf = 0.3 m, lr = 0.5 m, cf = 76515 Nm/rad, and

cr = 96540 Nm/rad.

A discrete-time model has been obtained by explicit

Euler discretization of equations (19). This model, used in

this example as the unknown “true” system to identify, is

described by the following nonlinear regression equation:

ỹk = 2ỹk−1 − 1.087ỹk−2 − 1.070ỹk−1p̃k−1

−9.625ỹk−1p̃k−2 + 10.69ỹk−2p̃k−2

−11.52ỹk−2p̃
2
k−2 + 3.715ũk−2p̃k−2 + dk

(20)

where ũk = αS (Tsk) and p̃k = 1/v (Tsk) are the measured

inputs, ỹk = ψ̇ (Tsk) is the measured output, dk is an

unknown white noise accounting for w1 (t) and w2 (t), Ts =
0.1s, and k = 1, 2, . . .

The following input signals have been considered: the

steering angle ũk has been simulated as a white noise

filtered to a maximum band of 2 rad/s. The longitudinal

velocity v (Tsk) has been taken as the sum of 3 sinusoids

spread over the band [0.005, 2] rad/s, taking values between

5 m/s and 60 m/s. dk has been generated as a white noise.

Several noise amplitudes have been used, giving noise-to-

signal ratios (measured in ℓ2 norm) ranging from 2% to

32%. For each amplitude, a set of L = 2000 data has been

generated from the “true” system (20) and two models have
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R 2% 4% 6% 8% 12% 17% 25% 32%

Niter 2 3 3 3 3 4 4 4

Ne 0 0 0 0 0 0 0 0

Ne 0 0 0 0 1 2 3 3∥∥a0
− a∗

∥∥
2

0.017 0.043 0.025 0.086 0.090 0.356 0.101 0.354∥∥a0
− als

∥∥
2

0.057 0.131 0.143 0.236 0.594 0.653 2.109 0.898

TABLE I

IDENTIFICATION RESULTS.

been identified from these data: a sparse model obtained

using the approach of Sections IV and V, and a model

obtained by standard least-squares.

Identification of the two models has been performed

assuming that the “true” system (20) is not known. The only

information used is that this system can be described by

some polynomial regression function. Note that this situation

is quite realistic, since in practical applications, the exact

functional structure of the system is seldom known, but some

physical information on its general form is often available.

A set of n = 22 polynomial basis functions has

been considered and the corresponding matrix Φ =
(Φ1 (x̃) , . . . ,Φ2000 (x̃)) has been obtained according to

Φk (x̃) = [φ1 (x̃k) , . . . , φn (x̃k)]
= [1, ỹk−1, ỹk−2, ũk−1, ũk−2, p̃k−1,
p̃k−2, ũk, p̃k, ỹk−3, ũk−3, p̃k−3,
ỹk−1p̃k−1, ỹk−2p̃k−1, ũk−2p̃k−1,
ỹk−1p̃k−2, ỹk−2p̃k−2, ũk−2p̃k−2,

ỹk−2p̃
2
k−2, ũk−2p̃

2
k−2, ỹk−3p̃

2
k−2, ũk−3p̃

2
k−2]

where x̃k = (ỹk−1, ũk−1, p̃k−1, . . . , ỹk−3, ũk−3, p̃k−3)
and k = 1, 2, . . . , 2000. Note that the basis function set

contains the 7 functions defining the “true” system equation

(20) and other 15 polynomial functions which do not appear

in (20). With this choice of the basis functions, the “true”

parameter vector is given by a0 = (0, 2, −1.087, 0, . . . , 0,
−1.070, 0, 0, −9.625, 10.69, 3.715, −11.52, 0, 0, 0).

The columns of the matrix Φ have been normalized. A

sparse model with coefficient vector a∗ has been identified

using Algorithm 1, and its sparsity level has been evaluated

by means of Theorem 1. For comparison, another model has

been derived using standard least squares. The parameter

vector als of this model has been identified by means of

the optimization problem (18). This problem and all those

in Algorithm 1 have been solved using CVX, a package for

specifying and solving convex programs [41], [42].

The identification results are shown in Table I in function

of the noise-to-signal ratio R. Niter is the number of

iterations performed by Algorithm 1. Ne is the number of

exceeding non-zero elements of a∗ with respect to the “true”

parameter vector a0. Ne is the bound on Ne provided by

Theorem 1.
∥∥a0 − a∗

∥∥
2

and
∥∥a0 − als

∥∥
2

are the parametric

errors of the sparse and least-squares models, respectively.

From these results, it can be noted that the identification

Algorithm 1 is able to select exactly the “true” basis func-

tions even in the presence of very large noise. The condition

(12) ensuring that a∗ is maximally sparse is satisfied even for

large noise (up to a noise-to-signal ratio of 8%), indicating

that this condition not only provides a theoretical motivation

for using Algorithm 1, but can also be used to evaluate

the sparsity of a model in practical situations. The fact that

Algorithm 1 exactly selects the “true” basis functions and

gives an optimal estimate according to (15) leads to a high

identification accuracy. Indeed, the parametric error of a∗ is

significantly smaller that the parametric error of the least-

square estimate als, which satisfies the weaker optimality

criterion (17).

Note also that regressors of order 3 have been included in

the basis function set. The elements of a∗ corresponding to

these regressors have been identified as null, suggesting that

Algorithm 1 could be effectively used to solve problems of

model order selection.

VII. CONCLUSIONS

An algorithm for sparse identification of nonlinear func-

tions has been proposed. A condition has been derived, en-

suring that the solution identified by the algorithm is sparsest.

A bound on the sparsity level of the algorithm solution

with respect to the sparsest solution has been derived, useful

when this condition is not satisfied. Then, a Set Membership

optimality analysis has been carried out, showing that the

algorithm is able to perform exact basis function selection

and to provide optimal estimates.

The main advances with respect to the existing literature

given in the paper are the following: 1) The condition

provided for verifying that a solution is sparsest can be

easily verified for any choice of the basis functions. On the

contrary, the conditions available in the literature can be used

in practice only for particular choices of the basis functions.

2) The exact basis function selection is performed for a finite

number of data, whereas in standard system identification, a

similar result can be obtained only for an infinite number of

data.
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[31] J. R. Partington, Interpolation, Identification and Sampling. New
York: Clarendon Press - Oxford, 1997, vol. 17.

[32] J. Chen and G. Gu, Control-Oriented System Identification: An H∞

Approach. New York: John Wiley & Sons, 2000.

[33] M. Milanese and C. Novara, “Set membership identification of non-
linear systems,” Automatica, vol. 40/6, pp. 957–975, 2004.

[34] N. Ramdani, N. Meslem, T. Ra, and Y. Candau, “Set-membership
identification of continuous-time systems,” in 14th IFAC Symposium

on System Identification SYSID, Newcastle, Australia, 2006.
[35] M. Sznaier, M. Wenjing, O. Camps, and L. Hwasup, “Risk adjusted

set membership identification of wiener systems,” IEEE Transactions

on Automatic Control, vol. 54, no. 5, pp. 1147–1152, 2009.
[36] A. Zanten, R. Erhardt, and G. Pfaff, “Vdc, the vehicle dynamics

control system of bosch,” in SAE Technical Paper No. 950759, 1995.
[37] J. Ackermann, “Robust control prevents car skidding,” Control Systems

Magazine, IEEE, vol. 17, no. 3, pp. 23 –31, jun. 1997.
[38] S. Suryanarayanan, M. Tomizuka, and T. Suzuki, “Design of simulta-

neously stabilizing controllers and its application to fault-tolerant lane-
keeping controller design for automated vehicles,” Control Systems

Technology, IEEE Transactions on, vol. 12, no. 3, pp. 329 – 339,
may. 2004.

[39] R. Rajamani, Vehicle Dynamics and Control. Springer Verlag, 2006.
[40] V. Cerone, M. Milanese, and D. Regruto, “Yaw stability control design

through a mixed-sensitivity approach,” Control Systems Technology,

IEEE Transactions on, vol. 17, no. 5, pp. 1096 –1104, sep. 2009.
[41] M. Grant and S. Boyd, “CVX: Matlab software for disciplined convex

programming, version 1.21,” http://cvxr.com/cvx, Aug. 2010.
[42] ——, “Graph implementations for nonsmooth convex programs,”

in Recent Advances in Learning and Control, ser. Lecture Notes
in Control and Information Sciences, V. Blondel, S. Boyd, and
H. Kimura, Eds. Springer-Verlag Limited, 2008, pp. 95–110,
http://stanford.edu/ boyd/graph dcp.html.

668


