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Abstract— This work considers the problem of fault detection
and isolation (FDI) and fault-handling for networked systems
subject to actuator faults. The faults considered preclude
the possibility of nominal operation in the affected unit.
First, a model-based methodology is presented to detect and
isolate faults with the explicit consideration of uncertainty.
Then, an algorithm is developed to generalize the safe-parking
approach for fault-tolerant control to account for complex
interconnections such as parallel and recycle structures in
networked systems. The efficacy of the integrated FDI and
safe-parking framework is demonstrated through a chemical
process example.

I. INTRODUCTION

Faults are ubiquitous in chemical process industries and

can occur in processing or control equipment such as actu-

ators and sensors. These abnormal situations can seriously

impact safety, plant economy, product quality, and pollutant

emissions. To address these problems, significant research

efforts have been made in the areas of fault detection and

isolation (FDI) and fault-tolerant control (FTC) to devise au-

tomated methods to detect the occurrence of faults, identify

the faulty unit in the control loop, and take corrective control

action to prevent process performance degradation and safety

hazards.

The key problem for FDI is to distinguish between the

effect of “normal” disturbances to the system and a fault

using various combinations of past data and first-principles

based models. In the approaches using (primarily) system

data, the fault information is extracted by comparing the sys-

tem state trajectory with historical system data (e.g., see [1]

for a review). To enhance data-based isolation for nonlinear

systems, a method of decoupling the dependency between

certain state variables through feedback control (exploiting

the system structure) has recently been proposed (e.g., [2]).

The approach using (primarily) first-principles models has

been studied extensively assuming a linear system model

(e.g., [3]), as well as accounting for the nonlinear nature

of the system (e.g., [4], [5]).

Most of the existing results on FTC have been developed

based on the assumption of the availability of sufficient

residual control effort or redundant control configurations

to preserve operation at the nominal equilibrium point in

the presence of faults (e.g., [6], [4]). These methods can be

categorized into robust/reliable control and reconfiguration-

based approaches. The robust/reliable control approach (e.g.,
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[6]) relies on the robustness of the active control config-

uration to handle faults as disturbances. However, some

faults can hamper the available control action significantly;

hence nominal operation cannot be preserved in the active

control configuration regardless of the control law used. In

the reconfiguration-based approach, a backup control-loop

configuration is activated to preserve nominal operation with

the failed control equipment disabled.

In comparison, the problem of handling faults that pre-

clude the possibility of continued nominal operation has been

paid little attention. Recently, a safe-parking framework has

been proposed to handle such faults in an isolated unit in

[7]. The key idea is to operate the plant at an appropriately

chosen temporary equilibrium point (the so-called safe-park

point) to guarantee safe operation in the presence of faults

and smooth resumption of nominal operation upon fault

rectification. The safe-parking framework has been extended

to handle uncertainty and measurement unavailability in [8],

and to handle faults for units in series in [9]. However, most

processes in chemical industries use a complex integration of

streams for many purposes, such as processing raw feedstock

or improving the heat economy of the plant (see, e.g., [10]

for control designs considering the networked nature of the

system). The safe-parking mechanism for an isolated unit or

units in series may not remain effective in the context of

complex networked structures. Furthermore, no FDI designs

are explicitly considered in [7], [8], [9].

Motivated by the above considerations, in this work we

present an integrated FDI and safe-parking framework for

networked systems subject to actuator faults. The faults

considered preclude the possibility of nominal operation

in the affected unit. The remainder of the manuscript is

organized as follows. In Section II, the class of systems con-

sidered, a motivating example, and the problem statement are

presented, followed by a review of the safe-parking approach.

A novel FDI mechanism with the explicit consideration of

uncertainty is presented in Section III. The safe-parking

approach is generalized, in Section IV, to account for the

complex interconnections in networked systems. In Section

V, the efficacy of the integrated FDI and safe-parking frame-

work is demonstrated through a chemical process example.

Finally, Section VI presents some concluding remarks.

II. PRELIMINARIES

In this section, we describe the class of systems consid-

ered, followed by a chemical process example, present the

problem statement, and review the safe-parking approach.
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A. System description

Consider a networked system composed of M units,

described by the following ordinary differential equations:

ẋ1 = f1(x1) +G1(x1)(u1 + ũ1) +
M
∑

j=2

R1,j(x1)xj

+W1(x1)θ1
...

ẋi = fi(xi) +Gi(xi)(ui + ũi) +
M
∑

j=1,j 6=i

Ri,j(xi)xj

+Wi(xi)θi
...

ẋM = fM (xM ) +GM (xM )(uM + ũM )

+

M−1
∑

j=1

RM,j(xM )xj +WM (xM )θM

(1)

where xi = [xi,1, · · · , xi,ni
]T ∈ R

ni , i ∈ M := {1,

· · · , M} denotes the vector of state variables for the ith
unit, ui = [ui,1, · · · , ui,mi

]T ∈ R
mi , i ∈ M denotes the

vector of constrained manipulated variables for the ith unit,

taking values in a nonempty compact convex set Ui = {ui ∈
R

mi : ui,min ≤ ui ≤ ui,max}, with ui,min = [ui,1,min, · · · ,
ui,mi,min]

T, ui,max = [ui,1,max, · · · , ui,mi,max]
T ∈ R

mi the

constraints on the manipulated variables, ũi = [ũi,1, · · · ,
ũi,mi

]T ∈ R
mi denotes the fault vector, with ui + ũi ∈ Ui,

and θi = [θi,1, · · · , θi,qi ]
T ∈ R

qi , θi,min ≤ θi ≤ θi,max

denotes the vector of bounded (possibly time-varying) uncer-

tain variables affecting the ith unit, with θi,min = [θi,1,min,

· · · , θi,qi,min]
T, θi,max = [θi,1,max, · · · , θi,qi,max]

T ∈ R
qi the

bounds on uncertainty. For i = 1, · · · , M , the vector function

fi(·) = [fi,1(·), · · · , fi,ni
(·)]T, where fi,j(·) denotes the jth

element of fi(·), j = 1, · · · , ni, and the matrix functions

Gi(·) = [gi,1(·)T, · · · , gi,ni
(·)T]T, where gi,j(·) denotes the

jth row of Gi(·), j = 1, · · · , ni, Ri,j(·) = [ri,j,1(·)T, · · · ,
ri,j,ni

(·)T]T, where ri,j,l(·) denotes the lth row of Ri,j(·),
l = 1, · · · , ni, and Wi(·) = [wi,1(·)T, · · · , wi,ni

(·)T]T,

where wi,j(·) denotes the jth row of Wi(·), j = 1, · · · ,
ni, are assumed to be sufficiently smooth on their domains

of definition. The ith row in Eq. (1) describes the subsystem

for unit i. It is assumed that the origin, i.e., xi = 0, i ∈ M,

is an equilibrium point for each subsystem under nominal

conditions (i.e., ũi ≡ 0, θi ≡ 0, and xj ≡ 0 for all j ∈
M\{i}). Each unit i is controlled by a local robust controller

with a stability region denoted by Ωnom,i (see [8] for one

example of a robust control law with a well characterized

stability region), and the state information is shared between

the controllers for interconnected units. Piecewise constant

control is implemented, i.e., u(t) = u(tk), for all t ∈ [tk,

tk+1), where tk := k∆, k = 0, · · · , ∞, with ∆ the execution

period during which the control input is kept constant. It is

assumed that the measurements of xi(t) for all i ∈ M are

available for all t ≥ 0.
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Fig. 1. Schematic of the networked process system.

B. Motivating example

To motivate the present work, we consider a networked

process system comprising three reactors and a separator, as

shown in Fig. 1 (a similar example is considered in [11]

in the context of distributed model predictive control). In

this plant, three parallel irreversible elementary exothermic

reactions of the form A
k1−→ B, A

k2−→ U, and A
k3−→ R

take place in the reactors, where A is the reactant species, B

the desired product, and U and R the undesired byproducts.

The feed to reactor-i, i = 1, 2, 3, consists of reactant A

at a flow rate Fi,in, concentration CAi,in, and temperature

Ti,in. The outlet stream of reactor-1 at a flow rate F1 is

split into two streams such that 61.5% of the flow (F20)

goes to reactor-2 and the rest (F30) to reactor-3. Then, the

outlet streams of reactor-2 and reactor-3 go to the separator,

where reactant A is separated from the products B, U, and

R, and recycled back to reactor-1. It is assumed that the

reactions taking place in the separator are negligible, the

molecular weight of the solvent is the same as that of species

A, and the products and solvent have the same volatility. Due

to the nonisothermal nature of the reactions, each reactor

is provided with two coils to add/remove heat to/from it.

Under standard assumptions, the mathematical model for the

process takes the following form:

ĊA1 =
F1,in

V1

(CA1,in − CA1)−
3

∑

j=1

Rj(CA1, T1)

+
Fr

V1

(CA,r − CA1)

Ṫ1 =
F1,in

V1

(T1,in − T1) +

3
∑

j=1

(−∆Hj)

ρcp
Rj(CA1, T1)

+
Fr

V1

(T4 − T1) +
Q1

ρcpV1

ĊA2 =
F2,in

V2

(CA2,in − CA2)−
3

∑

j=1

Rj(CA2, T2)

+
F20

V2

(CA1 − CA2)

Ṫ2 =
F2,in

V2

(T2,in − T2) +
3

∑

j=1

(−∆Hj)

ρcp
Rj(CA2, T2)
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+
F20

V2

(T1 − T2) +
Q2

ρcpV2

ĊA3 =
F3,in

V3

(CA3,in − CA3)−
3

∑

j=1

Rj(CA3, T3)

+
F30

V3

(CA1 − CA3)

Ṫ3 =
F3,in

V3

(T3,in − T3) +

3
∑

j=1

(−∆Hj)

ρcp
Rj(CA3, T3)

+
F30

V3

(T1 − T3) +
Q3

ρcpV3

ĊA4 =
Fb

V4

(CA4,in − CA4) +
Fr + Fp

V4

(CA4,in − CA,r)

Ṫ4 =
F4,in

V4

(T4,in − T4) +
Q4

ρcpV4

where CAi is the concentration of species A, Ti is the

temperature, Qi is the rate of heat input, Vi is the volume,

with subscript i denoting reactor-i (i = 1, 2, 3) or the

separator (i = 4), Rj(CAi, Ti) = kj0e
−Ej/RTiCAi is the

reaction rate for the jth reaction in the ith reactor, j = 1,

2, 3, kj0, Ej , and ∆Hj denote the pre-exponential constant,

the activation energy, and the enthalpy of the three reactions,

respectively, cp and ρ denote the heat capacity and the

density of the fluid in the reactor, respectively, and Fb, Fr,

and Fp denote the flow rates of the bottom product stream,

the recycle stream, and the remaining top stream from the

separator, respectively. The concentration of species A in the

recycle stream is computed as follows: CA,r = αCA4ρ/[ρ+
(α − 1)CA4MW ], where α is the relative volatility and

MW is the molecular weight. The control objective under

fault-free conditions is to operate the process at the nominal

equilibrium point. The manipulated variables for reactor-i are

the concentration of species A in the feed stream (CAi,in) and

the rate of heat input to the reactor (Qi). For the separator,

the only manipulated variable is the rate of heat input (Q4).

It is assumed that there exist uncertainty in parameter k10,

sinusoidal disturbances in the inlet temperature of the feed

streams, and measurement noise.

C. Problem description

Consider the networked system described by Eq. (1) with

parallel and recycle structures and the failure of the mth, m ∈
{1, · · · , mi}, control actuator in unit i ∈ M, which corre-

sponds to the manipulated variable ui,m in Eq. (1). Let tf and

tr denote the times that a fault takes place and it is repaired,

respectively, which are unknown ahead of time. It is assumed

that the failed actuator reverts to a so-called fail-safe position

to prevent the occurrence of hazardous situations. Examples

of fail-safe positions include shut for a heating valve and

completely open for a cooling valve. Under this assumption,

the output of the failed actuator (or the corresponding input

of the plant under faulty conditions) is constant and known in

advance, which is denoted by ūi,m,f . The faults considered

preclude the possibility of continued nominal operation in

the affected unit. The problem considered in this work is

as follows: 1) design of an FDI scheme with the explicit

consideration of plant-model mismatch for the individual

units, and 2) design of a safe-parking framework to account

for the complex interconnections in networked systems.

D. Safe-parking approach for fault-tolerant control

In this section, we briefly review the safe-parking frame-

work for an isolated unit as proposed in [7]. Let td denote the

time that a fault is detected and isolated. Consider an isolated

unit indexed by i in the networked system of Eq. (1), e.g., it

is the only unit or there are no other units following it, and

an actuator fault as described in Section II-C. The key idea

of the safe-parking approach is to maintain the system at a

suboptimal but admissible operating point (which is called

a safe-park point) under faulty conditions and to resume

nominal operation smoothly upon fault repair. For an isolated

unit, the requirements for a safe-park point are as follows

[7]: 1) the safe-park point should be a feasible equilibrium

point subject to the fault, 2) it should be possible to drive

the system to the safe-park point from the time td, i.e., the

system state at the time td should be within the stability

region of the safe-park point, which we denote by Ωs,i, and

3) it should be possible to resume nominal operation after

the fault is rectified, i.e., the safe-park point should be within

the stability region of the nominal equilibrium point. The

first and third conditions require that the safe-park point be

chosen from the following set:

Ci = {xi ∈ R
ni : fi(xi) +Gi(xi)ui = 0, ui ∈ Ui,

ui,m = ūi,m,f , xi ∈ Ωnom,i}
(2)

which is called the candidate safe-park set for unit i (subject

to the stability region Ωnom,i).

III. FAULT DETECTION AND ISOLATION FOR NETWORKED

SYSTEMS

In this section, we design a robust FDI scheme for the

individual units in the plant of Eq. (1). The key idea is to

construct relations between the prescribed inputs and state

measurements in the absence of faults by using the process

model, while accounting for uncertainty explicitly. A fault

is detected and isolated when the corresponding relation is

violated. To allow fault isolation, it is assumed that there

exists a state that is directly and uniquely affected by a

potential fault, which is formalized in Assumption 1 below.

Assumption 1: [4] Consider the system of Eq. (1). Then

for every input ui,m, i = 1, · · · , M , m = 1, · · · , mi, there

exists a state xi,n, n ∈ {1, · · · , ni} such that with xi,n as an

output, the relative degree of xi,n with respect to ui,m and

only with respect to ui,m is equal to 1.

Consider the ordinary differential equation that describes

the evolution of the nth state for the ith unit:

ẋi,n = fi,n(xi) + gi,n,m(xi)[ui,m(t) + ũi,m(t)]

+
M
∑

j=1,j 6=i

ri,j,n(xi)xj + wi,n(xi)θi(t)
(3)
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where gi,n,m(·) is the mth element of the vector function

gi,n(·). As piecewise constant control is implemented, if

ũi,m(t) = 0 for all t ∈ [tk, tk+1), we have

ẋi,n = fi,n(xi) + gi,n,m(xi)ui,m(tk)

+
M
∑

j=1,j 6=i

ri,j,n(xi)xj + wi,n(xi)θi(t)
(4)

for t ∈ [tk, tk+1). Integrating both sides of Eq. (4) over (tk,

tk+1) gives

xi,n(tk+1) = xi,n(tk) +

∫ tk+1

tk

[fi,n(xi)

+ gi,n,m(xi)ui,m(tk)

+

M
∑

j=1,j 6=i

ri,j,n(xi)xj + wi,n(xi)θi(t)]dt

(5)

Rearranging Eq. (5) yields

w̄i,n(k) = xi,n(tk+1)−xi,n(tk)−f̄i,n(k)−ḡi,n,m(k)ui,m(tk)
(6)

where f̄i,n(k) =
∫ tk+1

tk
[fi,n(xi) +

∑M
j=1,j 6=i ri,j,n(xi)xj ]dt,

ḡi,n,m(k) =
∫ tk+1

tk
gi,n,m(xi)dt, and w̄i,n(k) =

∫ tk+1

tk
wi,n(xi)θi(t)dt.

Since the exact value of w̄i,n(k) cannot be computed

due to the presence of the uncertain variables, Eq. (6)

cannot be directly used for FDI. However, the lower

and upper bounds on w̄i,n(k) can be computed by us-

ing the known bounds on the uncertain variables. To

this end, let w̄i,n,l(k) and w̄i,n,u(k) denote the lower

and upper bounds on w̄i,n(k), respectively. Then, we

have w̄i,n,l(k) =
∫ tk+1

tk
wi,n(xi)θi,l(t)dt and w̄i,n,u(k) =

∫ tk+1

tk
wi,n(xi)θi,u(t)dt, where θi,l(t) = [θi,1,l(t), · · · ,

θi,qi,l(t)]
T and θi,u(t) = [θi,1,u(t), · · · , θi,qi,u(t)]

T, with

θi,q,l(t) =

{

θi,q,max, if wi,n(xi) ≤ 0
θi,q,min, if wi,n(xi) > 0

and θi,q,u(t) =
{

θi,q,min, if wi,n(xi) ≤ 0
θi,q,max, if wi,n(xi) > 0

, q = 1, · · · , qi. Therefore, in

the absence of the fault ũi,m, the following inequality holds

w̄i,n,l(k) ≤ xi,n(tk+1)− xi,n(tk)− f̄i,n(k)

− ḡi,n,m(k)ui,m(tk)

≤ w̄i,n,u(k)

(7)

Note that ḡi,n,m(k) 6= 0 because gi,n,m(·) 6= 0 under

Assumption 1 and gi,n,m(·) is continuous. This allows us to

compute the lower and upper bounds on ui,m(tk) from those

on w̄i,n(k). To this end, let ua = [xi,n(tk+1) − xi,n(tk) −
f̄i,n(k) − w̄i,n,l(k)]/ḡi,n,m(k) and ub = [xi,n(tk+1) −
xi,n(tk) − f̄i,n(k) − w̄i,n,u(k)]/ḡi,n,m(k). It follows from

Eq. (7) and the physical constraints on the inputs that

ui,m,l(k) ≤ ui,m(tk) ≤ ui,m,u(k) (8)

where ui,m,l(k) = max{ua, ui,m,min}, ui,m,u(k) =
min{ub, ui,m,max} if ḡi,n,m(k) < 0, and ui,m,l(k) =
max{ub, ui,m,min}, ui,m,u(tk) = min{ua, ui,m,max} if

ḡi,n,m(k) > 0. Since Eq. (8) is derived by assuming

ũi,m(t) = 0 for all t ∈ [tk, tk+1), it follows from Eq. (3)

that the only way that Eq. (8) is violated is when a fault of

ũi,m takes place. Therefore, if ui,m(tk) breaches its lower

bound ui,m,l(k) or upper bound ui,m,u(k), which can be

verified through Eq. (8), then a fault associated with ui,m

(i.e., the mth input to the ith unit) is detected and isolated

simultaneously. This FDI scheme is robust in the sense that

there will be no false alarms caused by uncertainty in the

absence of faults. Define binary residuals as follows:

Resui,j
(k) :=

{

1, if ui,j(k) /∈ [ui,j,l(k), ui,j,u(k)]

0, otherwise
(9)

A fault is declared when a non-zero residual is generated

at successive nd steps, where nd is picked to prevent false

alarms due to measurement noise.

IV. SAFE-PARKING OF NETWORKED SYSTEMS WITH

PARALLEL AND RECYCLE STRUCTURES

In this section, we propose a safe-parking framework for

the networked system of Eq. (1) with parallel and recycle

structures. In particular, we devise an algorithm to identify

the units that need to be operated at an appropriate temporary

operating point during fault rectification and generate safe-

park point candidates for these units.

In the safe-parking design, we consider potential faulty

scenarios with one actuator fault taking place. Let Nf denote

the number of faulty scenarios under consideration and N =
{1, · · · , Nf} denote the index set for these faults. We use Jp

to record the indices for the units that have to be safe-parked

simultaneously for the pth fault, where p ∈ N , which is

initialized to be {i} and updated by adding necessary entries.

The determination of Jp is achieved by handling parallel and

recycle structures alternatively. To facilitate the analysis, we

consider a subsystem of Eq. (1), which is composed of K
units indexed by a set K = {i1, · · · , iK} ⊆ M and described

as follows (under nominal conditions):

ẋi1 = fi1(xi1 ) +Gi1 (xi1 )ui1 +

iK
∑

v=i2

Ri1,v(xi1 )xv

...

ẋiK = fiK (xiK ) +GiK (xiK )uiK +

iK−1
∑

v=i1

RiK ,v(xiK )xv

(10)

The above equation can be written into the following com-

pact form:

ẋK = fK(xK) +GK(xK)uK (11)

where xK = [xT
i1 , · · · , xT

iK ]T ∈ R
nK , with nK =

∑iK
v=i1

nv,

uK = [uT
i1 , · · · , uT

iK ]T ∈ UK :=
∏

v∈K Uv, and fK(·) and

GK(·) are appropriately defined.

To account for parallel structures, let Pj be an index

set for the identified units that need to be safe-parked in

the same parallel structure as unit j. We explore each unit

immediately downstream of subsystem Pj and determine if

nominal operation can be preserved by safe-parking units
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Pj . To this end, consider units indexed by Pj and a unit l,
which is a unit immediately downstream of subsystem Pj . To

illustrate the key idea of the proposed algorithm, we assume

that it has not been determined that if nominal operation can

be preserved in unit l by safe-parking part of the units in Pj

before the current exploration of unit l. We define Dj,l as a

region such that if units Pj operate at an equilibrium point

within Dj,l, nominal operation in unit l can be preserved,

which is computed as follows:

Dj,l = {xPj
∈ R

nPj : fl(0) +Gl(0)ul

+
∑

v∈Pj

Rl,v(0)xv = 0, ul ∈ Ul} (12)

Let Ij denote the index set for the units that are immediately

downstream of those indexed by Pj (in the motivating

example, for instance, the set I1 = {2, 3}). Let D̃j denote

the intersection of Dj,l for all l ∈ Lj ⊆ Ij , where Lj is

defined as an index set for the units immediately downstream

of those indexed by Pj in which nominal operation can be

preserved.

Whenever a new Dj,l is generated, we need to verify

if there exist safe-park point candidates such that nominal

operation can be preserved in unit l. We use Ep to record

the indices of the units for which there exists at least one

immediately downstream unit where nominal operation can

be preserved (i.e., there exist safe-park point candidates for

some units Pj that reside within D̃j). We first compute the

feasible equilibrium points subject to the reduced control

action for the subsystem of Eq. (10) with K = Jp as follows:

CJp
= {xJp

∈ R
nJp : fJp

(xJp
) +GJp

(xJp
)uJp

= 0,

uJp
∈ UJp

, ui,m ≡ ūi,m,f , xv ∈ Ωnom,v for all

v ∈ Jp, xPv
∈ D̃v for all v ∈ Ep}

(13)

The component equilibrium points are chosen as safe-park

point candidates for subsystem Pj , which are denoted by

set Cj . If Cj ∩ Dj,l 6= ∅, then there exist safe-park point

candidates such that nominal operation can be preserved in

unit l. For this case, we add Pj to Ep and l to Lj . If Cj ∩
Dj,l = ∅, we need to safe-park unit l as well and therefore

add l to Jp. For the units where nominal operation cannot

be preserved, we further explore the downstream units for

each of them by following the above procedure.

If a recycle structure is encountered as the exploration

proceeds, it may not be true that nominal operation can still

be preserved in units Lv (the set determined by following

the procedure for parallel structures) for all v ∈ Ep. To solve

this problem, we treat units Jp as a subsystem and examine

(or reexamine) if nominal operation can be preserved in each

unit downstream of this subsystem by following the method

developed for parallel structures to maximize the possibility

of nominal operation in individual units. The exploration

terminates when nominal operation can be preserved in all

the downstream units of the subsystem Jp or this subsystem

has no downstream units.

After the units that need to be safe-parked are identified,

a bank of safe-park point candidates for the subsystem Jp

can be generated according to Eq. (13). In contrast to [9],

we choose the component equilibrium points of those in

CJp
for each unit as the safe-park point candidates for

the individual units. The stability region of the safe-park

point candidate for each unit is then computed by using

the steady-state values of the states of the upstream units

and treating the deviations of their actual values from the

steady-state values as disturbances. The off-line design of

the safe-parking framework for the networked system of Eq.

(1) is formalized in Algorithm 1 below.

Algorithm 1: This algorithm describes the off-line design

of the safe-parking framework for the networked system of

Eq. (1).

1) Design a local controller for each unit, indexed by

j ∈ M, and characterize the stability region of the

corresponding nominal equilibrium point, denoted by

Ωnom,j . Let Q = N .

2) Pick p from Q and remove p from Q. Let S = Jp =
{i} and Ep = ∅.

a) If S 6= ∅, pick j ∈ S and remove Pj from S,

else go to Step 3.

b) If no recycle structure is detected, let T = Ij\Jp,

else let Lv = ∅ for all v ∈ Ep, Ep = ∅, S =
{v ∈ Jp : Iv\Jp 6= ∅}, and go to Step 2a.

c) If T 6= ∅, characterize Dj,l for units Pj and

some l ∈ T , as defined in Eq. (12), and remove

l from T , else go to Step 2a.

d) If Cj ∩ Dj,l 6= ∅, add Pj to Ep and l to Lj

(initialized as ∅), else add l to S and Jp. Go to

Step 2c.

3) Generate safe-park point candidates xs,j for each unit

j ∈ Jp according to Eq. (13).

4) Characterize the stability regions, denoted by Ωs,j , for

all the safe-park point candidates xs,j .

5) If Q 6= ∅, repeat Step 2.

Upon FDI, we search over the results of the off-line

design to choose safe-park points for the units which have

to be operated at a temporary operating point during fault

rectification (i.e., units indexed by Jp if the pth fault takes

place). We stabilize these units at safe-park points, while

stabilizing the remaining units at nominal equilibrium points.

Remark 1: The proposed algorithm provides a systematic

procedure to confine the effect of the fault in a subsystem

of the networked plant. While we focus on the occurrence

of one actuator fault in the safe-parking design, this method-

ology can be generalized to handle multiple faults (possibly

in different units in the context of a networked plant) by

considering the combination of fail-safe positions for most

commonly encountered faulty scenarios in practice.

V. SIMULATION EXAMPLE

Consider the networked process example of Section II-B.

The Lyapunov-based robust model predictive controller of

[8] is designed for each unit by using a quadratic Lyapunov

function of the form Vi = xT
i Pixi. The control execution

period is chosen as ∆ = 0.025 hr = 1.5 min and a two-

step prediction horizon is used. The noisy measurements are
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Fig. 2. Stability region of the nominal equilibrium point for reactor-1
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circles and the diamond) subject to the fault in CA1,in for reactor-1 in the
subsystem.

filtered before performing FDI and computing the prescribed

input.

Consider a fault in CA1,in, for which we implement Algo-

rithm 1 (some details are omitted). To account for the recycle

stream, we plot the temporary equilibrium points for reactor-

1 by using the model for the subsystem composed of reactor-

1, reactor-2, and the separator, as shown in Fig. 2. Since

there exist feasible equilibrium points within D1,3 (e.g., xs,1

in Fig. 2), nominal operation can be preserved in reactor-3.

Therefore, we have J = {1, 2, 4}, E = {1}, and L = {3}.

It means that reactor-1, reactor-2, and the separator have

to be safe-parked simultaneously, with nominal operation

in reactor-3 preserved. The process operates at the nominal

equilibrium point initially. The fault is introduced at time

tf = 1 hr and repaired at time tr = 2.5 hr. As shown in Fig.

3, the proposed FDI scheme detects and isolates the fault

very quickly at time t = 1.025 hr and the fault is confirmed

at time td = 1.125 hr, with nd = 5. Subsequently, reactor-1,

reactor-2, and the separator are safe-parked, with reactor-3

continuing nominal operation even during fault rectification

and the entire plant resuming nominal operation upon fault

rectification. The evolution of the closed-loop state profiles

are depicted in Fig. 4.

VI. CONCLUSIONS

This work considered the problem of FDI and fault-

handling for networked systems subject to actuator faults.

The faults considered preclude the possibility of nominal

operation in the affected unit. First, a model-based method-

ology was presented to detect and isolate faults with the

explicit consideration of uncertainty. Then, an algorithm was

developed to generalize the safe-parking approach for fault-

tolerant control to account for complex interconnections such

as parallel and recycle structures in networked systems. The

efficacy of the integrated FDI and safe-parking framework

was demonstrated through a chemical process example.
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