
Computing Policies and Performance Bounds for Deterministic
Dynamic Programs Using Mixed Integer Programming

Randy Cogill
Dept. of Systems and Information Engineering

University of Virginia
rcogill@virginia.edu

Haitham Hindi
Intelligent Systems Lab
Palo Alto Research Center

hhindi@parc.com

Abstract—In this paper we present a mixed integer
programming approach to deterministic dynamic program-
ming. We consider the problem of computing a policy
that maximizes the total discounted reward earned over
an infinite time horizon. While problems of this form
are difficult in general, suboptimal solutions and perfor-
mance bounds can be computed by approximating the
dynamic programming value function. Here we provide
a linear programming-based method for approximating
the value function, and show how suboptimal policies can
be computed through repeated solution of mixed integer
programs that directly utilize this approximation. We have
applied this approach to problems with states described by
binary vectors with dimension as large as several hundred.
Although the number of distinct states associated with
such a problem is extremely large, we are able to obtain
suboptimal policies with surprisingly tight performance
guarantees. We illustrate the application of this method on
a class of infinite horizon job shop scheduling problems.

I. INTRODUCTION
When modeling static combinatorial optimization

problems, it is often possible to find compact represen-
tations of problems as binary integer programs. The dif-
ficulty in solving these problems lies in the fact that the
space of feasible solutions to such a problem is generally
too large to enumerate, and there are no algorithms that
are guaranteed to search this space efficiently. However,
despite the fact that there are no algorithms guaranteed
to efficiently solve all problem instances, large problem
instances are still routinely solved in practice. The ability
to solve large problem instances is primarily enabled
by search strategies that exploit the connection between
binary integer programs and their linear program re-
laxations. In particular, linear program relaxations can
provide bounds on achievable performance, and provide
a key building block to many of the effective algorithms
for computing globally optimal solutions such as branch-
and-bound and cutting plane methods.
The goal of this work is to bring the advantages

provided by integer programming models to dynamic

This research was supported by the Xerox Foundation, University
Affairs Committee (UAC) Grant: HE 1571-2008.

optimization problems. Dynamic programming models
of realistic systems often require models with a high-
dimensional state, and hence suffer from an explosive
growth in the size of their state-space. When this is the
case, algorithms that require directly enumerating the
state space are not practical.
Here we present an integer programming approach

for solving deterministic dynamic programs. The advan-
tage of our proposed class of models is that we can
often represent systems with a high dimensional state
without directly enumerating all states. To solve the
resulting dynamic optimization problems, we can use
an approximation method that implicitly approximates
a dynamic programming value function. Value function
approximation is a well known approach to computing
suboptimal policies for complex dynamic problems [16],
[4], [13]. The control theory community is also in-
creasingly embracing techniques related to approximate
dynamic programming for control of complex systems,
as evidenced by a number of recent papers on the subject
(for example [20], [10], [11], [5], to name a few). Ideas
similar to those presented in this paper have also been
developed in the recent literature on model-predictive
control [3], [14], [2].
In the models that we consider, the state of the system

can be described by a binary vector, the evolution of the
system can be described by a set of linear constraints,
and the per-period cost or reward can be expressed as a
linear function of the binary state vector. The main result
of this paper is a linear programming-based method for
approximating the dynamic programming value function
of these problems. This linear programming approxi-
mation can be used to generate a control sequence by
solving moderately-sized mixed-integer linear programs
in each time period. By adopting this algorithm, we
are able to produce solutions to dynamic programming
problems with very large state spaces.
Although the algorithms presented in this paper may

not generally produce optimal solutions, this approach
exhibits three properties that we believe make this a well

2011 American Control Conference
on O'Farrell Street, San Francisco, CA, USA
June 29 - July 01, 2011

978-1-4577-0079-8/11/$26.00 ©2011 AACC 1877

justified heuristic. In particular:
• On an instance-by-instance basis we can determine
how far from optimal a computed solution is. When
applying the approach of this paper to a problem,
we obtain a suboptimal solution and an upper bound
on the reward achievable by an optimal solution. If
the reward achieved by the suboptimal solution is
close to the upper bound, we have a guarantee that
the computed solution is close to optimal.

• If we are unsatisfied with the optimality guarantee
produced by the algorithm, we can compute a
sharper solution and guarantee at the expense of
increased computation. That is, we can compute
solutions by solving larger mixed-integer linear
programs, which provably closes the gap between
the reward achieved by the computed solution and
the upper bound on achievable performance.

• We have demonstrated practical applicability on a
class of nontrivial problems. Here we provide the
results numerical experiments where the methods
presented in this paper were applied to a class of
dynamic job shop scheduling problems. In these
experiments, we observe that reasonable solutions
are computed in a reasonable amount of time.

We believe that, in the same way that binary integer
programs provide a very general modeling framework
for static combinatorial optimization problems, the class
of models that are discussed in this paper provide a
general modeling framework for deterministic, dynamic
combinatorial optimization problems.

II. PROBLEM FORMULATION

Here we present a class of integer programming-
based models for deterministic dynamic programs. The
three defining characteristics of models considered in this
paper are (a) the state-space is a subset of the set of
n-dimensional binary vectors (b) the per-period reward
function is linear in the state, and (c) the set of feasible
state transitions is specified implicitly by a set of linear
constraints. Specifically, problem instances are modeled
by:

• A binary-valued state vector xt ∈ {0, 1}n

• A reward of rTxt earned in each time period
• State transitions specified implicitly by linear con-
straints. Given state xt in period t, we can transition
to any binary xt+1 satisfying

A1xt+1 −A2xt ≤ b

In this formulation, the control action is specified implic-
itly by the choice of state xt+1 given the current state xt.
Furthermore, throughout this paper we assume that there

exists at least one feasible sequence x1, x2, . . . associated
with each feasible initial state x0. As an example, we
model a job-shop scheduling problem in this framework
in Section IV.
Within this framework, one can consider various mea-

sures of the reward earned over time. In this paper we
consider the total discounted reward achieved over an
infinite time horizon. Given a discount factor α ∈ [0, 1),
the total discounted reward associated with the sequence
of states x1, . . . is

∑∞
t=0 α

trTxt. For a given initial
state x0, let C(x0) denote the set of feasible sequences
x0, x1, x2, . . . with initial state x0. We denote the least
upper bound on achievable total discounted reward, the
value function, as

V (x0) = sup
x0,x1,...∈C(x0)

{
∞∑

t=0

αtrTxt

}

(1)

If it is possible to show further that there exists a
sequence in C(x0) that achieves this supremum.
We note that the problem we address in this paper

can also be viewed as a semi-infinite integer program.
Semi-infinite programming models have been long been
used for representing dynamic optimization problems
[1], [8]. In our approach, we decouple this problem
over time by using an approximation of the dynamic
programming value function. One paper that is quite
similar in spirit to the work we present here is [17],
where piecewise-linear value function approximations
are used to decouple large mathematical programming
models of dynamic optimization problems. Similar con-
cepts have also appeared in the AI planning literature,
where the power of compact integer programming rep-
resentations has been noted. In [19] it is shown shown,
quite surprisingly, that integer programming algorithms
applied to compact integer programming formulations of
planning problems can outperform specialized planning
algorithms on numerous benchmark problems.

III. BACKGROUND AND NOTATION

In principle, optimal solutions to the problems de-
scribed in the previous section can be solved using dy-
namic programming. That is, the dynamic programming
value function V satisfies Bellman’s equation,

V (x) = max
y∈F1(x)

{rTx+ αV (y)}

for all states x. Here we use F1(x) to denote the set of
states that can feasibly follow x,

F1(x) = {y ∈ {0, 1}n |A1y ≤ b+A2x} (2)

2

1878

V (x0) The exact value function for the infinite horizon, discounted reward dynamic program.

Ṽ (x0) An upper bound on V (x0).

UN (x0)
The infinite horizon, discounted reward earned by an N -step lookahead policy that uses
Ṽ (x0) as an approximate value function.

VN (x0) The optimal N -horizon, discounted reward.

ṼN (x0) An upper bound on VN (x0). We obtain Ṽ (x0) as the limit of ṼN (x0) as N → ∞.

TABLE I
QUANTITIES RELATED TO THE OPTIMAL DYNAMIC PROGRAMMING VALUE FUNCTION

Using this notation, an optimal sequence x0, x1, x2, . . .
can be obtained as

xt+1 = argmax
y∈F1(xt)

{
rTxt + αV (y)

}

for all t ≥ 0. The challenge of applying dynamic
programming lies in solving Bellman’s equation to find
the value function. More often than not, the value
function does not have any special structure, and must be
described by a table specifying V (x) for each individual
value of x. In many problems the state space can be
astronomically large, making this approach intractable.
If we have an approximation of the value function,

call it Ṽ , we can use this approximation as a surrogate
for V and compute a sequence of states according to

xt+1 = argmax
y∈F1(xt)

{
rTxt + αṼ (y)

}

When Ṽ closely approximates V , the sequence of states
computed from (4) is guaranteed to be close to optimal,
as will be shown below. More generally, given an x0 we
can consider the problem

maximize :
∑N−1

t=0 αtrT xt + αN Ṽ (xN)

subject to : A1xt+1 −A2xt ≤ b for t = 0, . . . , N − 1

xt ∈ {0, 1}n for t = 1, . . . , N
(3)

Let FN(x0) denote the set of (x1, . . . , xN) in the
feasible set of (3) for a given x0. So, more generally,
we can compute a sequence of states x1, x2, x3, . . . as

xt+1 = argmax
y1

(y1,...,yN)∈FN(xt)

{
rTxt + αrT y1 + · · ·+ αN Ṽ (yN)

}

(4)
for all t ≥ 0. This method of generating a sequence
of states is known as an N -step lookahead policy [4].
It is known that the sequence generated by this policy
can be made close to optimal by either finding Ṽ
close to V , or by choosing large N . This claim is
precisely characterized in the lemma below, which is
proved in the online appendix [6], and will appear in an

upcoming journal version of this paper. We note that this
lemma is essentially equivalent to the standard proof of
convergence of the value iteration algorithm for infinite
horizon, discounted problems [4]. We present this lemma
here to keep our treatment self contained, and express
this result in the notation used in this paper.

Lemma 1. Suppose Ṽ is a function satisfying Ṽ (x) ≥
V (x) for all x. For a given x0, let x1, x2, x3, . . . be the
sequence of states obtained as

xt+1 = argmax
y1

(y1,...,yN)∈FN (xt)

{
rTxt + αrT y1 + · · ·+ αN Ṽ (yN)

}

for all t ≥ 0. Also, let

UN(x0) =
∞∑

t=0

αtrTxt

be the total discounted reward achieved by this sequence.
UN(x0) satisfies

V (x0)− UN (x0) ≤
αN

1− α
max

x
{Ṽ (x) − V (x)}

This lemma provides the main justification for the
method presented in Section V. There we provide a
linear programming-based approach for implicitly con-
structing a value function approximation Ṽ . If this
Ṽ closely approximates V , then the achieved reward
UN(x0) is close to optimal. Moreover, the Ṽ (x) we
compute is an upper bound on V (x) for all x. By com-
paring Ṽ (x0) with the reward achieved by a suboptimal
sequence, we can determine how far from optimal this
sequence is. If we are unsatisfied with the suboptimality
gap of a computed sequence, we can increase N (at the
cost of increased computation) to obtain a new sequence
with a tighter suboptimality gap.
We will conclude this section with a summary of

the notation used throughout this paper to represent key
quantities. Here we introduce several quantities related
to the optimal dynamic programming value function V .
These quantities are summarized in Table III.

3

1879

IV. ILLUSTRATIVE EXAMPLE: OPTIMAL JOB SHOP
SCHEDULING

As one of example of the deterministic dynamic
programs discussed in this paper, we will consider a
class of infinite horizon job shop scheduling problems
[12]. In these problems, the goal is to schedule various
jobs on a collection of shared machines, where each
job has distinct processing requirements. The goal is
to maximize some measure of the total value of all
jobs completed over an infinite time horizon. Infinite
horizon job shop problems present an ideal class of
applications for the methods in this paper, since the
dynamic evolution of these systems are easily described
by linear inequalities. In fact, we have been applying
concepts similar to this in this paper to more complex
forms of job shop scheduling problems that also include
a routing component. Prior work on these problems can
be found in [7], [9], [15], [18].
Our infinite horizon job shop scheduling problem is

described as follows. An instance of this problem is
specified by M machines and J job types. The goal is
to process a collection of jobs in a way that optimally
utilizes the available machines. Specifically, completing
a job of type j earns a reward of ρj , and the goal is
to maximize the total discounted reward earned over
an infinite horizon. The complicating factor is that each
job type requires processing on a sequence of multiple
machines, and each machine can only process a single
job in each time period. This infinite horizon formulation
of the job shop problem is somewhat unconventional, but
provides a good fit for the applications we aim to apply
this approach to [7], [9], [15]. In fact, the discounted
cost criterion is a particularly suitable choice for a cost
criterion since we value both completing jobs quickly
and maximizing the per-period output of the system.
As an example, consider an instance that has four

machines and two job types. Jobs of type 1 must be
processed on machine 1 for three time units, then on
machine 4 for two time units, then finally on machine 2
for 1 time unit. We denote this sequence of processing
requirements as 1(3),4(2),2(1), where the numbers in
bold indicate machines and the numbers in parenthe-
ses indicate required processing times. The second job
has processing requirements 2(5),1(2),4(1),3(1). Both
jobs earn a reward of ρi = 1 upon completion. Our goal
is to schedule the processing of jobs as to maximize the
total discounted with reward achieved over an infinite
time horizon. In order to maximize this reward, we can
control when jobs are introduced to the system, which
types of jobs are introduced to the system, and the flow
of jobs through the system. To control the flow of jobs,

we can hold some jobs idle at machines if this is required
to avoid sending more than one job to a machine.
When modeling a job shop problem as a deterministic

dynamic program, we must find an appropriate represen-
tation of its state. The flow of a job through the system
can be modeled on a directed graph. To show this in
terms of a concrete example, consider the jobs of type 1
in the example shown previously. The graph associated
with this job is illustrated in Figure 1. In terms of this
graph, instances of the job start at the vertex marked s
and must cross three edges corresponding to processing
on machine 1, two edges corresponding to processing on
machine 4, and one edge corresponding to processing
on machine 2 before exiting at the vertex marked f .
The state of a job instance can be represented by the
most recently traversed edge. In each time period, the
edge corresponding to the state of a job instance must
transition to an edge neighboring the current state. Note
that the graph contains two self loops, allowing jobs to
remain idle temporarily before passing from one machine
to the next.
Let Gj = (Vj , Ej) be the graph associated with job j.

We can represent the state of all instances of job j by
a collection of binary variables xj,e,t. Here, xj,e,t = 1
if edge e was the most recently traversed edge of an
instance of job j at time t, and xj,e,t = 0 otherwise. Let
O(v) be the set of edges outgoing from vertex v, and
I(v) be the set of edges outgoing from vertex v. Note
that the graphs corresponding to jobs have a vertex s
with I(s) = ∅ and a vertex f with O(f) = ∅.
The evolution of the system can be modeled by linear

constraints. The flow of instances of job j through Gj is
captured by the constraint

∑

e∈O(v)

xj,e,t+1 ≤
∑

e∈I(v)

xj,e,t (5)

for all v ∈ Vj \ {s, f} and all t ≥ 0. An inequality is
used in this constraint, allowing instances of a job to
be cancelled prior to completion. Allowing cancellation
ensures that a feasible sequence exists for all initial
states, a requirement discussed in Section II.
Also, recall that each machine may only process one

job at any given time. This can also be modeled as a
linear constraint. Let Mi be the set of (j, e) such that
edge e ∈ Ej corresponds to processing on machine i.
The constraint is then

∑

(j,e)∈Mi

xj,e,t+1 ≤ 1 (6)

for all i = 1, . . . ,M and all t ≥ 0. Note that the
constraints (5) and (6) allow for multiple active instances

4

1880

replacements s f

Fig. 1. Graph representing the flow of job 1(3), 4(2), 2(1).

of job j, as long as these instances do not occupy the
same machine at the same time.
Finally, a reward of ρj is received upon completion of

an instance of job j. The reward earned in time period
t is given by

rTxt =
∑

(j,e)

rj,exj,e,t,

where rj,e = ρj if e ∈ I(f) (i.e., edge e corresponds
to the final processing stage of job j), and rj,e = 0
otherwise.
We will return to this class of problems in Section VI,

where we will compute suboptimal solutions and perfor-
mance bounds for several instances of this problem.

V. MAIN RESULTS
In this section we present a method for computing

suboptimal solutions and performance bounds for the
class of deterministic dynamic programs considered in
this paper. First we will discuss a method for approx-
imating the dynamic programming value function. For
any given initial state x0, this method computes an upper
bound on the dynamic programming value function by
solving a linear program. We will then show how to use
this value function approximation as a surrogate for the
dynamic programming value function, as in equation (3),
leading to a mixed-integer linear programming method
for computing suboptimal sequences. By comparing the
reward achieved by the suboptimal sequence with the
upper bound on achievable reward, we can determine
how close the computed sequence is to optimal.

A. Implicit value function approximation
Recall that our goal is to determine a method for

finding easily computable upper bounds on the optimal
value of (1) for a given initial state x0. Here we show that
an upper bound on the optimal achievable value can be
computed by solving a linear program with n continuous
variables (where n is the dimension of the binary state
vector xt). This linear program is obtained by performing
two relaxations: (i) a continuous relaxation of the binary
variables xt to obtain a semi-infinite linear program, and
(ii) considering a restricted set of dual variables to relax
this semi-infinite linear program to a linear program in
n variables. This upper bound for a given x0, which

we will denote as Ṽ (x0), will then be applied in an
approximate dynamic programming procedure.
Lemma 2 in the appendix [6] shows that we can

approximate V (x0) arbitrarily closely by considering
finite horizon problems with sufficiently large horizon
lengths. Specifically, let VN (x0) denote the optimal value
for the problem of horizon length N ,

maximize :
∑N

t=0 α
trTxt

subject to : A1xt+1 −A2xt ≤ b for t = 0, . . . , N−1

xt ∈ {0, 1}n for t = 1, . . . , N
(7)

The derivation of Ṽ (x0) will assume a given, arbitrary
horizon length. After deriving a bound on the achievable
value of (7), we will obtain our infinite horizon bound
by letting N → ∞.
Clearly, an upper bound on VN (x0) can be obtained

by solving a linear program with the same objective
and constraints as (7), but xt ∈ [0, 1]n for all t. As N
grows large, this upper bound on VN (x0) approaches
an upper bound on V (x0) (as we will soon show
formally). However, the number of variables in the linear
program relaxation of (7) grows correspondingly large
as N increases. Since our goal is to obtain an easily
computable upper bound on V (x0), we will introduce a
second relaxation to bound the size of the problem we
need to solve to obtain Ṽ (x0).
The optimal value of the linear program relaxation of

(7) can also be computed by solving its dual:

minimize : rTx0 + (A2x0)Tλ0

+
N−1∑

t=0

bTλt +
N∑

t=1

1
Tµt

subject to : AT
1 λt−1 −AT

2 λt + µt ≥ αtr

for t = 1, . . . , N − 1

AT
1 λN−1 + µN ≥ αN r

λt ≥ 0 for t = 0, . . . , N − 1

µt ≥ 0 for t = 1, . . . , N

(8)

The derivation of this dual is straightforward and is
provided in Lemma 3 in the appendix [6]. Furthermore,
any feasible solution of (8) gives an upper bound on
VN (x0). So, one way to obtain a low-dimensional linear
program for computing an upper bound on VN (x0) is to
search over a restricted set of feasible solutions of (8).
In particular, we will restrict our search to solutions of

5

1881

the form

λt = αtλ for t ∈ {0, . . . , N − 1}

µt = αtµ for t ∈ {1, . . . , N − 1}

µN = αN |r|+ αN−1|AT
1 |λ

This leads to the linear program in the variables λ ∈ Rm

and µ ∈ Rn:

minimize :
(
rTx0 + αN1T |r|

)
+ cTNλ+ dTNµ

subject to : (α−1A1 −A2)Tλ+ µ ≥ αr

λ ≥ 0

µ ≥ 0

(9)

where

cN =

(
1− αN−1

1− α

)
b+A2x0 + αN−1|A1|1

dN =

(
α− αN−1

1− α

)
1

In the following theorem we show that the limit of the
optimal value of (9) as N → ∞ converges to an upper
bound on V (x0). This is the main result of this section:

Theorem 1. For given x0, an upper bound on V (x0),
which we call Ṽ (x0), is obtained from the optimal value
of the linear program

maximize : rTx0 + αrT z

subject to : (α−1A1 −A2)z ≤ 1
1−α

b+A2x0

z ∈
[
0, α

1−α

]n
(10)

Proof: Let ṼN (x0) denote the optimal value of the
linear program (9), and let Ṽ (x0) denote the optimal
value of (10). We will first show that limN→∞ ṼN (x0)
converges to Ṽ (x0). Note that the dual of (10) is

minimize : rT x0 + (1
1−α

b+A2x0)Tλ+ α
1−α

1Tµ

subject to : (α−1A1 −A2)Tλ+ µ ≥ αr

λ ≥ 0

µ ≥ 0
(11)

Also, note that the sequence of vectors specifying the
objective functions of (9) converges to the vector spec-
ifying the objective function of (11). Assuming that (7)
is feasible for all x0 and N , the dual relaxation (8) has
a bounded solution for all N . Also, the feasible set of
(11) is always nonempty (λ = 0 and µ = α|r| is always

feasible). Lemma 4 in the appendix [6] shows that under
these conditions,

lim
N→∞

ṼN (x0) = Ṽ (x0)

Also, by Lemma 2 in the appendix,

lim
N→∞

VN (x0) = V (x0)

Finally, since VN (x0) ≤ ṼN (x0) for all N we have

V (x0) ≤ Ṽ (x0)

In the next section we will show how this linear
program for computing Ṽ (x0) will provide a MILP-
based method for computing a sequence of states.

B. Computing suboptimal solutions

In this section we present a method for comput-
ing suboptimal policies that use the approximate value
function introduced in the previous section. This will
result in a procedure for computing suboptimal policies
that requires solving a mixed-integer linear program in
each time period. While solving mixed-integer linear
programs is generally considered to be a computationally
difficult problem, we will address the advantages this
method provides over enumerating the state space and
computing exact value function. This approach will be
further justified in the next section by showing the
performance of this algorithm on two nontrivial problem
instances.
Recall from the equation (2) that, if we had the dy-

namic programming value function V , we could compute
an optimal sequence by solving a problem of the form (2)
in each time period. If we instead have an approximation
of V , say Ṽ , then we can compute a suboptimal sequence
by solving a problem of the form (3). According to
Lemma 1, for any approximate value function Ṽ and
any ε > 0, there exists some sufficiently large N such
that the solution to the problem (3) produces a sequence
that achieves a reward within ε of V (x0). According to
that Lemma, for any ε > 0, the required N depends on
the degree to which Ṽ approximates V .
Substituting our linear program for computing Ṽ into

the equation (3), we obtain the following mixed-integer

6

1882

linear program,

maximize : rTxt +
∑N

i=1 α
irTxt+i + αN+1rT z

subject to : A1xi+1 −A2xi ≤ b

for i = t, . . . , t+N − 1

−A2xt+N + (α−1A1 −A2)z ≤ 1
1−α

b

xi ∈ {0, 1}n for i = t, . . . , t+N

z ∈
[
0, α

1−α

]n

In each time period t, xt is known. Solving the MILP
above provides the subsequent state xt+1. The process
is then repeated at time period t+ 1.
As long as the linear program (10) is a sharp upper

bound on the infinite horizon value function, the perfor-
mance bound in Lemma 1 guarantees that the sequence
of states computed from repeated solution of this MILP
will be nearly optimal. For example, in the job shop
problem discussed in Section IV, the linear program (10)
is similar to a multicommodity network flow relaxation.
If this network flow relaxation provides a sufficiently
tight approximation to the original discrete problem, then
the MILP above will produce a nearly-optimal control
sequence.
We will conclude this section by addressing the ques-

tion of the computational requirements of solving mixed-
integer linear programs in each time period. It might
appear that we have simply replaced one hard problem
(applying dynamic programming to a complex discrete-
state system), with a series of different hard problems
(solving a mixed-integer linear program at each time
period). The applications that we are interested in have
state variables with dimensions in the hundreds to low
thousands. This leads to an astronomically large num-
ber of states, and application of dynamic programming
requires specifying the value function at each state. On
the other hand, applying the methods described in this
section requires solving mixed-integer linear programs
with a few hundred to a few thousand variables. Modern
mixed-integer linear program solvers are capable of
solving problems in this size range in a few seconds
to a few minutes1. Moreover, the mixed-integer linear
programs that are solved in consecutive time periods are
very similar to one another. By using the solution from a
previous period as a warm-start in the following period,
we can significantly reduce the solution time at each
period beyond t = 0.

1See http://plato.asu.edu/ftp/milpc.html for a recent performance
analysis of the Gurobi and CPLEX solvers

machine sequence reward
Job 1: 1(3), 4(2), 2(1) 1
Job 2: 2(5), 1(2), 4(1), 3(1) 1

N UN (x0) Ṽ (x0) time (seconds)
1 5.15 6.01 0.85
2 5.73 6.01 1.00
5 5.73 6.01 1.93
10 5.73 5.87 5.72
15 5.73 5.85 11.89
20 5.73 5.82 87.44

TABLE II
NUMERICAL EXAMPLE 1

VI. NUMERICAL EXAMPLES
In this section we apply the methods developed in

this paper to two instances of the job shop problems
described in Section IV. For the instance described in
Section IV, we will provide a detailed summary of
the running time and quality of solutions obtained for
various values of the horizon length N . Following this,
we will provide a detailed summary of the running time
and quality of solutions for a more complex example. In
both instances we evaluate schedules based on the total
discounted reward associated with all completed jobs,
where a discount factor of α = 0.95 is used.
The first instance contains two job types, and is

described in Table II (using the notation introduced
in Section IV). The state of the system is described
by a binary vector of dimension 20. Considering each
realization of this vector to be a state, this yields a
deterministic dynamic program with approximately 106

states. This is not a prohibitively large problem instance,
and dynamic programming could probably be applied
to this instance to compute an exact solution. The next
instance we consider is significantly larger.
In Table II, we summarize the quality of the solutions

and running times for various horizon lengths. UN (x0)
is used to denote the total discounted reward over an
infinite time horizon. Since we use a discount factor
of α = 0.95, the the total discounted reward over 500
time periods is sufficient to approximate this quantity to
within two decimal places. As before, Ṽ (x0) denotes an
upper bound on achievable infinite horizon reward. Also,
we show the time in seconds required to compute 500
consecutive states x1, . . . , x500 starting from a given x0.
The two numerical examples in this section were solved
using GLPK in Octave on a MacBook Pro with a 2.4
GHz processor and 8 GB memory.
For a horizon of length N = 1, a solution is produced

that is within 85% of optimal. The closeness to optimal-
ity for N = 1 may at first seem surprising, and is in fact

7

1883

machine sequence reward
Job 1: 1(5), 2(3), 1(5), 2(2) 1
Job 2: 4(5), 1(10), 2(5) 1
Job 3: 3(5), 2(5), 1(6), 2(5) 1
Job 4: 4(3), 3(4), 2(7), 1(5) 1

N UN (x0) Ṽ (x0) time (seconds)
1 0.95 2.02 9.56
2 1.47 1.95 20.87
5 1.47 1.76 72.79
10 1.52 1.69 240.89

TABLE III
NUMERICAL EXAMPLE 2

just a consequence of the fact that the value function
approximation Ṽ (x0) provides a close approximation to
the true value function in this case. The optimality gap
steadily decreases as we increase N , and for N = 20 a
solution is produced that is guaranteed to be within 98%
of optimal.
We will also present a second, more complex instance.

This instance contains four job types, and each stage
of processing requires between 2–10 time periods. As
with the previous instance, this instance contains four
machines (note that increasing the number of machines
does not necessarily yield a more challenging problem
instance). The state of the system can be described by
a binary vector of dimension 86. Again considering
each realization of this vector the state, this yields
a deterministic dynamic program with approximately
7.7× 1025 states. This is an extremely large state space,
necessitating an approximate dynamic programming ap-
proach.
In Table III, we summarize the quality of solutions in

running time as for the previous example. For this larger
example, using the horizon of length N = 1 produces a
solution that is guaranteed to be within 47% of optimal.
A significant improvement is obtained by using a horizon
of length N = 2, obtaining a solution guaranteed to
be within 75% of optimal. The largest time horizon we
consider, N = 10, yields a solution that is guaranteed to
be within 89% percent of optimal.

VII. CONCLUSIONS

In this paper we considered an integer programming
representation of infinite horizon deterministic dynamic
programs. We provided a linear programming-based re-
laxation that can be used to compute an upper bound on
the optimal dynamic programming value function at any
state. By incorporating this value function approximation
in an N -stage lookahead policy, we arrived at a mixed
integer linear linear program that can be used to compute

suboptimal policies and performance bounds. Through
two numerical examples involving job shop scheduling
over an infinite time horizon, we showed that this ap-
proach can quickly compute nearly optimal solutions.

REFERENCES
[1] E.J. Anderson and A.B. Philpott. Infinite Programming. Springer-

Verlag, Berlin, 1985.
[2] A. Bemporad, F. Borrelli, and M. Morari. Model predictive

control based on linear programming–the explicit solution. IEEE
Transactions on Automatic Control, 47(12):1974–1985, 2002.

[3] A. Bemporad and M. Morari. Control of systems integrating
logic, dynamics, and constraints. Automatica, 35(3):407–427,
1999.

[4] D. Bertsekas. Dynamic Programming and Optimal Control:
Volume I. Athena Scientific, Cambridge, MA, 2000.

[5] W. Chen, D. Huang, A. Kulkarni, J. Unnikrishnan, Q. Zhu,
P. Mehta, S. Meyn, and A. Wierman. Approximate dynamic
programming using fluid and diffusion approximations with
applications to power management. To appear in the Proceedings
of the 2009 IEEE Conference on Decision and Control, 2009.

[6] R. Cogill and H. Hindi.
http://people.virginia.edu/˜rlc9s/ACC11.pdf.
Online appendix to ‘Computing Policies and Performance
Bounds for Deterministic Dynamic Programs Using Mixed
Integer Programming’.

[7] R. Cogill and H. Hindi. Optimal routing and scheduling in
flexible manufacturing systems using integer programming. Pro-
ceedings of the IEEE Conference on Decision and Control, pages
4095–4102, 2007.

[8] M.A. Goberna and M.A. López. Linear Semi-infinite Optimiza-
tion. Wiley, 1998.

[9] H. Hindi and W. Ruml. Network flow modeling for flexible
manufacturing systems with re-entrant lines. In IEEE Conf. on
Dec. & Contr., December 2006.

[10] B. Lincoln and A. Rantzer. Relaxing dynamic programming.
IEEE Transactions on Automatic Control, 51(8):1249–1260,
2006.

[11] P. Mehta and S. Meyn. Q-learning and Pontryagin’s minimum
principle. To appear in the Proceedings of the 2009 IEEE
Conference on Decision and Control, 2009.

[12] M.L. Pinedo. Planning and Scheduling in Manufacturing and
Services. 2005, Springer.

[13] W.B. Powell. Approximate Dynamic Programming: Solving the
curses of dimensionality. Wiley-Blackwell, 2007.

[14] C.V. Rao and J.B. Rawlings. Linear programming and model
predictive control. Journal of Process Control, 10:283–289, 2000.

[15] W. Ruml, M.B. Do, and M.P.J. Fromherz. On-line planning
and scheduling in a high-speed manufacturing domain. In Pro-
ceedings of the Fifteenth International Conference on Automated
Planning and Scheduling (ICAPS-05), 2005.

[16] P.J. Schweitzer and A. Seidmann. Generalized polynomial
approximations in markovian decision processes. Journal of
Mathematical Analysis and Applications, 110:568–582, 1985.

[17] H. Topaloglu and W.B. Powell. Dynamic-programming approxi-
mations for stochastic time-staged integer multicommodity-flow
problems. INFORMS Journal on Computing, 18(1):31, 2006.

[18] M. van den Briel and H. Hindi. A dynamic integer network
flow model for reentrant flexible job shop scheduling. Technical
report, Palo Alto Research Center (PARC), 2008.

[19] M.H.L. van den Briel, T. Vossen, and S. Kambhampati. Reviving
integer programming approaches for ai planning: A branch-
and-cut framework. In International Conference on Automated
Planning and Scheduling (ICAPS), 2005.

[20] Y. Wang and S. Boyd. Performance bounds for linear stochastic
control. System and Control Letters, 58(3):178–182, 2009.

8

1884

