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Abstract— In this paper, we propose an analysis of a recently
introduced navigation technique for an automotive vehicle.
This method involves several observers, each designed for
a particular type of trajectory, that are turned on and off
according to a switching policy. Each observer takes advantage
on the observability properties found along these trajectories.
The contribution of this paper is an analysis of the conver-
gence properties of the resulting temporal interconnection of
observers. In details, decay rate estimates of each of the
observers, arising from their uniform complete observability
properties, are used to guarantee convergence of the constituted
navigation system.

I. INTRODUCTION

Lately, an attempt was made to propose a theoretical
formalism for common practices in the field of observer
design of vehicular systems. A typical example of such
practices1 is found in the navigation systems of cruise
and guided missiles as is thoroughly detailed in [3], [4],
[5]. In such applications, several distinct phases of the
system trajectory are considered to reconstruct, sequentially
through distinct algorithms, subsets of the whole state vector
of the system. Practically, an initialization using attitude
measurements from an inertial measurement unit (IMU)
is performed (at rest) on the launch platform, then, after
the boost phase and during mid-course (high speed) flight,
measurements made by the IMU and additional knowledge
of the corresponding motions from terrain navigation radars
is used to determine in-flight alignment of inertial sensors,
and, finally, the (maneuvering) transition to terminal target is
performed through data fusion from other additional sources
of information such as optical devices. Decomposing the
trajectory in distinct phases during which the system has
well recognizable dynamics eases the design of data fusion
algorithms as it suggests relatively easy and dependable
means to reconstruct certain variables during certain phases.
The various components of the state of the system are not
estimated all at once, but, instead, well defined subsets are
reconstructed during each particular phase of the vehicle
trajectory.

For the problem under consideration in this paper, one can
follow a similar strategy. We desire to estimate the state of
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a ground vehicle by means of a navigation system incor-
porating an IMU, a velocimeter and an altimeter, combined
in a data fusion algorithm. We consider the vehicle as a
six degrees of freedom (DOF) rigid body moving without
sideslip. The vehicle is characterized by a tridimensional
position, a curvilinear velocity and three attitude angles.
Certainly, the list of considered sensors, which excludes
GPS, is not sufficient to reconstruct the absolute position
and heading of the vehicle, but this is not our goal. Only
relative positioning is desired here.

A key feature of the setup we study in this paper is
the availability of a velocimeter which provides a relatively
dependable estimate of the vehicle body velocity. This sensor
is commonly available in vehicles today. It can be obtained
through various sensor technologies (e.g. Doppler radar [6],
camera [7], Pitot tube), each technology having its own
flaws and advantages [8]. Yet, this scalar information is not
sufficient to estimate the motion of the vehicle as rotations
come into play. Gyroscopes can be used to determine rate-
of-turn information, but they also have (non-constant) biases
which are causes of substantial drifts.

In [9], a method analyzing the observability along various
possible trajectories of the system was proposed. Inves-
tigations have served to prove the theoretical asymptotic
convergence of a collection of Kalman filters used to estimate
the states of linear time-varying (LTV) dynamics. The
convergence of each individual Kalman filter was proven
under the assumption of Uniform Complete Observability
(UCO) which, itself, was related to an usual differential
rank test of observability. Separately but simultaneously,
the velocity, the angular dynamics (angles, rates and biases),
and finally, the accelerations (and the biases associated to
the sensors) were estimated. Combining observers in the
previously discussed way follows along lines similar to the
classic observers interconnection theory (see [10]).

As discussed in [9], and briefly recalled in this paper,
the main difficulty is to estimate the angular dynamics of
the vehicle. For this problem, we propose another level of
interconnection, named temporally interconnected observers
(TIO) which we consider arguing that, during straight-line
motion one can estimate the pitch dynamics, while, during
curve motion, it is possible to catch the roll dynamics, and
that, eventually, yaw bias can be estimated at rest).

A natural, but so-far overlooked, question is the conver-
gence of this TIO scheme. Indeed, having separate subsets
of the state variables estimate errors decay during distinct
(non overlapping) periods does not automatically guarantee
the convergence of the full state to actual values. The culprit
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is that the remaining variables must be propagated without
any possibility of corrections when they are not observed.
Careful investigations reveal that, in our case, the TIO can
provide convergence under certain simple assumptions on
the switching policy. Establishing this result is the main
contribution of this paper.

The paper is organized as follows. In Section II, we detail
the vehicle navigation problem under consideration. We
expose the general TIO structure proposed in [9], and state
a problem of convergence involving a succession of straight-
line and curve motions. In Section III, we establish the UCO
property of the system (focusing on curve motion) and draw
some conclusions on the estimatability (as defined in [11])
of the system. The main argument of proof is the study of
a time-varying pulsation oscillator appearing in the attitude
dynamics. In Section IV, we establish the convergence of the
proposed TIO. Here, the estimates established earlier serve
to guarantee the convergence of a discrete-time dynamics
governing the system according to the switching policy.
This TIO strategy is currently used on-board a prototype
navigation system. In Section V, we present results of an
actual implementation.

II. INTERCONNECTIONS OF OBSERVERS FOR GROUND
VEHICLE NAVIGATION

A. Description of the vehicle navigation problem

We consider a vehicle which is equipped with a velocime-
ter, three gyroscopes and an altimeter. The velocimeter
measures the (curvilinear) velocity of the vehicle. The
gyroscopes are biased and the inputs of the driver are
unknown.

The variable u denotes the longitudinal velocity of the
vehicle, p, q, r are the rotation speeds, φ, θ,ψ are the roll,
pitch and yaw angles, and z is the altitude (as is illustrated
in Fig. 1). The subscript m indicates the corresponding
measurement, and bp, bq, br are the bias of the gyroscopes
which are (slowly) varying over time. The complete state to
be estimated is

[ u z φ θ ψ bp bq br p q r ]
T

(1)

The dynamics and measurement equations of the 6 DOF
rigid body are derived under the assumptions of zero sideslip,
and small angles of roll and pitch. The dynamics of

Fig. 1. Notations in the body frame
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Fig. 2. Cascaded estimation

the rotation speeds are unknown. Dependable differential
equations that can be written are

{
ż(t) = −u(t)θ(t), φ̇(t) = p(t) + r(t)θ(t),

θ̇(t) = q(t) − r(t)φ(t), ψ̇(t) = r(t) + q(t)φ(t)
(2)

Finally, the measurement equations are
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

um(t) = u(t), zm(t) = z(t),
pm(t) = p(t) − bp(t), qm(t) = q(t) − bq(t),
rm(t) = r(t) − br(t)

(3)

B. Two levels of interconnection

The method we study to estimate the state (1) is inspired
by the theory of observers for interconnected systems (widely
detailed in [10]). To simplify the following discussion, rather
than considering the velocity u and the altitude z in the
state and in the measurement, we consider θm a virtual
measurement of θ which can be obtained by θm = − ˙̂z/û. The
estimation of the subset XI = [u z]

T
can be isolated in one

first problem consisting in a velocity and altitude observer
directly derived from the velocimeter and the barometer.
Considering the velocity and the altitude as known param-
eters, a second problem is to estimate the biases of the
gyroscopes, the pitch and roll angles, and the corresponding
rates of turn. From Eq. (3), the estimates p̂ and q̂ can be
reconstructed from the measurements pm and qm and the
biases estimates b̂p and b̂q . So, the subset of (1) under
study in the second problem is [φ θ ψ bp bq br]

T
.

Finally, we assume that all the preceding variables are known
parameters, and we reconstruct the heading rate of turn
and compute the heading (third problem). This observer
design corresponds to the cascade interconnection pictured
in Fig. 2. The three problems detailed above corresponds to
subsystems ΣI , ΣII and ΣIII describing, respectively, the
velocity measurement, the angular dynamics reconstruction,
and the heading estimation.

Establishing separately (i.e. when the parameters are
known) the observability of the velocity, and the observ-
ability of yaw rate (first and third problems) is trivial,
so one shall focus on the second problem and deter-
mine how to estimate, in a sequence, the reduced state
[φ θ ψ bp bq br]

T
.

If the velocity is null, the vehicle is at rest, biases are
obtained by direct reading of the gyrometers measurements.
In particular, br is estimated. Leaving out the goal to estimate
ψ without any absolute heading reference, one is left with
the estimation of the reduced state XII = [φ θ bp bq]

T

which is the subject of the next section.
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C. Dynamics under consideration

We now wish to write the dynamics of XII . If the yaw
rate is null, the vehicle is going in straight-line else the
vehicle is in a curve. After leaving the rest phase, the vehicle
switches between these last two types of trajectory. Along
the trajectories, the dynamics are as follows

Straight-line motion Curve motion
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

φ̇ = p = pm + bp
θ̇ = q = qm + bq
ḃp = 0, ḃq = 0

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

φ̇ = (pm + bp) + rθ

θ̇ = (qm + bq) − rφ

ḃp = 0, ḃq = 0

(4)

For sake of simplicity, biases, which are in fact slowly
varying, are considered constant in the equations. It shall
be noted that having variable biases does not interfere in
the observability analysis, but complexifies the convergence
study, e.g. by requiring extra states to be modeled.

To study the dynamics in straight line and curve motion,
we define matrices (A1, B1, C1) and (A2, B2, C2, D2)
such that, with X1 = [θ bq]

T
, X2 = [φ θ bp]

T
and

U = [pm qm]
T

, the previous equations (4) yield

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

Ẋ1 = A1X1 +B1U

= (
0 1
0 0

)X1 + [
0 1
0 0

]U

Y1 = C1X1 = (1 0)X1

(5)

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ẋ2 = A2(t)X2 +B2U +D2bq

=
⎛
⎜
⎝

0 r 1
−r 0 0
0 0 0

⎞
⎟
⎠
X2 +

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 0
0 1
0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

U +

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0
1
0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

bq

Y2 = C2X2 = (0 1 0)X2

(6)

Leaving out the cases when the vehicle is at rest, we
consider a sequence of straight lines and curve motions. Let
us note T1 the straight-line motion duration, T2 the curve
motion duration. It is assumed that all the straight-lines have
the same duration and that the same holds for straight lines.
This simplification is only made for ease of notations and can
be easily relaxed. Recursively, with i ≥ 0 and t0 = 0, define
ti the straight-line motion starting time (ti+1 = ti + T1 + T2),
χ(2i) the variable χ at time ti, χ(2i+1) the variable χ at time
ti+T1. The times ti are known and defined by the switching
policy. This policy is not the subject of study here.2

D. The proposed TIO structure

The TIO algorithm we propose involves two observers X̂1

and X̂2, which each provides an asymptotically converging
estimate of X1 and X2 which are subsets of XII . Existence
and convergence of these observers is proven in Section III.
The two observers are used alternatively according to the

2An example of switching policy is, when the estimated yaw rate is null,
to use the straight-line model, and otherwise, to use the curve model. The
value of r̂ depends on the estimation of the yaw gyrometer bias, but potential
error on b̂r does not undermine the TIO algorithm due to the small value of
the bias. On the contrary, the switching policy to/from rest is more critical
and, therefore, the velocimeter needs to be very accurate because at rest,
biases are directly updated from the gyrometers which can be detrimental. A
vehicle during a parking maneuver at low-speed can generate interpretation
errors and result in wrong estimates for biases.
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SWITCH 
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^ 
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Fig. 3. Temporally interconnected observers (TIO) structure for estimating
the vehicle angular dynamics.

switching policy. The continuity between the observers
is achieved by a propagator Pi of the unestimated states
along with the observer Xi. This structure is illustrated
in Fig. 3 where the block INIT represents the initialization
which occurs at every switching time. The newly switched-
on observer-propagator is initialized using the estimates
obtained from the other one. The whole TIO structure can be
considered as an observer which provides an estimate X̂II

from the measurements.
Between the times ti and ti+T1 (straight-line motion), the

following observer-propagator is considered.
RRRRRRRRRRR

Observer: X̂1 is used to estimate X1 = [θ bq]
T

Propagator: P1 {φ̇ = pm + bp, ḃp = 0}
(7)

Respectively, between the times ti + T1 and ti + T1 + T2
(curve motion), the other observer-propagator is used.
RRRRRRRRRRR

Observer: X̂2 is used to estimate X2 = [φ θ bp]
T

Propagator: P2 {ḃq = 0}
(8)

The question we now wish to address is the asymptotic
behavior of the estimate X̂II as the vehicle travels along a
succession of straight-lines and curves.

III. OBSERVABILITY AND ESTIMATABILITY

Now, the two subsystems (5)-(6) observability properties
are studied. Prior to these investigations, we briefly recall
some key results on such linear time-varying (LTV) systems
that serve to bound estimation errors of candidate observers.

A. Recall on Uniform Complete Observability (UCO)

Consider a (multivariable) LTV system, with
A(t),B(t),C(t) analytic

ẋ(t) = A(t)x(t) +B(t)u(t), y(t) = C(t)x(t) (9)

Note Φ(s, t) the transition matrix associated to A,

∂Φ

∂t
(t, s) = A(t)Φ(t, s), Φ(t, t) = I
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and W ∗(t0, t) the reconstructibility Grammian

W ∗(t0, t) = ∫
t
t0

ΦT (s, t)CT (s)C(s)Φ(s, t)ds

Definition 1: [?][12] The system (9) is uniformly com-
pletely observable (UCO) if the following relations hold for
all t:

0 < α0(σ)I ≤W
∗(t − σ, t) ≤ α1(σ)I

0 < α2(σ)I ≤ ΦT (t − σ, t)W ∗(t − σ, t)Φ(t − σ, t) ≤ α3(σ)I
where σ is a fixed positive constant, and αi(σ) is used to
denote a constant solely determined by its argument.

In the case of bounded matrices (with the same notations
as above), the following theorem provides a simpler neces-
sary and sufficient condition.

Theorem 1: [13][14] A bounded system
[A(t),B(t),C(t)] is UCO if and only if there exists
σ > 0 such that for all t,

W ∗
(t − σ, t) ≥ α0(σ) I > 0 (10)

B. Recall on Uniform Complete Estimatability (UCE)

Definition 2: [11] The system (9) is said to be uniformly
completely estimatable (UCE) if, for any pair of real numbers
m and M such that m ≤ M , there are positive numbers δ,
η and an estimator gain K(⋅) such that any solution of the
following system

˙̃X(t) = (A(t) −K(t)C(t))X̃(t)

with
⎧⎪⎪
⎨
⎪⎪⎩

X̃(t) = X̂(t) −X(t)
˙̂X(t) = A(t)X̂(t) +B(t)U(t) +K(t)(Y(t) −C(t)X̂(t))

satisfies for all t ≥ s

δ ∥X̃(s)∥ em(t−s) ≤ ∥X̃(t)∥ ≤ η ∥X̃(s)∥ eM(t−s)

A special case of interest is when the system (9) is bounded
and UCO, i.e. when there exist a, c, α0 and T strictly
positive such that

∥A(t)∥ ≤ a, ∥C(t)∥ ≤ c, W ∗
(t − T, t) ≥ α0 I > 0 (11)

Then, the following result holds.
Theorem 2: [11] A bounded system (9) is UCE by a

bounded estimator if and only if it is UCO.
Keeping the last result on mind, we now study the models (5)
and (6) by investigating their UCO property.

C. UCO property of the straight-line motion model

System (5) is trivially UCO because the reconstructibility
Grammian can be readily computed as follows

Φ(t, s) = (
1 t − s
0 1

) , W ∗
(t − σ, t) = (

σ −σ2/2
−σ2/2 σ3/3

)

Hence, by inspecting the eigenvalues of W ∗, one obtains
W ∗(t − σ, t) ≥ σ/4, for all σ > 0.

D. UCO property of the curve motion model

To system (6), consider the following input-less system
which is equivalent to it from the view-point of observability
(bq being known)

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

φ̇(t) = r(t)θ(t) + bp
θ̇(t) = −r(t)φ(t)

ḃp(t) = 0

with 0 < r ≤ ∣r(t)∣ ≤ R, ∀t ≥ 0.
As was proven in [9], this system is UCO, as can be deter-

mined from a differential rank criterion. Further, an estimate
of the reconstructibility Grammian can be established, for
sake of quantitatively estimate the decay rate of the error.
This point, given by the following result, will be exploited
in future investigations involving Kalman filters in particular.

Without loss of generality, r(t) is assumed to be (strictly)
positive. Consider the following bijective mapping (time-
change)

ht0(t) = ∫
t0

t
r(u)du

Lemma 3: For any t0, consider T0 = t0 −h−1t0 (2π), if r(t)
is sufficiently close to its first order (affine) Taylor expansion
for t ∈ [t0 − T0...t0], then the reconstructibility Grammian
satisfies

W ∗
(t0 − T0, t0) ≥ αT0I (12)

where α = min (1, 1
R2 )

r
R

2−
√
2

4
.

Proof: For r sufficiently close to its affine Taylor
expansion, there exist (r0, r1) which satisfy, for t ∈ [t0 −
T0...t0],

r(t) = r0(1 + r1(t0 − t) + o(r1T0)) (13)

Consider the following new coordinates (y, z)

y(ht0(t)) = −φ(t), z(ht0(t)) = θ(t), b = bp

From the derivative of ht0 , the derivative of the new
coordinates can be obtained

ḣt0(t) = −r(t),

φ̇(t) = r(t)ẏ(ht0(t)), θ̇(t) = −r(t)ż(ht0(t))

Consider the new differential system (where we note τ =
ht0(t))

ẏ(τ) = z(τ)+
b

r(h−1t0 (τ))
, ż(τ) = −y(τ), ḃ(τ) = 0 (14)

For any X2(t0) = [φ(t0) θ(t0) bp]
T

0
, equivalent initial

conditions can be easily found

φ(t0) = −y0, θ(t0) = z0, bp = b0

System (14) is a forced linear time invariant oscillator of
the form

z̈(τ) = −z(τ) + f(τ)

Its solution is as follows

z(τ) = z0 cos(τ) − y0 sin(τ) + ∫
τ

0
sin(τ − σ)f(σ)dσ (15)
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Then, one can estimate the Grammian

XT
2 (t0)W

∗
(t0 − T0, t0)X2(t0)

=XT
2 (t0)∫

t0

t0−T0

ΦT2 (t, t0)C
T
2 (t)C2(t)Φ2(t, t0)dtX2(t0)

= ∫

t0

t0−T0

XT
2 (s)CT2 C2X2(s)ds = ∫

t0

t0−T0

θ2(s)ds (16)

To lower-bound (16), from the Taylor expansion of r(t)
(Eq.(13)) which assumes that r is close to its affine Taylor
expansion, one can compute

f(τ) = −
b

r(h−1t0 (τ))
= f0(1 + f1τ + o(f1T

′
0)) (17)

with {
f0 = −

b
r0

f1 =
r1
r0

T ′0 = ht0(t0 − T0) = 2π f1T
′
0 ≃ r1T0

Introducing the Taylor expansion of (17) in the solu-
tion (15), one obtains

z(τ) =
z0 cos(τ) − y0 sin(τ)
+f0 (1 − cos(τ) + f1(τ − sin(τ)) + o(f1T

′
0))

Now, consider the following decomposition of the integral

∫

T ′0

0
z2(τ)dτ = I1 + I2 + I3 + I4 + I5 + I6

Each term can be computed separately

I1 = ∫
T ′0

0
(z0 cos(τ))2dτ =

z20
2
T ′0

I2 = ∫
T ′0

0
(y0 sin(τ))2dτ =

y20
2
T ′0

I3 = ∫
T ′0

0
f20 (

1 − cos(τ)
+f1(τ − sin(τ)) + o(f1T

′
0)

)

2

dτ

=
3

2
f20T

′
0 (1 +

2

3
f1T

′
0 + +o(f1T

′
0))

I4 = −2∫
T ′0

0
z0 cos(τ)y0 sin(τ)dτ = 0

I5 = 2∫
T ′0

0
z0 cos(τ)f0

⎛
⎜
⎝

1 − cos(τ)
+f1(τ − sin(τ))

+o(f1T
′
0)

⎞
⎟
⎠
dτ

= −z0f0T0(1 + o(f1T
′
0))

I6 = −2∫
T ′0

0
y0 sin(τ)f0

⎛
⎜
⎝

1 − cos(τ)
+f1(τ − sin(τ))

+o(f1T
′
0)

⎞
⎟
⎠
dτ

= 3y0f0(f1T
′
0 + o(f1T

′
0))

Gathering the expressions above, a symmetric matrix Π
can be constructed such that

∫

T ′0

0
z2(τ)dτ =

T ′0
2

[y0 z0 f0]Π

⎡
⎢
⎢
⎢
⎢
⎢
⎣

y0
z0
f0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

with Π =
⎛
⎜
⎝

1 0 3 (f1 + o(f1))
0 1 −(1 + o(f1T

′
0))

sym sym 3 + 2f1T
′
0 + o(f1T

′
0)

⎞
⎟
⎠

The minimum eigenvalue can be bounded thanks to the
positiveness of f1

λmin(Π) = (2 + f1T
′
0 −

√
2 + 2f1T ′0 + o(f1T

′
0)) ≥ 1/2

Thus, the Grammian (16) can be lower-bounded

∫

t0

t0−T0

θ2(t)dt = ∫
t0

t0−T0

z2(ht0(t))dt

= ∫

T ′0

0
z2(τ)

dτ

r(h−1t0 (τ))
≥

1

R
∫

T ′0

0
z2(τ)dτ

≥
r

R

T0
4

(y20 + z
2
0 + f

2
0 )

≥ min(1,
1

r20
)
r

R

T0
4

∥X2(t0)∥
2

Then, with α = min (1, 1
R2 )

r
4R

, we have proven

W ∗
(t0 − T0, t0) ≥ αT0I

Further, one can establish the following result.
Proposition 1: For all t0, for all T ≥ 2π

r
, if there exist

(r0, r1) such that, for t ∈ [t0 −
2π
r
...t0],

r(t) = r0(1 + r1(t0 − t) + o(
2πr1
r

)) (18)

then the reconstructibility Grammian W ∗ satisfies

W ∗
(t0 − T, t0) ≥ α

2π

R
ηI (19)

where α = min (1, 1
R2 )

r
4R

and η is the integer part of rT
2π

.
Proof:

With Chasles’ theorem,

W ∗
(t0 − T, t0) ≥W

∗
(t0 −

2π

r
η, t0)

≥ ∑
i=0..η−1

W ∗
(t0 −

2π

r
(i + 1), t0 −

2π

r
i)

≥ ∑
i=0..η−1

W ∗
((t0 −

2π

r
i) −

2π

r
,(t0 −

2π

r
i))

By assumption, Lemma 3 holds for all t(i)0 = t0 −
2π
r
i,

i = 0..η − 1.

W ∗
(t
(i)
0 − T

(i)
0 , t

(i)
0 ) ≥ αT

(i)
0 I

Yet,
2π

R
< T

(i)
0 <

2π

r

Hence, since the application T ↦ W ∗(t0 − T, t0) is
increasing for all t0

W ∗
(t
(i)
0 −

2π

r
, t
(i)
0 ) ≥ α

2π

R
I

Finally,

W ∗
(t0 − T, t0) ≥ αη

2π

R
I

The constants T and αη of UCO of the system are
depending, on one hand, on the lower bound of the recon-
structibility Grammian, and on the other hand, on the length
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of the integration interval in Eq. (10). To establish the proof
above, the whole curve motion has been considered and the
constants arise from a worst case analysis: the lower-bound
is proportional to the minimum of the yaw rate divided by
its maximum, and the integration length is lower-bounded by
the inverse of the minimum of the yaw rate (at small values
of the yaw rate, the system is poorly observable).

Yet, an extra decomposition of the curve motion can be
considered as well for sake of obtaining tighter estimates.
This point is illustrated in Fig. 4. The switching policy
defines the curve motion as the portion between the blue
lines, considering short parts of curve between each couple
of green lines. First, the assumption of linear variation of
the yaw rate is more easily fulfilled, and second, the central
parts with high rate present a larger minimum yaw rate,
yielding, in turn, an increase level of observability for a
shorter integration length of the Grammian.

E. UCE property of separate subsystems
As discussed early, System (5) is UCO. Let K1(t) be

a bounded gain given by Theorem 2. The observer is as
follows,

˙̂X1 = A1X̂1 +B1U +K1(t)(Y1 −C1X̂1) (20)

At time ti + T1, estimates θ̂(2i+1) and b̂q(2i+1) are avail-
able. In particular, the value b̂q(2i+1) can be used to drive
System (6). Since the bias bq is constant, considering it as a
given parameter, the System (6) is also UCO (see Section III-
D). Let K2(t) be a bounded gain given by Theorem 2. The
observer is computed as follows
˙̂X2 = A2(t)X̂2 +B2U +D2b̂q(2i+1) +K2(t)(Y2 −C2X̂2)

(21)
Combining System (5) with Eq. (20) and System (6) with

Eq. (21), one obtains the error dynamics
˙̃X1 = (A1 −K1(t)C1)X̃1 (22)
˙̃X2 = (A2(t) −K2(t)C2)X̃2 +D2b̃q(2i+1) (23)

Let Φ1 and Φ2 the transition matrices for the unforced
systems corresponding to Eq. (22) and Eq. (23), respectively,
one has
∂Φ1

∂t
(t, s) = (A1 −K1(t)C1)Φ1(t, s), Φ1(t, t) = I

∂Φ2

∂t
(t, s) = (A2(t) −K2(t)C2)Φ2(t, s), Φ2(t, t) = I

From Definiton 2 and Theorem 2, there exist
(k1, λ1, k2, λ2) such that

∥Φ1(t, s)∥ ≤ k1e
−λ1(t−s), ∥Φ2(t, s)∥ ≤ k2e

−λ2(t−s) (24)

IV. SUFFICIENT CONDITION FOR CONVERGENCE OF TIO

Our goal is to study the convergence of X̂II , in particular
from ti to ti+1. We now use the estimates established above
to study the convergence of the TIO structure introduced in
Section II-D. The solutions of System (22) and System (23)
are

X̃1(2i+1) = Φ1(ti + T1, ti)X̃1(2i) (25)

X̃2(2(i+1)) = Φ2(ti + T1 + T2, ti + T1)X̃2(2i+1)

+∫

T2

0
Φ2(ti + T1 + T2, ti + T1 + τ)D2b̃q(2i+1)dτ

(26)

Combining Eq. (25) and Eq. (26) with Eq. (24), one
obtains

∥X̃1(2i+1)∥ ≤ α ∥X̃1(2i)∥ (27)

∥X̃2(2(i+1))∥ ≤ β ∥X̃2(2i+1)∥ + γ ∥b̃q(2i+1)∥ (28)

with α = k1e
−λ1T1 , β = k2e

−λ2T2 and γ = k2
λ2

(1 − e−λ2T2).
From Eq. (7-8), the following inequalities can be obtained

∥φ̃(2i+1)∥ = ∥φ̃(2i) + T1b̃p(2i)∥ ≤ ∥φ̃(2i)∥ + T1 ∥b̃p(2i)∥

(29)

∥b̃p(2i+1)∥ = ∥b̃p(2i)∥ , ∥b̃q(2(i+1))∥ = ∥b̃q(2i+1)∥ (30)

To establish further estimates on X̃1 and X̃2, we consider
new variables. Let vectors Zi, i = 0..5 be defined as follows
⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

Z0 = X̃II = [φ̃ θ̃ b̃p b̃q]
T
, Z1 = [0 θ̃ 0 b̃q]

T
,

Z2 = [φ̃ θ̃ b̃p 0]
T
, Z3 = [φ̃ 0 0 0]

T
,

Z4 = [0 0 b̃p 0]
T
, Z5 = [0 0 0 b̃q]

T

With these notations, the following equations hold

∥Z0∥
2
= ∥Z1∥

2
+ ∥Z3∥

2
+ ∥Z4∥

2
= ∥Z2∥

2
+ ∥Z5∥

2 (31)

∥Zi∥ ≤ ∥Z0∥ , i = 0..5 (32)

Equivalence with X̃1 and X̃2 are also available

∥Z1∥ = ∥X̃1∥ , ∥Z2∥ = ∥X̃2∥ , (33)

∥Z3∥ = ∥φ̃∥ , ∥Z4∥ = ∥b̃p∥ , ∥Z5∥ = ∥b̃q∥ (34)

Eq. (27,28,29,30) are re-written as follows

∥Z1(2i+1)∥
2
≤ α2

∥Z1(2i)∥
2 (35)

∥Z2(2(i+1))∥
2
≤ (β ∥Z2(2i+1)∥ + γ ∥Z5(2i+1)∥)

2 (36)

∥Z3(2i+1)∥
2
≤ (∥Z3(2i)∥ + T1 ∥Z4(2i)∥)

2 (37)

∥Z4(2i+1)∥
2
= ∥Z4(2i)∥

2 (38)

∥Z5(2(i+1))∥
2
= ∥Z5(2i+1)∥

2 (39)

From Eq. (31,35,37,38),

∥Z0(2i+1)∥
2
≤ ∣

α2 ∥Z1(2i)∥
2
+ ∥Z4(2i)∥

2

+(∥Z3(2i)∥ + T1 ∥Z4(2i)∥)
2

≤ ∣
α2 ∥Z1(2i)∥

2
+ (1 + T 2

1 ) ∥Z4(2i)∥
2

+∥Z3(2i)∥
2
+ 2T1 ∥Z3(2i)∥ ∥Z4(2i)∥
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With Eq. (31,32),

∥Z0(2i+1)∥
2
≤ max(α2,1 + T 2

1 ) ∥Z0(2i)∥
2
+ 2T1 ∥Z0(2i)∥

2

≤ max(α2
+ 2T1, (1 + T1)

2
) ∥Z0(2i)∥

2 (40)

From Eq. (31,36,39),

∥Z0(2(i+1))∥
2
≤ (β ∥Z2(2i+1)∥ + γ ∥Z5(2i+1)∥)

2
+ ∥Z5(2i+1)∥

2

≤ ∣
β2 ∥Z0(2i+1)∥

2
+ (1 + γ2 − β2) ∥Z5(2i+1)∥

2

+2βγ ∥Z2(2i+1)∥ ∥Z5(2i+1)∥

Knowing that ∥Z5(2i+1)∥ ≤ ∥Z1(2i+1)∥, with Eq. (35,32),

∥Z0(2(i+1))∥
2
≤ ∣

(β2 + 2βγ) ∥Z0(2i+1)∥
2

+max(0,1 + γ2 − β2) ∥Z1(2i+1)∥
2

≤ ∣
(β2 + 2βγ) ∥Z0(2i+1)∥

2

+α2 max(0,1 + γ2 − β2) ∥Z1(2i)∥
2

Combining these with Eq. (40,32), one obtains

∥Z0(2(i+1))∥
2

∥Z0(2i)∥
2

≤ ∣
(β2 + 2βγ)max(α2 + 2T1, (1 + T1)

2)

+α2 max(0,1 + γ2 − β2)

Note Γ = (β2 + 2βγ)max(α2 + 2T1, (1 + T1)
2) +

α2 max(0,1 + γ2 − β2). From the construction of α, β and
γ,

lim
T1→+∞

α = 0, lim
T2→+∞

β = 0, lim
T2→+∞

γ =
k2
λ2

lim
T1→+∞
T2→+∞

Γ = lim
T1→+∞
T2→+∞

2
k22
λ2
T 2
1 e

−λ2T2

If T1 = o (e
λ2
2 T2), then

lim
T1→+∞
T2→+∞

Γ = 0 (41)

We can now state the following result.
Proposition 2: Consider Temporally Interconnected Ob-

servers (TIO), given by Eq. (7-8), taking the form of Eq. (20-
21) and illustrated in Fig. 3, used on an alternate sequence of
straight-lines and curves motions of respective durations T1
and T2. Assume that the observers satisfy inequalities (24).
Asymptotic stability of the estimates of the TIO is guaranteed
for sufficiently large values of T1 and T2 chosen according
to T1 = o (e

λ2
2 T2) where λ2 is the decay rate of the curve

motion observer introduced in Eq. (24).
Proof: Eq. (41) guarantees super-linear convergence

(as defined in [15]) of the sequence ∥Z0(2i)∥ for sufficiently
large times between switching. From the definition of Z0,
the estimation error on XII , taken at the discrete times ti,
converges towards zero. Since the continuous dynamics of
Systems (4) is bounded, the estimation error ∥X̃II(t)∥ is
asymptotically stable. From the measurements (pm, qm) and
the estimated biases, the rates (p, q) can be evaluated with
an error which also tends to zero. Therefore, the proposed
TIO structure achieves asymptotic reconstruction of the state
(φ θ bp bq p q)

T
.

For sake of illustration of the statement in Proposition 2,
we consider a parametrization of (T1,T2) that satisfy the re-
quired assumption. Consider a vector of parameter (υ1, υ2) >
1, for any (T1, T2) such that

T1 >
1

λ1
log

⎛
⎜
⎝
k1

¿
Á
ÁÀυ1 (1 +

k22
λ22

)
⎞
⎟
⎠

(42)

T2 >
1

λ2
log

⎛
⎜
⎜
⎜
⎝

λ2
√

1 +
λ2
2

υ2k22(1+T1)2
− 1

⎞
⎟
⎟
⎟
⎠

(43)

Then, the rate of convergence Γ is bounded as follows

Γ <
1

υ1
+

1

υ2
< 1 (44)

The main result of this paper is Proposition 2. It can be
used as follows. Given a TIO structure, from Sections III-
C and III-D, the systems are UCO, and from Theorem 2,
they are UCE. Then, there exists estimates of the form (20-
21) which satisfy Eq. (24) and Proposition 2 guarantees,
for well-chosen sufficiently large T1, T2, the convergence
of the TIO scheme. Further, quantitative estimates (24) can
be obtained using Proposition 1, in connection with results
on decay rates of Kalman filters. This point is the subject
of future contributions. In practice, the preceding discussion
must be considered in another order. The magnitudes of
the measurements noises and of the dynamics uncertainties
implicitly define the best possible constants λ1, k1, λ2, k2
in Eq. (24). Proposition 2 states, e.g. through Eq. (42-43),
that under the assumption of constant biases bp, bq , the TIO
scheme is asymptotically converging for sufficiently large
and well chosen values of T1, T2. What can discard the
application of this result to cases of practical interest is the
fact that the bounds on T1 and T2 can be inconsistent with
the assumption that the biases are constant.

V. EXPERIMENTAL RESULTS

We now present some results obtained on-board an actual
passenger car which is equipped with a velocimeter, a barom-
eter and MEMS gyroscopes. A GPS receiver is embedded
to serve for sake of comparisons only. In the figures,
we note "TIO" values (in blue) estimated with Temporally
Interconnected Observers and refer to debiased values (in
red) with the term "ZUPT" for Zero Velocity Update (see
[1], for a detailed presentation of this reference technique).
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Fig. 5. Switching policy and roll bias estimation
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Fig. 6. Comparison of estimated trajectory (blue) with GPS (red).The approximate path length is 80 km. obtained during a 80 min. trip.

In Figure 5, the estimated yaw rate is presented (in green)
and compared to the threshold of the switching policy. In the
second plot representing the roll bias estimate, a long straight
line is visible with a large constant part between 500 s and
1500 s, corresponding to a value of yaw rate lower than the
threshold.

Figure 7 shows the pitch bias estimation which reveals the
performance of the algorithm since the TIO bias is almost
continuous and kindly interpolates the values estimated dur-
ing ZUPTs without showing any steps like the bias estimated
only during ZUPTs. Further, the TIO estimates provides
continuous time estimate of the bias, while the ZUPT can
only operate at discrete times (from time to time).

In Figure 7, the succession of varying values and constant
parts are not easily detectable because constant parts appear
only during curves which are in-between straight lines.

Figure 8 presents the heading estimation improvement due
to the use of TIO. More precisely, the difference between the
ZUPT heading and the TIO heading relative to the GPS are
presented. In absence of an Attitude and Heading Reference
System, this comparison fairly represents the improvement
brought by the proposed algorithm because the heading is
computed from the gyrometers, the estimated attitudes and
biases. After one hour of driving, the drift of heading is
reduced by 15 degrees.

The proposed method yields a significant reduction of the
various biases of the sensors. Then, their information can be
integrated to determine position estimates. This gives some
promising results. In Figure 6, the trajectory (blue) obtained
by integration of the estimated velocity along with estimated
attitudes of the vehicle is presented and compared against the
GPS information (red). After 80 minutes and 80 kilometers
of driving, the heading error is less than 10 degrees and
position error is less than 2.5 kilometers. These results have
been obtained using solely the mentioned low-cost sensors:
a MEMS altimeter, a velocimeter, MEMS inertial sensors.
Interestingly, these results are accurate enough to serve as
inputs to map-matching techniques [16], which can now be
integrated in such low-cost GPS-free navigation system.
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Fig. 7. Pitch bias estimation showing the continuity of the estimation
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