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Abstract— In this paper, we develop optimal respiratory
airflow patterns using a nonlinear multi-compartment model
for a lung-rib-cage system. Specifically, we use classical calculus
of variations minimization techniques to derive an optimal
airflow pattern for inspiratory and expiratory breathing cycles.
The physiological interpretation of the optimality criteria used
involve the minimization of work of breathing and lung volume
acceleration for the inspiratory phase, and the minimization
of the elastic potential energy and rapid airflow rate changes
for the expiratory phase. Finally, we numerically integrate
the resulting nonlinear two-point boundary value problems to

determine the optimal airflow patterns over the inspiratory and
expiratory breathing cycles.

I. INTRODUCTION

Respiratory failure, the inadequate exchange of carbon
dioxide and oxygen by the lungs, is a common clinical prob-
lem in critical care medicine, and patients with respiratory
failure frequently require support with mechanical ventilation
while the underlying cause is identified and treated. The goal
of mechanical ventilation is to ensure adequate ventilation,
which involves a magnitude of gas exchange that leads to
the desired blood level of carbon dioxide, and adequate
oxygenation, which involves a blood concentration of oxygen
that will ensure organ function. Achieving these goals is
complicated by the fact that mechanical ventilation can
actually cause acute lung injury, either by inflating the lungs
to excessive volumes or by using excessive pressures to
inflate the lungs. The challenge to mechanical ventilation
is to produce the desired blood levels of carbon dioxide and
oxygen without causing further acute lung injury.

With the increasing availability of micro-chip technology,
it has been possible to design partially automated mechanical
ventilators with control algorithms for providing volume or
pressure control [1–4]. More sophisticated fully automated
model reference adaptive control algorithms for mechanical
ventilation have also been recently developed [5], [6]. These
algorithms require a reference model for identifying a clin-
ically plausible breathing pattern. However, the respiratory
lung models that have been presented in the medical and
scientific literature have typically assumed homogenous lung
function. For example, in analogy to a simple electrical
circuit, the most common model has assumed that the lungs
can be viewed as a single compartment characterized by its
compliance (the ratio of compartment volume to pressure)
and the resistance to air flow into the compartment [7–9].
While a few investigators have considered two compartment
models, reflecting the fact that there are two lungs (right and
left), there has been little interest in more detailed models
[10–12].
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Early work on the optimality of respiratory control mech-
anisms using simple homogenous lung models dealt with the
frequency of breathing. In particular, the authors in [13], [14]
predicted the frequency of breathing by using a minimum
work-rate criterion. This work involves a static optimization
problem and assumes that the airflow pattern is a fixed
sinusoidal function. The authors in [14], [15] developed
optimality criteria for the prediction of the respiratory airflow
pattern with fixed inspiratory and expiratory phases of a
breathing cycle.

Although the problem for identifying optimal respiratory
patterns has been addressed in the literature (see [13–16] and
the references therein), the models on which these respiratory
control mechanisms have been identified are predicated on
a single compartment lung model with constant respiratory
parameters. However, the lungs, especially diseased lungs,
are heterogeneous, both functionally and anatomically, and
are comprised of many subunits, or compartments, that
differ in their capacities for gas exchange. Realistic models
should take this heterogeneity into account. In addition, the
resistance to gas flow and the compliance of the lung units
are not constant but rather vary with lung volume. This
is particularly true for compliance. While more sophisti-
cated models entail greater complexity, since the models
are readily presented in the context of dynamical systems
theory, sophisticated mathematical tools can be applied to
their analysis. Compartmental lung models are described by
a state vector, whose components are the volumes of the
individual compartments.

In this paper, we extend the work of [14], [15] to develop
optimal respiratory airflow patterns using a nonlinear multi-
compartment model for a lung-rib-cage system. Specifically,
we extend the linear multi-compartment lung model given
in [5] to address system model nonlinearities. Then, we
extend the performance functionals developed in [14], [15]
for the inspiratory and expiratory breathing cycles to de-
rive an optimal airflow pattern using classical calculus of
variations techniques. In particular, the physiological inter-
pretation of the optimality criteria involve the minimization
of work of breathing and lung volume acceleration for the
inspiratory breathing phase, and the minimization of the
elastic potential energy and rapid airflow rate changes for the
expiratory breathing phase. Finally, we numerically integrate
the resulting nonlinear two-point boundary value problems to
determine the optimal airflow patterns over the inspiratory
and expiratory breathing cycles.

The notation used in this paper is fairly standard. Specif-
ically, R

n denotes the set of n × 1 real column vectors
and R

n×m denotes the set of n × m real matrices. For
x ∈ R

n we write x ≥≥ 0 (resp., x >> 0) to indicate that
every component of x is nonnegative (resp., positive). In this
case, we say that x is nonnegative or positive, respectively.
Likewise, A ∈ R

n×m is nonnegative or positive if every

entry of A is nonnegative or positive. Furthermore, let R
n

+
and R

n
+ denote the nonnegative and positive orthants of R

n,

that is, if x ∈ R
n, then x ∈ R

n

+ and x ∈ R
n
+ are equivalent,

respectively, to x ≥≥ 0 and x >> 0. Finally, we write (·)T
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to denote transpose, (·)′ to denote Frèchet derivative, and δx
to denote the first variation of the function x.

II. A NONLINEAR MULTI-COMPARTMENT MODEL FOR

RESPIRATORY DYNAMICS

In this section, we extend the linear multi-compartment
lung model of [5] to develop a nonlinear model for the
dynamic behavior of a multi-compartment respiratory system
in response to an arbitrary applied inspiratory pressure.
Here, we assume that the bronchial tree has a dichotomy
architecture [17]; that is, in every generation each airway
unit branches into two airway units of the subsequent gen-
eration. In addition, we assume that the lung compliance is
a nonlinear function of lung volume. First, for simplicity of
exposition, we consider a single-compartment lung model.
In this model, the lungs are represented as a single lung
unit with nonlinear compliance c(x) connected to a pressure
source by an airway unit with resistance (to air flow) of
R. At time t = 0, a driving pressure pin(t) is applied to
the opening of the parent airway, where pin(t) is generated
by the respiratory muscles or a mechanical ventilator. This
pressure is applied over the time interval 0 ≤ t ≤ Tin,
which is the inspiratory part of the breathing cycle. At
time t = Tin, the applied airway pressure is released and
expiration takes place passively, that is, the external pressure
is only the atmospheric pressure pex(t) during the time
interval Tin ≤ t ≤ Tin + Tex, where Tex is the duration
of expiration.

The state equation for inspiration (inflation of lung) is
given by

Rinẋ(t) +
1

cin(x)
x(t) = pin(t), x(0) = xin

0 , 0 ≤ t ≤ Tin,

(1)

where x(t) ∈ R, t ≥ 0, is the lung volume, Rin ∈ R

is the resistance to air flow during the inspiration period,
cin : R → R+ is a nonlinear function defining the lung
compliance at inspiration, xin

0 ∈ R+ is the lung volume at
the start of the inspiration and serves as the system initial
condition. Equation (1) is simply a pressure balance equation
where the driving pressure pin(t), 0 ≤ t ≤ Tin, applied
to the compartment is proportional to the volume of the
compartment via the compliance and the rate of change of
the compartmental volume via the resistance. We assume that
expiration is passive due to the elastic stretch of the lung unit.
During the expiration process, the state equation is given by

Rexẋ(t) +
1

cex(x)
x(t) = pex(t), x(Tin) = xex

0 ,

Tin ≤ t ≤ Tin + Tex, (2)

where x(t) ∈ R, t ≥ 0, is the lung volume, Rex ∈ R is the
resistance to air flow during the expiration period, cex : R →
R+ is a nonlinear function defining the lung compliance at
expiration, and xex

0 ∈ R+ is the lung volume at the start of
expiration.

Next, we develop the state equations for inspiration and
expiration for a 2n-compartment model, where n ≥ 0. In this
model, the lungs are represented as 2n lung units which are
connected to the pressure source by n generations of airway
units, where each airway is divided into two airways of the
subsequent generation leading to 2n compartments.

Let xi, i = 1, 2, . . . , 2n, denote the lung volume in the ith
compartment, cin

i (xi) (resp., cex
i (xi)), i = 1, 2, . . . , 2n, de-

note the compliance at inspiration (resp., expiration) of each
compartment as a nonlinear function of the volume of ith
compartment, and let Rin

j,i (resp., Rex
j,i), i = 1, 2, . . . , 2j, j =

0, . . . , n, denote the resistance (to air flow) of the ith airway
in the jth generation during the inspiration (resp., expiration)
period with Rin

01 (resp., Rex
01) denoting the inspiration (resp.,

expiration) of the parent (i.e., 0th generation) airway. As in
the single-compartment model we assume that a pressure of
pin(t), t ≥ 0, is generated (by the inspiratory muscles) or
applied (by a mechanical ventilator) during inspiration.

Now, the state equations for inspiration are given by

Rin
n,iẋi(t) +

1

cin
i (xi(t))

xi(t)

+

n−1
∑

j=0

Rin
j,kj

kj2
n−j

∑

l=(kj−1)2n−j+1

ẋl(t) = pin(t),

xi(0) = xin
i0, 0 ≤ t ≤ Tin, i = 1, 2, . . . , 2n, (3)

where cin
i (xi), i = 1, 2, . . . , 2n, are nonlinear functions of

xi, i = 1, 2, . . . , 2n, given by ([18])

cin
i (xi) ,























ain
i1 + bin

i1xi, if Vi0 ≤ xi ≤ xin
i1 ,

ain
i2

, if xin
i1

≤ xi ≤ xin
i2

,

ain
i3

+ bin
i3

xi, if xin
i2
≤ xi ≤ Vi0 + VTi

,

i = 1, . . . , 2n, (4)

where ain
ij

, j = 1, 2, 3, and bin
ij

, j = 1, 3, are model

parameters with bin
i1 > 0 and bin

i3 < 0, xin
ij

, j = 1, 2,
are volume ranges wherein the compliance is constant, Vi0
denotes the end expiratory volume, VTi

denotes tidal volume,
and

kj = ⌊kj+1 − 1

2
⌋ + 1, j = 0, . . . , n − 1, kn = i, (5)

where ⌊q⌋ denotes the floor function which gives the largest
integer less than or equal to the positive number q.

Next, we consider the state equation for the expiration
process. As in the single-compartment model we assume that
the expiration process is passive and the external pressure
applied is pex(t), t ≥ 0. Following an identical procedure
as in the inspiration case, we obtain the state equation for
expiration as

Rex
n,iẋi(t) +

n−1
∑

j=0

Rex
j,kj

kj2
n−j

∑

l=(kj−1)2n−j+1

ẋl(t)

+
1

cex
i (xi(t))

xi(t) = pex(t),

xi(Tin) = xex
i0 , Tin ≤ t ≤ Tex + Tin, i = 1, 2, . . . , 2n,(6)

where

cex
i (xi) ,























aex
i1

+ bex
i1

xi, if Vi0 ≤ xi ≤ xex
i1

,

aex
i2 , if xex

i1 ≤ xi ≤ xex
i2 ,

aex
i3

+ bex
i3

xi, if xex
i2

≤ xi ≤ Vi0 + VTi
,

i = 1, . . . , 2n, (7)

aex
ij

, j = 1, 2, 3, and bex
ij

, j = 1, 3, are model parameters

with bex
i1

> 0 and bex
i3

< 0, xex
ij

, j = 1, 2, are volume ranges

wherein the compliance is constant, and kj is given by (5).

Next, we provide a smooth (i.e., C∞) characterization of
the nonlinear compliance using sigmoidal functions [19].
Specifically, for inspiration, cin

i (xi) can be approximated as

cin
i (xi) ≈ ain

i2

(

S
(β)
a,b (xi) − S

(β)
c,d (xi)

)

, i = 1, . . . , 2n, (8)
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where a = −ain
i1

bini1
, b =

ain
i2

bini1
+ a, c = −ain

i3

bini3
, d =

ain
i2

bini3
+

c, S
(β)
a,b (xi) , 1

b−a ln

(

σ
(−β)
b

(xi)

σ
(−β)
a (xi)

)1/β

with σ
(−β)
b (xi) ,

1
1+e−β(xi−a) , and β > 0 is an approximation parameter. A

similar approximation holds for cex
i (xi), i = 1, . . . , 2n.

Finally, we rewrite the state equations (3) and (6) for
inspiration and expiration, respectively, in vector-matrix

state space form. Specifically, define the state vector x ,
[x1, x2, . . . , x2n ]T, where xi denotes the lung volume of the
ith compartment. Now, the state equation (3) for inspiration
can be rewritten as

Rinẋ(t) + Cin(x(t))x(t) = pin(t)e, x(0) = xin
0 ,

0 ≤ t ≤ Tin, (9)

where e , [1, . . . , 1]
T

denotes the ones vector of order 2n,

Cin(x) , diag

[

1

cin
1 (x1)

, . . . ,
1

cin
2n(x2n)

]

, (10)

Rin ,

n
∑

j=0

2j

∑

k=1

Rin
j,kZj,kZT

j,k, (11)

where Zj,k ∈ R
2n

is such that the l-th element of Zj,k is 1
for all l = (k−1)2n−j +1, (k−1)2n−j +2, . . . , k2n−j , k =
1, . . . , 2j, j = 0, 1, . . . , n, and zero elsewhere.

Similarly, the state equation (6) for expiration can be
rewritten as

Rexẋ(t) + Cex(x(t))x(t) = pex(t)e, x(Tin) = xex
0 ,

Tin ≤ t ≤ Tex + Tin, (12)

where

Cex(x) , diag

[

1

cex
1 (x1)

, · · · ,
1

cex
2n(x2n)

]

, (13)

Rex ,

n
∑

j=0

2j

∑

k=1

Rex
j,k Zj,k ZT

j,k. (14)

Finally, it follows from Proposition 4.1 of [5] that Rin
and Rex are positive-definite and, hence, Rin and Rex are
invertible matrices.

III. OPTIMAL DETERMINATION OF INSPIRATORY AND

EXPIRATORY AIRFLOW IN BREATHING

In this section, we use the respiratory dynamical system
characterized by (9) and (12) to develop an optimal model
for predicting airflow patterns in breathing. The optimization
criteria used allows for the minimization of oxygen expen-
diture of the respiratory muscles as well as rapid changes
in the lung volume flow rate. The oxygen consumption of
the lung muscles is mainly due to the work carried out by
the respiratory muscles to overcome the resistive forces and
stretch the lung and chest wall. In [20], this work is defined
as PV , where P is the pressure driving inflation and V
is the lung unit volume. The efficiency of gas exchange in
the lungs is related to the volume acceleration, since rapid
changes in lung volume can cause discomfort and inefficacy
of muscular contraction and control. Moreover, high volume
acceleration can result in overexpansion of the lung resulting
in lung tissue rupture as well as excessive work of breathing
with subsequent ventilatory muscle fatigue.

In the ensuing discussion, we assume that the inspiration
process starts from a given initial state xin

0 and is followed

by the expiration process where its initial state will be the
final state of the inspiration. An inspiration followed by an
expiration is called a single breathing cycle. Furthermore,
we assume that each breathing cycle is followed by another
breathing cycle where the initial condition for the latter
breathing cycle is the final state of the former breathing cycle.
Since the respiratory process is periodic, we need only focus
on one breathing cycle.

The next result gives the optimal solution x∗(t), 0 ≤
t ≤ Tin, for the inspiratory airflow breathing pattern using
classical calculus of variations techniques.

Theorem 3.1: Consider the system model for inspiration
given by (9). Let the optimal air volume x∗(t), 0 ≤ t ≤ Tin,
be given by the solution to the minimization problem

Jin(x) =

∫ Tin

0

[

ẍT(t)ẍ(t) + α1pin(t)e
Tẋ(t)

]

dt,

α1 ≥ 0, (15)

subject to the natural boundary conditions

x(0) = V0, ẋ(0) = 0, (16)

x(Tin) = V0 + VT, ẋ(Tin) = 0, (17)

where V0 ∈ R
2n

is the end expiratory volume and VT ∈ R
2n

is the tidal volume. If α1 > 0, then x∗(t), 0 ≤ t ≤ Tin, is
given by

x∗(t) = d1 + d2t + exp(
√

α1R
1/2
in t)d3

+ exp(−√
α1R

1/2
in t)d4, t ≥ 0, (18)

and if α1 = 0, then

x∗(t) = d1 + d2t + d3t
2 + d4t

3, t ≥ 0, (19)

where d1, d2, d3, and d4 ∈ R
2n

are constant vectors
determined by the boundary conditions (16) and (17), and

R
1/2
in denotes the (unique) positive-definite square root of

Rin.

Proof: First, note that pin(t)e, 0 ≤ t ≤ Tin, in (15) can
be eliminated using the state equation (9). Thus, the integrand
of the performance criterion (15) can be written as

Lin(x(t), ẋ(t), ẍ(t))

= ẍT(t)ẍ(t) + α1 [Rinẋ(t) + Cin(x(t))x(t)]
T

ẋ(t)

= ẍT(t)ẍ(t) + α1

[

ẋT(t)Rinẋ(t) + xT(t)Cin(x)ẋ(t)
]

,

α1 ≥ 0. (20)

The first variation of the performance criterion Jin(x) is
given by

δJin(x∗, δx)

=

∫ Tin

0

δLin(x
∗(t), ẋ∗(t), ẍ∗(t))dt

=

∫ Tin

0

{(

∂Lin

∂x

)

δx(t) +

(

∂Lin

∂ẋ

)

δẋ(t)

+

(

∂Lin

∂ẍ

)

δẍ(t)

}

dt

=

[

∂Lin

∂ẍ
δẋ +

(

∂Lin

∂ẋ
− d2

dt2
∂Lin

∂ẍ

)

δx

]Tin

0

+

∫ Tin

0

{(

∂Lin

∂x

)

− d

dt

(

∂Lin

∂ẋ

)

+
d

dt

(

∂Lin

∂ẍ

)}

δx(t)dt. (21)
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Using the boundary conditions (16) and (17) it follows that
δx(0) = δx(Tin) = δẋ(0) = δẋ(Tin) = 0. Now, since
Tin is fixed, it follows from the fundamental theorem of the
calculus of variations that the variation of Jin(x) must vanish
on x∗; that is, the extremals optimizing the performance
criterion Jin(x) satisfy the Euler-Lagrange equation

(

∂Lin

∂x

)T

− d

dt

(

∂Lin

∂ẋ

)T

+
d2

dt2

(

∂Lin

∂ẍ

)T

= 0. (22)

Next, using Cin(x) given by (10),

(

∂Lin

∂x

)T

= α1Cin(x(t))ẋ(t) + α1C
′

in(x(t))Ẋ(t)x(t), (23)

(

∂Lin

∂ẋ

)T

= 2α1Rinẋ(t) + α1Cin(x(t))x(t), (24)

(

∂Lin

∂ẍ

)T

= 2ẍ(t), 0 ≤ t ≤ Tin, (25)

where C′

in(x(t)) , diag
[

∂
∂xi

(

1
cin

i
(xi(t))

)]

and Ẋ(t) ,

diag [ẋi(t)] , i = 1, . . . , 2n. Thus, (22) yields the fourth-order
differential equation

x(4)(t) − α1Rinx(2)(t) = 0, 0 ≤ t ≤ Tin, (26)

where x(n)(t) ,
dnx(t)

dtn , with boundary conditions given in
(16) and (17). Now, using standard analysis techniques, the
solution x(t), 0 ≤ t ≤ Tin, to (26) satisfies (18) if α1 > 0
and (19) if α1 = 0.

Remark 3.1: The vectors d1, d2, d3, and d4 in Theorem
3.1 can be uniquely determined using the four boundary
conditions given by (16) and (17). Specifically, if α1 = 0,
it can be shown that d1 = V0, d2 = 0, d3 = 3

T 2
in

VT, and

d4 = − 2
T 3
in

VT. Hence, in this case, ẋ(t) = d2 + 2d3t +

3d4t
2 = 6t

T 2
in

VT(1 − t
Tin

) ≥≥ 0, 0 ≤ t ≤ Tin, which implies

that the solution x∗(t), 0 ≤ t ≤ Tin, to (26) is increasing
during inspiration, and hence, V0i

≤ x∗

i (t) ≤ V0i
+ VTi

, i =
1, . . . , 2n, where V0i

, xi(t), and VTi
are the ith components

of V0, x(t), and VT, respectively. A similar result holds for
the case where α1 > 0.

Next, we give the optimal solution x∗(t), Tin ≤ t ≤ Tin +
Tex, for the expiratory airflow breathing pattern.

Theorem 3.2: Consider the system model for expiration
given by (12). Let the optimal solution x∗(t), Tin ≤ t ≤ Tin+
Tex, be given by the solution to the minimization problem

Jex(x) =

∫ Tin+Tex

Tin

[

ẍT(t)ẍ(t) + α2p
2
ex(t)e

T
e

]

dt,

α2 ≥ 0, (27)

subject to the natural boundary conditions

x(Tin) = V0 + VT, ẋ(Tin) = 0, (28)

x(Tin + Tex) = V0, ẋ(Tin + Tex) = 0. (29)

If α2 > 0, then x∗(t), Tin ≤ t ≤ Tin + Tex, satisfies

x(4)(t) − α2R
2
exx

(2)(t) + α2C
2
ex(x)x(t)

+α2 [Cex(x)Rexẋ(t) − RexCex(x)ẋ(t)

+X(t)C′

ex(x)Rexẋ(t) − RexC
′

ex(x)X(t)ẋ(t)

+X(t)C′

ex(x)Cex(x)x(t)] = 0, (30)

where X(t) , diag [xi(t)] and C′

ex(x) ,

diag
[

∂
∂xi

(

1
cex

i
(xi)

)]

, i = 1, . . . , 2n, and if α2 = 0,

then

x∗(t) = d1 + d2t + d3t
2 + d4t

3, t ≥ 0, (31)

where d1, d2, d3, and d4 ∈ R
2n

are constant vectors
determined by the four boundary conditions (28) and (29).

Proof: Using (12), the integrand of the performance
criterion (27) can be written as

Lex(x(t), ẋ(t), ẍ(t))

= ẍT(t)ẍ(t) + α2 (pex(t)e)
T

(pex(t)e)

= ẍT(t)ẍ(t) + α2 [Rexẋ(t) + Cex(x(t))x(t)]T

[Rexẋ(t) + Cex(x(t))x(t)] ,

= ẍT(t)ẍ(t) + α2

[

ẋT(t)R2
exẋ(t)

+xT(t)C2
ex(x(t))x(t) + 2ẋT(t)RexCex(x(t))x(t)

]

,

α2 > 0. (32)

Thus, the variation of Jex(x) on an extremal solution gives

δJex(x
∗, δx)

=

∫ Tin+Tex

Tin

δLex(x
∗(t), ẋ∗(t), ẍ∗(t))dt

=

∫ Tin+Tex

Tin

{(

∂Lex

∂x

)

δx(t) +

(

∂Lex

∂ẋ

)

δẋ(t)

+

(

∂Lex

∂ẍ

)

δẍ(t)

}

dt

=

[

∂Lex

∂ẍ
δẋ +

(

∂Lex

∂ẋ
− d

dt

∂Lex

∂ẍ

)

δx

]Tin+Tex

Tin

+

∫ Tex

0

{(

∂Lex

∂x

)

− d

dt

(

∂Lex

∂ẋ

)

+
d2

dt2

(

∂Lex

∂ẍ

)}

δx(t)dt

= 0. (33)

Using the boundary conditions (28) and (29) it follows that
δx(Tin) = δx(Tin + Tex) = δẋ(Tin) = δẋ(Tin + Tex) = 0.
Hence, the extremals optimizing the performance criterion
Jex(x) satisfy the Euler-Lagrange equation

(

∂Lex

∂x

)T

− d

dt

(

∂Lex

∂ẋ

)T

+
d2

dt2

(

∂Lex

∂ẍ

)T

= 0. (34)

Now, using Cex(x) given by (13),

(

∂Lex

∂x

)T

= α2

[

2C2
ex(x(t))x(t) + 2Cex(x(t))Rexẋ(t)

+2X(t)C′

ex(x(t))Rexẋ(t)

+2X(t)C′

ex(x(t))Cex(x(t))x(t)] , (35)
(

∂Lex

∂ẋ

)T

= α2

[

2R2
exẋ(t) + 2RexCex(x(t))x(t)

]

, (36)

(

∂Lex

∂ẍ

)T

= 2ẍ(t), Tin ≤ t ≤ Tin + Tex, (37)

which yields (30). Finally, in the case where α2 = 0, (30)
collapses to x(4)(t) = 0, Tin ≤ t ≤ Tin+Tex, which satisfies
(31).
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Remark 3.2: In the case where α2 = 0, the vectors d1, d2,
d3, and d4 in Theorem 3.2 can be uniquely determined using
the four boundary conditions (28) and (29). In particular,
d1 = V0+VT+3βT 2

inTexVT +2βT 3
inVT, d2 = −β(6T 2

inVT+
6TexTinVT), d3 = β(3TexVT + 6TinVT), and d4 = −2βVT,
where β = 1/(3T 3

ex + 12T 2
exTin + 12TexT

2
in + 4T 3

in). Hence,
ẋ(t) = d2 + 2d3t + 3d4t

2 = −6βVTt(Tin + Tex − t) −
6βVTt(t − Tin) ≤≤ 0, Tin ≤ t ≤ Tin + Tex, which implies
that the solution x∗(t), Tin ≤ t ≤ Tin + Tex, is decreasing
during expiration, and hence, V0i

≤ x∗

i (t) ≤ V0i
+ VTi

, i =
1, . . . , 2n. The case where α2 > 0 involves the solution
to (30), and hence, we have been unable to show that
x∗(t), Tin ≤ t ≤ Tin + Tex, is decreasing during expiration
analytically. However, this has been verified numerically.

The physiological interpretations of the performance crite-
ria for inspiration and expiration used in Theorem 3.1 and 3.2
are slightly different. In particular, the inspiratory criterion
Jin(x) involves a weighted sum of squares of the lung
volume acceleration and the mechanical work performed by
the inspiratory muscles. Alternatively, during the expiratory
phase the respiratory muscles remain active in the beginning
of expiration since they continue their action by opposing
expiration, and hence, consume oxygen thereby perform-
ing negative work. Thus, mechanical work alone is not a
satisfactory criterion for describing control of breathing at
rest. As in [15], we assume that oxygen consumption of
expiration correlates with the integral square of the driving
pressure. This assumption is supported in [21] which shows
that an index of average respiratory pressure can predict the
total oxygen cost of breathing. Hence, instead of mechanical
work, we use the integral square of the applied pressure
in the expiratory criterion Jex(x), which corresponds to
minimizing the mean standard potential energy in the lung.

It can be seen that the optimal solutions x∗(t), t ≥ 0,
depend on the variables Tin, Tex, V0, and VT through the
boundary conditions. Moreover, the nonlinearities in (30)
are due to nonlinearities in the lung compliance Cex(x),
which make analytical solutions to (30) difficult to obtain.
It is interesting to note that although the optimal solutions
x∗(t), Tin ≤ t ≤ Tin + Tex, to (30) during the expiration
phase depend on the nonlinear compliance of Cex(x), the
optimal solutions x∗(t), 0 ≤ t ≤ Tin, to (26) during the
inspiration phase are independent of the nonlinear system
compliance Cin(x). In the case where n = 0 (i.e., a
single lung compartment model), x(t) ∈ R, Rex ∈ R, and
Cex(x) = Cex is a constant, and hence, (30) reduces to

x(4)(t) − α2R
2
exx

(2)(t) + α2C
2
exx(t) = 0. (38)

This case is extensively discussed in [22] wherein the authors
characterize four different solutions to (38) corresponding
to α2 = 0, 0 < α2 < 4C2

ex/R4
ex, α2 = 4C2

ex/R4
ex, and

α2 > 4C2
ex/R4

ex.

IV. NUMERICAL DETERMINATION OF OPTIMAL VOLUME

TRAJECTORIES

The optimal volume trajectories formulated in Section
III result in two-point nonlinear boundary-value problems.
Numerical methods for solving such problems include shoot-
ing methods and steepest descent methods. In this section,
we use the collocation method implemented by bvp4c in
MATLABr to numerically integrate the differential equa-
tions (26) and (30) to obtain the optimal volume trajectory
x∗(t), t ≥ 0.

For our simulations we first consider a two-compartment
lung model and use the values for the lung compliance
found in [18]. In particular, we set ain

i1 = 0.018 ℓ/cm H2O,

bin
i1 = 0.0233, ain

i2 = 0.025 ℓ/cm H2O, ain
i3 = 0.2532 ℓ/cm

H2O, bin
i3 = −0.01, xin

i1 = 0.3 ℓ, xin
i2 = 0.48 ℓ, aex

i1 =
0.02 ℓ/cm H2O, bex

i1
= 0.078, aex

i2
= 0.038 ℓ/cm H2O, aex

i3
=

0.1025 ℓ/cm H2O, bex
i3 = −0.15, xex

i1 = 0.23 ℓ, xex
i2 = 0.43 ℓ,

i = 1, 2. Here, we assume that the bronchial tree has a
dichotomy structure (see Section II). The airway resistance
varies with the branch generation and typical values can be
found in [23]. Furthermore, the expiratory resistance will be
higher than the inspiratory resistance by a factor 2 to 3. Here,
we assume that the factor is 2.5.

For our simulation we assume that the inspiration time
Tin = 2 sec and the expiration time Tex = 3 sec. The
two weighting parameters α1 and α2 differ from person to
person. Nominal values for the weighting parameters are
α1 = 2.0l/sec3 cm H2O and α2 = 0.1l2/sec4 cm H2O,
which correspond to spontaneous breathing at rest. Figure 1
shows the optimal air volume x∗

1(t), t ≥ 0, and the optimal
airflow rate ẋ∗

1(t), t ≥ 0, for the first compartment given by
the two-point nonlinear boundary-value problems (22) and
(34). Note that the airflow curve for inspiration is symmetric
since the nonlinearities in Cin(x) do not appear in (26).
However, x∗(t), t ≥ 0, obtained using (30) during expiration
involves Cex(x), and hence, the airflow curve is asymmetric.
Moreover, if we set the weighting parameter α2 = 0, it
follows from (30) that the airflow curve for the expiration is
given by a parabolic arc. See Figure 2.
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Fig. 1. Volume and airflow pattern for the first compartment.

Figure 3 shows the driving pressure generated by the
respiratory muscles for the first compartment using the
optimal air volume x∗

1(t), t ≥ 0. Figure 4 compares the
optimal air volume trajectory x∗

1(t), t ≥ 0, with a non-
optimal air volume trajectory x1(t), t ≥ 0, generated by
the linear pressure pin(t) = 20t + 5 cm H2O, t ∈ [0, Tin],
and pex(t) = 0 cm H2O, t ∈ [Tin, Tin + Tex] [5]. Note
that x∗

1(t), t ≥ 0, switches between the end expiratory level
V01 = 0.1l and the tidal volume VT1 = 0.53l. Figure 5 shows
the phase portrait of the optimal trajectories x∗

1(t) and x∗

2(t),
and suboptimal trajectories x1(t) and x2(t). Note that both
sets of trajectories asymptotically converge to a limit cycle,
with the optimal solutions satisfying the boundary conditions
given in (16), (17), (28), and (29).

Finally, Figure 6 shows the optimal air volume trajec-
tories for a four-compartment model with each air volume
trajectory satisfying the boundary conditions given in (16),
(17), (28), and (29). For this simulation, the compliance
parameters are taken to be identical to those used for the
two-compartment model with i = 1, 2, 3, 4, and the values
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Fig. 2. Volume and airflow pattern for α2 = 0 and α2 = 0.1.
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Fig. 3. Pressure generated by optimal
solution.
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Fig. 4. Optimal volume x
∗(t) and

nonoptimal volume x(t) versus time.

for airway resistances are generated using the results of [23].

V. CONCLUSION

We developed an optimal respiratory air flow pattern
using a nonlinear multi-compartment model for a lung-rib-
cage system. The determination of the optimal air volume
trajectories are derived using classical calculus of variations
techniques and involve optimization criteria that account for
oxygen expenditure of the respiratory lung muscles, lung
volume acceleration, and elastic potential energy of the lung.
Future work will include the development of adaptive control
algorithms that will utilize these models within a model
reference adaptive control architecture for fully automating
mechanical ventilation to ensure adequate ventilation and
oxygenation for critical care patients in intensive care units.
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