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Abstract— This paper extends prior work on the persistent
mission problem where real-time changes in agent capability
are included in the problem formulation. Here, we couple the
mission planner with a low-level adaptive controller in real-
time to: (1) Provide robustness against actuator degradations
and (2) Use parameters internal to the adaptive controller to
provide valuable insight into the physical capabilities of the
agent. These parameters, in conjunction with sensor health
information, form a more complete measure of agent capability,
which is used online and in forward planning to enable both
reactive and proactive behavior. Flight results are presented for
a persistent mission scenario where actuator degradations are
induced to demonstrate: (1) The robustness of the composite
adaptive controller and its successful integration with the agent-
level health-monitoring and mission-level planning systems and
(2) The reactive and proactive qualities of the planning system
in persistently re-tasking agents under actuator and sensor
health degradations.

I. INTRODUCTION

In the context of teams of coordinating agents, many

mission scenarios of interest are inherently long-duration

and require a high level of agent autonomy due to the

expense and logistical complexity of direct human control

over the individual agents. Such long-duration missions are

practical scenarios that can show well the benefits of agent

cooperation. However, they can also accelerate mechanical

wear and tear on an agent’s hardware platform and increase

the likelihood of related failures. It is important that the

planning system accounts for the possibility of these failures

when constructing a mission plan. Planning problems that

coordinate the actions of multiple agents, where each of

which is subject to failures are referred to as multi-agent

health management problems [1,2].

One approach to multi-agent health management problems

is proactive [3] by constructing a plan based on stochastic

models which capture the inherent possibility of failures.

Using stochastic models increases the complexity of com-

puting the plan, as it then becomes necessary to optimize

expected performance, where the expectation is taken over all

possible scenarios that might occur. However, since proactive

planners prescribe actions that mitigate the consequences of
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possible future failures, the resulting mission performance

can be much better than that achieved by a reactive plan-

ner (naturally, depending on the validity of the underlying

stochastic models).

This research aims to develop a proactive mission planner

for a team of autonomous agents in the presence of sensor

and actuator degradations. The problem becomes challenging

when stochastic models for sensor and actuator health are

included in the formulation as well as stochastic dynamics

for fuel consumption. Previous work has shown dynamic pro-

gramming techniques to be a well-suited solution approach

when planning for persistent missions [4]. For example,

in [4] the planning problem is formulated as a Markov

decision process (MDP) and solved using value iteration.

The resulting optimal control policy showed a number of

desirable properties, including the ability to proactively recall

vehicles to base with an extra, reserve quantity of fuel which

resulted in fewer vehicle losses and a higher average mission

performance. Similarly, the persistent mission planner is

formulated here as an MDP and an approximate dynamic

programming technique called Bellman residual elimination

[5] is implemented to compute an approximate control policy.

In addition to broadening the on-line metric for agent

capability to include actuator health, another important con-

tribution of this research is to couple the MDP mission

planner with a low-level adaptive controller in real-time. To

accomplish this, the vehicle’s baseline controller is retro-

fitted with a composite model-reference adaptive controller

(CMRAC) designed to provide robustness against actuator

degradations. Parameters internal to the adaptive controller

provide valuable insight into actuator health and therefore

into the physical capabilities of the agent [6]. The agent’s

health monitoring and diagnostic system (HMDS) utilizes

these adaptive parameters in conjunction with sensor health

information to form a more complete measure of agent

capability in real-time. This capability metric is used online

and in forward planning to enable both reactive and proactive

behaviors against sensor and actuator degradations.

The remainder of the paper is outlined as follows: The

multi-agent persistent mission planning problem is described

and formulated in Section II, following which the technical

details of the HMDS are given in Section III. Results of

flight tests performed at Boeing Vehicle Swarm Technology

Lab (VSTL) [7] are then provided in Section IV, followed

by some concluding remarks.
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Fig. 1. N agents cooperate to continuously survey a specified region and
to track any objects of interest discovered there. This behavior is to be
maintained even under sensor and actuator health degradations.

II. PROBLEM FORMULATION

Figure 1 depicts a possible theater of operation for such a

mission with several distinct “locations”. Agents coordinate

and move between these locations such that a specific num-

ber are in the surveillance location at any given time to search

for new targets and track those already discovered. The

maintenance base location is for agents who have suffered

sensor and/or actuator degradations while the refuel base

location is more conveniently located so as to minimize swap

times for fully operational agents only needing fuel.

Given the qualitative description of the persistent surveil-

lance problem, an MDP can now be formulated. An infinite-

horizon, discounted MDP is specified by (S,A, P, g), where

S is the state space, A is the action space, Pij(u) gives the

transition probability from state i to state j under action u,

and g(i, u) gives the cost of taking action u in state i. We

assume that the MDP model is known and is a function of

the agent health metric (detail in Section III). Future costs

are discounted by a factor 0 < α < 1. A policy of the MDP

is denoted by µ : S → A. Given the MDP specification, the

problem is to minimize the cost-to-go function Jµ over the

set of admissible policies Π:

min
µ∈Π

Jµ(i0) = min
µ∈Π

E

[

∞
∑

k=0

αkg(ik, µ(ik))

]

. (1)

For notational convenience, the cost and state transition

functions for a fixed policy µ are defined as

g
µ
i ≡ g(i, µ(i)) (2)

P
µ
ij ≡ Pij(µ(i)), (3)

respectively. The cost-to-go for a fixed policy µ satisfies the

Bellman equation [8]

Jµ(i) = g
µ
i + α

∑

j∈S

P
µ
ijJµ(j) ∀i ∈ S, (4)

which can also be expressed compactly as Jµ = TµJµ where

Tµ is the (fixed-policy) dynamic programming operator.

A. State Space S

The state of each UAV i, i ∈ {1 . . . N} , is given by four

scalar variables describing the vehicle’s abstract location,

fuel remaining and health status. The location is described

by li ∈ {Lb, L0, . . . , Ls−1, Ls, Lx}, where Lb represents the

base location, L0 . . . Ls−1 are intermediate locations, Ls is

the surveillance location and Lx is a special state denoting

that the vehicle has crashed. It is important to note that this

representation does not place any restrictions on the physical

separation between locations.

Similarly, the fuel state fi is described by a discrete set

of possible fuel quantities, fi ∈ {0,∆f, 2∆f, . . . , Fmax −
∆f, Fmax}, where ∆f is a suitable discrete fuel quantity.

An agent’s health status hi is described by a discrete set of

health attributes, hi ∈ {H0, H1, H2}, where H0, H1 and H2

denote the agent as functional, sensor impaired and actuator

impaired respectively.

The total system state vector x is thus given by the states

li, fi and hi for each UAV i, along with the number of

requested vehicles r:

x = (l1, f1, h1; l2, f2, h2; . . . ; lN , fN , hN ; r)T

B. Control Space A

The controls ui available for the ith UAV are drawn from

the set {+, 0,−}. Actions resulting in an agent moving out

of bounds are not available. Additionally, if an agent has

crashed, i.e. li = Lx, it can take no action (ui = ∅). The full

control vector u concatenates the controls for each UAV:

u = (u1, . . . , uN )T

C. State Transition Model P

The transition model P encodes agent dynamics, and is

partitioned for each individual UAV. Agent location dynam-

ics are described by the following deterministic rules:

• If action ui = + is taken, agent i moves one unit closer

to the surveillance location Ls

• If action ui = − is taken, agent i moves one unit closer

to the base location Lb

• If action ui = 0 is taken, agent i remains in its current

location

• If at any time UAV i’s fuel level fi reaches zero, the

UAV transitions to the crashed state (li = Lx)

• If li = Lx, agent i has crashed and remains in the

crashed state forever afterward

Dynamics of the fuel state fi are:

• If li = Lb, then fi increases at the rate Ḟrefuel

• If li = Lx, then the fuel state remains the same

• Otherwise, agent i is in a flying state and burns fuel at a

stochastic rate: fi decreases by Ḟburn with probability

pf and decreases by 2Ḟburn with probability (1 − pf ).

Dynamics of the health state hi are:

• If li = Lb, then hi is reset to hi = H0 (agent i’s health

is restored, i.e. sensors and actuators are fixed)

• If li = Lx, then hi remains the same (agent i has

crashed)

• Otherwise: agent i’s sensor is degraded with probability

ps and actuator fails with probability pa
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and the extended system output becomes

yt =
[

Cp 0
]

xt = Ctxt. (9)

1) Reference Model: A nominal controller of the form

unom = Kxxt, (10)

can be designed for the system in Equation (7) in the case

where there is no uncertainty, (i.e. Λ = Inxn). The feedback

gains Kx can be selected using LQR or classical design

techniques. The reference model used by MRAC is the closed

loop system given in Equation (7) with no uncertainty and

with the control input given in Equation (10), as shown by

ẋm = Atxm + Btunom + Bcr = Amxm + Bcr. (11)

2) Direct Adaptive Controller: Adding to the baseline

controller, an adaptive control input is

uad = K̂T
x xt + θ̂T

r r + θ̂d = θ̂T ω, (12)

where θ̂T =
[

K̂T
x θ̂T

r θ̂T
d

]

are time-varying adaptive

parameters that will be adjusted in the adaptive law given

in Equation (14) below. The overall control input is thus

u = uad + unom = θ̂T ω + Kxxt + r. (13)

The canonical adaptive law is given by

˙̂
θ = −ΓωeT PBt, (14)

where Γ is a diagonal positive definite matrix of adaptive

gains, e = xt −xm is the model tracking error, and P is the

unique symmetric positive definite solution of the Lyapunov

equation AT
mP + PAm = −Q, where Q is also symmetric

positive definite. This adaptive controller is based on non-

linear stability theory [12]–[17]. The augmented structure of

the adaptive controller implies that in the nominal case (i.e.

no parameter uncertainty) the overall system is equivalent

to the baseline controller. However, when failures or other

uncertainties arise, the adaptive controller works to eliminate

reference-tracking errors and thereby assists the baseline

controller in maintaining both stability and performance.
3) Combined / Composite Adaptive Controller: The so-

called CMRAC conjecture [18], states that better transient

characteristics can be obtained by using prediction errors

in addition to tracking errors in the design of adaptive

controllers. Thus a Combined (or Composite) MRAC struc-

ture was developed by combining aspects of direct and

indirect adaptive control. This conjecture has been supported

by numerous simulations confirming that indeed CMRAC

systems had transient performance better than that of direct

MRAC alone [19]–[22]. The CMRAC conjecture, however,

remains unproven.

The particular version of CMRAC used in these studies

differs from some previous formulations [21,23,24] in that:

it is applicable to a generic class of MIMO dynamic systems;

online measurements of the system state derivative are not

required; and the system is designed to augment a baseline

linear controller [25]. To generate the prediction error signal

required for indirect adaptation, we first rewrite the dynamics

of (7) as

ẋt + λfxt = λfxt + Amx + Bcr

+BΛ
(

u + θT ω
)

,
(15)

and introduce a stable filter

G(s) =
λf

s + λf

, (16)

where λf > 0 is the filter inverse constant. The filtered

version of xt is denoted xtf
and is described by the dynamics

ẋtf
+ λfxtf

= λfxt. (17)

Substituting Equation (17) into Equation (15) and letting z =
xt − xtf

we have

ż + λfz = Amxt + Bcr + BΛ
(

u + θT ω
)

, (18)

and, consequently

z = z(t0)e
−λf t0 +

∫ t

t0

e−λf (t−η) [Amxt(η)

+Bcr(η) + BΛ
(

u(η) + θT ω(η)
)]

dη.

(19)

Without loss of generality, we can assume that the filter dy-

namics of Equation (16) and the plant dynamics of Equation

(18) have the same initial conditions, that is, z(t0) = 0. Not-

ing that the integral in Equation (19) represents application

of the filter in Equation (16), we can rewrite Equation (19)

as

xt − xtf
= Am

xtf

λf

− Bc

rf

λf

+ Λ
uf

λf

+ ΛθT ωf

λf

, (20)

where rf , uf , and ωf are filtered versions of r, u, and ω,

respectively. Assuming that B is full rank, we can rearrange

Equation (20) as

(

BT B
)−1

BT
(

λf (xt − xtf
) − Amxtf

− Bcrf

)

= Λuf + ΛθT ωf .
(21)

We now denote the left-hand side of Equation (21) as Y ∈
ℜm and note that the value of Y can be computed online at

every time instant t using the state xt, the filtered state xtf

and the command input r. The right-hand side of Equation

(21) contains the unknown parameters Λ and θ, which can

be estimated using the predictor model

Ŷ = Λ̂
(

uf + θ̂T ωf

)

. (22)

The predictor error eY = Ŷ − Y can thus be written as

eY = Λθ̃ωf + Λ̃
(

uf + θ̂T ωf

)

. (23)

Including the indirect adaptation is accomplished by simply

adding indirect adaptive terms to the direct adaptive laws

given in Equation (14), yielding

˙̂
ΛT = −ΓΛ

(

u + θ̂T ωf

)

eT
Y ,

˙̂
θ = Γθ

(

ωeT PB − ωfγce
T
Y

)

.

(24)

It is clear that in the case where γc = 0, the above adaptive

2335



Cameras

Processing

Position reference system

Command 

and control

Ground computers

Vehicles

Fig. 3. The Boeing Vehicle Swarm Technology Laboratory (VSTL), a
state-of-the-art rapid prototyping indoor flight testing facility [7].

control laws reduce to those of (14). Stability can be shown

using the Lyapunov function candidate [25]

V = eT Pe + Tr
(

θ̃T Γ−1
θ θ̃Λ

)

+ Tr
(

Λ̃Γ−1
Λ Λ̃T

)

(25)

with derivative

V̇ = −eT Qe − 2γce
T
Y eY ≤ 0. (26)

The system is therefore globally asymptotically stable by

Barbalat’s lemma and the tracking error and prediction error

asymptotically converge to 0.

It is clear from Equation (24) that, in addition to the

parameter estimates θ̂, the CMRAC approach also explicitly

generates estimates of Λ̂. The diagonal elements of Λ̂ can

be viewed as estimates of the current health of the vehicle’s

actuators, specifically indicating the deviation from nominal

efficiency, for each actuator. These are the Λ̂ parameters

passed to the onboard HMDS, as shown in Figure 2.

IV. FLIGHT RESULTS

A. Experimental Setup

Boeing Research and Technology has developed the Vehi-

cle Swarm Technology Laboratory (VSTL), an environment

shown in Figure 3 for testing a variety of vehicles in an

indoor, controlled environment [7]. VSTL is capable of

simultaneously supporting a large number of both air and

ground vehicles, thus providing a significant advantage over

traditional flight test methods in terms of flight hours logged.

The persistent surveillance mission described in Section II

was implemented in the Boeing VSTL with static search and

dynamic track elements. A heterogeneous team of six agents

(4 UAVs and 2 UGVs) began at a base location and were

tasked to persistently search the surveillance area. As threats

are discovered via search, additional agents were called out

to provide persistent tracking of the dynamic threat(s).

B. Results

This section presents representative results of flight tests

of the multi-agent persistent mission planner in Boeing’s

Vehicle Swarm Technology Laboratory [7]. Figure 4 shows

the team of six agents persistently searching a surveillance

region and tracking discovered threats. The figure is divided

into two axes. On the top, each agent’s location is represented

by a colored line as well as with a unique marker shape. On

the bottom axis, the health status of UAV1 is shown in the

form of the Λ̂ value corresponding to the degraded actuator

and the output of the onboard HMDS.

Following the blue line (with blue dots) in the top axis

of Figure 4, it is seen that UAV1 experiences an actuator

failure shortly after reaching the surveillance location. The

failure is externally induced and, as shown on the bottom

axis, CMRAC immediately detects a change in performance

and the Λ̂ parameters react accordingly to maintain stability

of the vehicle. Also shown on the lower axis, the HMDS

uses these controller parameters to quickly estimate the

vehicle’s health status and inform the planner of UAV1’s

degraded health state. After returning to base for repairs,

UAV1 again enters the MDP-governed rotation of vehicles

into the surveillance region. This failure-stabilize-estimate-

repair cycle is repeated several times to show persistency.

In summary, the results given in Figure 4 show well the

significance of successfully integrating low-level adaptation

parameters with the mission-level planning system. This is

evidenced by fast reaction times at the planner level to

failures at the agent level, which are enabled by the collection

and proper conditioning of observations at the agent level by

the HMDS so concise, relevant information is passed up to

the mission level.

V. CONCLUSIONS

This paper presented an extension of previous work on

the persistent mission problem where real-time changes in

agent health were included in the problem formulation. Both

sensor and actuator health were included in the metric for

agent capability. Actuator health was monitored as a result

of augmenting the baseline agent controller with a composite

model-reference adaptive controller, which was designed to

provide stability and robustness against actuator degrada-

tions. Parameters internal to the composite adaptive con-

troller provided valuable insight into the physical capabilities

of the agent and were used in conjunction with sensor health

information to form a more complete measure of overall

agent capability. The combined metric was used online and

in forward planning to enable both reactive and proactive

behaviors against sensor and actuator degradations. The per-

sistent mission planner was formulated as a Markov decision

process and a distributed, approximate solution method was

implemented due to the size of the full problem. Flight test

results with induced actuator degradations were presented

which demonstrated the robustness of the composite adaptive

controller and its successful integration with the agent-level

health-monitoring and mission-level planning systems. Also

demonstrated were the reactive and proactive qualities of the

MDP-based planning system to continuously fulfill mission

obligations while re-tasking agents under actuator and sensor

health degradations.
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Fig. 4. Results of a flight experiment in the Boeing Vehicle Swarm Technology Lab (VSTL) with six unmanned agents persistently searching a surveillance
location and tracking any threats detected there. On the top axis, each agent’s location is represented by a colored line as well as with a unique marker

shape. On the bottom axis, the health status of UAV1 is shown by the Λ̂ value corresponding to the degraded actuator as well as the output of the onboard
HMDS, which switches between H0, H1, and H2 accordingly.
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