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Abstract— It is well-known that recently proposed Linear
Parameter-Varying (LPV) subspace identification techniques
suffer from a curse of dimensionality leading to an ill-posed
parameter estimation problem. In this paper we will focus
on regularization methods to solve the parameter estimation
problem. Tikhonov and TSVD regularization are conventional
general-purpose regularization methods. These general-purpose
regularization methods give preference to a solution with a
small 2-norm. In principle many other types of additional
information about the desired solution can be incorporated in
order to stabilize the ill-posed problem. The main contribution
of this paper is that we propose a novel regularization strategy
for LPV subspace methods: the nuclear norm regularization
method. By applying state-of-the-art convex optimization tech-
niques, the method stabilizes the parameter estimation problem
by including information on the desired solution that is specific
to the (LPV) subspace identification scheme. We will conclude
the paper with a summarizing comparison between the different
regularization techniques.

I. INTRODUCTION

In system identification, measured input and output signals

of a system are used to calculate a model describing its dy-

namics. The identification methods for Linear Time Invariant

(LTI) systems are well-established, but the resulting models

are only valid in one operating point. To obtain a model that

is valid throughout a certain operating region, identification

methods for Linear Parameter-Varying (LPV) systems can

be used. LPV systems are linear time-varying systems where

the time variation is governed by a known scheduling signal

parameterizing the operating region. Of particular interest

are LPV models with a state-space representation, as they

are convenient to use for systems with multiple inputs and

outputs, and can be used in optimal control synthesis (see

e.g. [1], [2]). This paper is concerned with an LPV subspace

identification technique with a global approach, which means

that in the experiments the scheduling and input are excited

simultaneously, so that the dynamic dependence of the input-

output behavior on the scheduling can be found from the

collected data. Current LPV subspace identification methods

can obtain models with affine dependence of the state-space

system matrices on arbitrary scheduling sequences. They

have the advantage over nonlinear programming approaches

given in e.g. [3] that the model parameters are found through

The authors are with the Delft Center for Systems and Control
(DCSC), Delft University of Technology, Mekelweg 2, 2628 CD Delft,
The Netherlands. P.M.O.Gebraad@student.tudelft.nl
(P.M.O. Gebraad) G.J.vanderVeen@tudelft.nl (G.J. van der
Veen) J.W.vanWingerden@tudelft.nl (J.W. van Wingerden)
m.verhaegen@tudelft.nl (M. Verhaegen)

convex optimization, for which in principle no initial esti-

mate is needed.

A major drawback of early subspace approaches is that they

are computationally demanding, as the dimensions of the

data matrix involved grows quickly with the system order and

the number of scheduling parameters. Therefore, the state-

of-the-art subspace technique in [4] uses a kernel method to

reduce the data matrix to a square matrix with dimensions

equal to the number of samples. The computational com-

plexity then depends on the number of samples included

in the data. However, the estimation of a large number of

model parameters using a small number of samples can

lead to non-unique solutions, or to large variance error

in the estimated parameters when we have noise in the

data [5]. Solving the parameter estimation problem therefore

requires regularization techniques. These techniques intro-

duce additional requirements on the estimated parameters,

thereby allowing a small bias, in order to reduce the variance

error. Using newly available convex optimization techniques

for nuclear norm minimization, this paper presents a new

regularization technique incorporating requirements in the

parameter estimation problem that are useful further on in

the subspace identification scheme.

The outline of this paper is as follows; we start in Section II

with a brief review of the LPV subspace identification

scheme. In Section III we explain the conventional, and the

new regularization techniques. In Section IV a simulation

example is used to give a proof of concept for the new

technique. We end with our conclusions on the applicability

of the new regularization technique.

II. LPV SUBSPACE IDENTIFICATION

In this section we present a brief summary of the LPV

subspace identification scheme given in [4].

A. Problem formulation

State-space representations of LPV systems have system

matrices that are a known function of the scheduling. In

this paper, we consider LPV systems with a parameter-

independent output equation. This is not only for simplicity,

but also because many practical LPV systems have a pa-

rameter independent output equations. However, the method

presented here can be extended to model structures with

an LPV output equation [6]. In this paper, we consider the
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following LPV model:

xk+1 =
m

∑
i=1

µ
(i)
k

(
A(i)xk +B(i)uk +K(i)ek

)
, (1)

yk = Cxk +Duk + ek, (2)

where xk ∈ Rn, uk ∈ Rr, yk ∈ Rℓ, are the state, input and

output vectors. The vector ek ∈ Rℓ denotes the zero mean

white innovation process. The matrices A(i) ∈ Rn×n, B(i) ∈
Rn×r, C ∈ Rℓ×n, D ∈ Rℓ×r, K(i) ∈ Rn×ℓ are the local system,

input, output, direct feedthrough, and observer gain matrices;

and µ
(i)
k ∈ R the local weights. The index m is referred to

as the number of local models or scheduling parameters.

Note that the system, input, and observer matrices depend

linearly on the time-varying scheduling vector. The time-

varying system matrix is now given by:

Ak =
m

∑
i=1

µ
(i)
k A(i).

This can be similarly done for the other system matrices. We

assume that we have an affine dependence and the scheduling

is given by:

µk =
[

1, µ
(2)
k , · · · , µ

(m)
k

]T

. (3)

Assume µk ∈ Pc, where Pc defines a parameter polytope.

We can rewrite (1)-(2) in the predictor form as:

xk+1 =
m

∑
i=1

µ
(i)
k

(
Ã(i)xk + B̃(i)uk +K(i)yk

)
, (4)

yk = Cxk +Duk + ek, (5)

with

Ã(i) = A(i) −K(i)C, B̃(i) = B(i)−K(i)D.

It is well-known that an invertible linear transformation of

the state does not change the input-output behavior of a

state-space system. Therefore, we can only determine the

system matrices up to a similarity transformation T ∈ Rn×n:

T−1A(i)T , T−1B(i), T−1K(i), CT , and D.

The identification problem can now be formulated as:

given the input sequence uk, the output sequence yk, and

the scheduling sequence µk over a time k = {1, . . . ,N}; find,

if they exist, the LPV system matrices A(i), B(i), K(i), C,

and D for all i ∈ {1,2, · · · ,m} up to a global similarity

transformation.

B. Assumptions and notation

First we define the transition matrix for discrete-time time-

varying systems [7]; i.e.

φ j,k = Ãk+ j−1 · · · Ãk+1Ãk. (6)

For ease of notation we define: zk =
[

uT
k , yT

k

]T
and B

(i)
=[

B̃(i), K(i)
]
. We define a past window length by p. This

window is used to define the following stacked vector:

z
p
k =





zk

zk+1

...

zk+p−1




.

We assume that the state sequence:

X =
[

xp+1, · · · , xN

]
, (7)

has full row rank; and that the matrix,

Γp =





C

CÃ(1)

...

C
(

Ã(1)
)p−1




, (8)

has full column rank. This last matrix can be interpreted as

the extended observability matrix of the first local model. For

persistency of excitation it is also required that the scheduling

sequence satisfies the following relation:

rank
([

µ0, µ1, · · · , µN−p

])
= m,

and N − p+1 > m.

Further, we define the matrix:

L j =
[
Ã(1)L j−1, · · · , Ã

(m)L j−1

]
,

with:

L1 =
[
B

(1)
, · · · ,B

(m)
]
.

This operator L j is used to define a time-invariant LPV

controllability matrix K p, by:

K
p =

[
Lp, Lp−1, · · · L1

]
∈ R

n×q̃, (9)

with the size q̃ given by:

q̃ = (r + l)∑
p

j=1
m j. (10)

C. Regression problem

The first objective of the algorithm is to reconstruct the

state sequence up to a similarity transformation. The state

xk+p is given by:

xk+p = φp,kxk +K
pN

p
k z

p
k ,

where φp,k is the transition matrix given in (6); K p is the

time-invariant LPV controllability matrix given in (9); and

the matrix N
p
k is a matrix solely composed of the scheduling

sequence; i.e.

N
p
k =





Pp|k

Pp|k+1

. . .

Pp|k+p−1




,

Pp|k = µk+p−1 ⊗·· ·⊗µk ⊗ Ir+l .

where ⊗ denoted the Kronecker product defined in [8].

The key approximation in this algorithm is that we assume

that φ j,k ≈ 0 for all j ≥ p. This approximation is commonly

used in the LTI identification literature (e.g. N4SID [9],

SSARX [10], PBSID [11]). For finite p, this approximation

might result in biased estimates. However, it can be shown

that, if the system in (4)-(5) is uniformly exponentially stable,

the approximation error can be made arbitrarily small by
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choosing p large enough [12]. With this approximation, the

state xk+p is approximated by:

xk+p ≈ K
pN

p
k z

p
k . (11)

The input-output behavior is now approximately given by:

yk+p ≈CK
pN

p
k z

p
k +Duk+p + ek+p := y

(p)
k+p. (12)

Now we define the stacked matrices U , Y , and Z:

U =
[

up+1, · · · , uN

]
, (13)

Y =
[

yp+1, · · · , yN

]
, (14)

Z =
[

N
p
1 z

p
1 , · · · , N

p
N−pz

p
N−p

]
. (15)

If
[

ZT , UT
]T

has full row rank, CK p and D can be

estimated by solving the following least squares problem:

min
CK p,D

||Y −CK
pZ −DU ||2F , (16)

where || · · · ||F represents the Frobenius norm [13]. For finite

p this linear problem will be biased due to the approximation

made in (11). In LTI literature a number of papers appeared

that study the effect of the window size; although they prove

one of the asymptotic properties of the algorithms (if p → ∞
the bias disappears), it is hard to quantify the effect for finite

p [12], [14], [11].

D. Observability matrix times controllability matrix

The algorithm we described, can be seen as the LPV

counterpart of the PBSIDopt algorithm [11], [14]. In the

PBSIDopt algorithm, the LTI equivalent of CK p is esti-

mated to construct, approximately, the extended observability

matrix times the extended controllability matrix (see (4.11)

in [11]). In the LPV case, a similar approach can be fol-

lowed. However, in this case we construct, approximately,

the product between the extended observability matrix of

the first local model, given in (8), and the extended LPV

controllability matrix, given in (9). This matrix product can

then be written as follows:

Γp
K

p ≈





CLp CLp−1 · · · CL1

0 CÃ(1)Lp−1 · · · CÃ(1)L1

. . .

0 C
(

Ã(1)
)p−1

L1




.

(17)

The zeros appear in this equation based on the approxi-

mation that φ j,k ≈ 0 for all j ≥ p (similarly as in the LTI

PBSIDopt [11])1. Equation (17) can therefore be constructed

from:

CK
p =

[
CLp, CLp−1, · · · CL1

]
,

estimated from (16).

1Without this approximation the algorithm becomes more complex and
computationally intensive, see the LPV-PBSID algorithm in [6].

E. Estimation of the state sequence

Now we can compute ΓpK pZ, which equals by definition

the extended observability matrix times the state sequence,

ΓpX . Under the assumptions stated in Section II-B that X and

Γp both have full rank and that pℓ > n, we can estimate the

state sequence and the order of the system based on a rank

revealing Singular Value Decomposition (SVD). We will use

the following SVD:

Γ̂pK pZ =
[

U U⊥

][
Σn 0

0 Σ

][
V

V⊥

]
, (18)

where Σn is the diagonal matrix containing the n largest

singular values; and V is the corresponding row space. Note

that we can find the system order by detecting a gap between

the singular values [15]. The state is now estimated by:

X̂ = ΣnV. (19)

It is well known that once the state, input, output, and

scheduling sequence are known, the system matrices can

be estimated [16]. First, we use (2), which is now a linear

relation in C and D, and where ek represents white noise.

From this equation an estimate can be found of the C and D

matrix, as well as the noise sequence. The estimated noise

sequence is used to transform (1) into a linear expression

depending on A(i), B(i), and K(i). Consequently, all system

matrices can be estimated.

F. Kernel method

The method described above suffers from a curse of

dimensionality, as q̃, the number of rows in data matrix

Z, grows exponentially with the size of the past window,

see (10). An effective way to reduce the dimensionality of the

parameter estimation problem is to use the kernel method for

the LPV PBSIDopt scheme, presented in [4],[6]. It assumes

that the solution to the estimation problem (16) is of the

form: [
CK p, D

]
= α

[
ZT UT

]
. (20)

This results into a dual to the estimation problem (16), given

by:

min
α

(
‖Y −αΦ‖2

F

)
(21)

where Φ = ZT Z +UTU ∈ R(N−p)×(N−p). From the solution

of the above problem, the matrix ΓpK pZ can be found

through a linear mapping L(α), defined as:

ΓpK pZ =





α
p

∑
j=1

ZT
1, jZ1, j

α
p

∑
j=2

ZT
2, jZ1, j

...

α
p

∑
j=p

ZT
p, jZ1, j





∧
= L(α) , (22)

with:

Zi, j =
[
Pp− j+1| j−i+1z j−i+1, · · · , Pp− j+1|N+ j−izN+ j−i.

]
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When q̃ > N − p, using the kernel method improves the

numerical efficiency of the LPV subspace identification

algorithm, as it reduces the size of the data matrices. In

order to fully exploit the improved numerical efficiency of

the dual problem, the kernel matrices ZT
1, jZi, j are to be

constructed directly from data without first constructing Zi, j.

Before giving the expressions that show how to do this, first

we introduce a notation ⊙ for the Hadamard (or entry-wise)

product, [8]:

(A⊙B)(i. j) = A(i. j) ·B(i. j,).

where indices (i. j) denote the different elements in the A and

B matrices. The Hadamard product of a sequence of matrices

is denoted by:

j

H
v=i

(Mv) = Mi ⊙Mi+1 ⊙ . . .⊙M j. (23)

Also, we define the row vector Ñ =
[
1, · · · , N − p

]
, and

the notation:

µÑ+i =
[
µi+1, . . . , µi+N−p

]

and similarly for zÑ+i. It is then then found that the kernel

matrices needed to formulate problem (21) and construct

(22), can be calculated from data through:

ZT
i, jZ1, j =

p− j

H
v=0

(
µT

Ñ+v+ j−i
µÑ+v+ j−1

)
⊙

(
zT

Ñ+ j−i
zÑ+ j−1

)
,

(24)

ZT Z =
p

∑
j=1

ZT
1, jZ1, j. (25)

For derivations of the kernel method we refer to [4],[6].

III. REGULARIZATION METHODS

The parameter estimation problem (21) in the kernel

method for LPV subspace identification is often ill-posed,

as it estimates a large number of parameters from a reduced

set of data points in order to reduce memory requirements.

This makes the solution α sensitive to measurement error

in the data, or to numerical error in the calculation of the

matrix Φ. Regularization techniques aim at modifying the

ill-posed problem in such a way that its solution is unique

and less sensitive to error in the data, thereby preventing

overfitting.

A. Conventional 2-norm regularization

Conventionally, Tikhonov or TSVD regularization tech-

niques are employed in LPV subspace identification [17].

These techniques add to the estimation problem the require-

ment that the 2-norm of the solution is small. The underlying

assumption is that a solution with small elements is less

sensitive to noise.

1) Tikhonov regularization: In Tikhonov regularization, a

term is added to the parameter estimation problem, which

yields preference to a solution with a small 2-norm:

min
α

(
‖Y −αΦ‖2

F +λ 2 ‖α‖2
F

)
, (26)

with regularization parameter λ > 0 defining the trade-off

between the fit of the model and the variation of the solution.

The basic idea is that λ can be chosen such that a well-

conditioned matrix Φ + λ 2I is formed, that replaces the ill-

conditioned matrix Φ in the inversion problem (21).

2) TSVD regularization: Using a Truncated Singular

Value Decomposition (TSVD), one can try to obtain a well-

conditioned full-rank matrix Φλ replacing Φ in (21), which

only includes the information in Φ corresponding to the

largest singular values:

Φ =
[
Uλ U⊥

][
Σλ 0

0 Σ

][
Vλ

V⊥

]
, Φλ = Uλ ΣλVλ , (27)

where Σλ is a diagonal matrix containing the λ ∈ N largest

singular values of Φ. The minimum 2-norm regularized

solution is given by:

α̂ = YV T
λ Σ−1

λ U
T

λ .

As in the Tikhonov regularization, regularization parameter

λ balances the bias error and variance error of the identified

model.

B. Nuclear norm regularization

The nuclear norm regularization method tries to incorpo-

rate requirements in the estimation problem (21) that will

result in a minimum order model later on in the LPV

PBSIDopt scheme. As the state sequence is found from

an SVD of ΓpK pZ, this translates into a minimum rank

requirement on this matrix (see section II-E), resulting in

the following optimization problem:

min
α

Rank(L(α)) s.t. min‖Y −αΦ‖2
F . (28)

The above problem is a difficult nonconvex problem in

general. Therefore, a convex heuristic for problem (28) is

used:

min
α

(
λ ‖Y −αΦ‖2

F +‖L(α)‖∗

)
, (29)

where ‖·‖∗ denotes the nuclear norm, the sum of singular

values of a matrix. Regularization parameter λ is used to

change the balance between the minimum order requirement

and the prediction error norm. The above problem is solved

using the interior-point convex optimization techniques pre-

sented in [18], which solves problems of the form:

min
x

(
‖L(x )‖∗ +

1

2
x TCx +d Tx

)
, (30)

with vector x ∈ Rn as optimization variable, matrix

C ∈ Rn×n and vector d ∈ Rn being weighting factors, and

L(x ) ∈ Rn×n being a linear matrix valued function:

L(x ) =
[
L1x , L2x , · · · , Lq x

]
with Li ∈ R

p×n ,
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with p > q . Vectorization of the optimization variable α is

used to rewrite problem (29) in the form (30):

x = vec
(
αT

)
, (31)

where vec(·) denotes the vectorization operation which

stacks the columns of a matrix as a vector. This results in

weighting factors:

C = 2λ
(
Il ⊗ΦT Φ

)
, d = −2λvec

(
ΦTY T

)
, (32)

where Il denotes the l× l identity matrix. From (22) follows

the definition of the matrices {Li}
q
i=1:





Llk+1

Llk+2

...

Llk+1




=





Z k 0 · · · 0

0 Z k 0
...

. . .
...

0 · · · Z k




, (33)

for k = 0, . . . , p−1 (hence q = l p), with Z k =
p

∑
j=k

ZT
k, jZ1, j.

IV. SIMULATION EXAMPLE

This section presents a proof of concept for the nu-

clear norm regularization method, by showing that it can

outperform the conventional regularization methods in the

identification of a second order LPV system with l = r = 2,

with system matrices:

[A1|A2] =

[
0 −.07 0.002 0

−6.5 −0.5 −0.01 0.5

]
,

[B1|B2] =

[
−2.2 −1 0 0

−6.6 −2 0 0

]
, C =

[
9 0

0 1

]
,

D =

[
0 0

0 0

]
, [K1|K2] =

[
1 0 0 0

0 1 0 0

]
.

To identify the system, the system is excited with the

following scheduling signal:

µk =
[
1, cos(2πk/5)+ sin(πk/5)

]T
,

and a stochastic Gaussian input signal uk with variance

var(uk) = 1. A Gaussian noise signal ek is used with a Signal

to Noise Ratio (SNR)2 of 75dB. The data uk, yk, and µk

is collected and used in the LPV PBSIDopt algorithm to

find the system matrices. We limit the data set to N = 80

samples. It is found that the best results are obtained using

p = 5. Since q̃ exceeds N − p, the kernel method is used.

Regularization is used to limit the effect of the noise on the

estimated parameters. As a measure for performance of the

algorithm, we use the value of the Variance-Accounted-For

(VAF) on a data set different from the identification data

set. In this validation data set, we add a Gaussian stochastic

component with variance 0.25 to the scheduling signal, use a

different realization uk, and use no noise ek. The VAF value

is defined as:

VAF = max

{
0,1−

var(ŷk − yk)

var(yk)
100%

}

2SNR = 20log10
var(yk)
var(ek)

where ŷk is the estimated system output, and yk is the true

system output. To show the effect of noise on the result,

Monte-Carlo simulations with 100 runs are carried out. In

each run, different realizations of the input and noise are

used. Of the conventional 2-norm regularization techniques,

the best results are obtained with TSVD regularization with

λ = 37. A significant improvement is made by using the

nuclear norm regularization with λ = 0.0501, both in terms

of a higher mean, and a smaller variance of the VAF, see

Figure 1. Also, nuclear norm regularization results in a model

with a closer fit to the true system in terms of the eigenvalues

of system matrices A1 and A2, see Figure 2.
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Fig. 1. Performance of LPV PBSIDopt using TSVD regularization (upper)
and nuclear norm regularization (lower) for a large range of values of the
parameter λ . Performance is expressed as the distribution of the VAF of a
validation data set, resulting from a Monte-Carlo simulation with 100 runs.
The results are shown for the first output channel, the second output gives
similar results.
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Fig. 2. Eigenvalues of A1 and A2 (×) as estimated by LPV PBSIDopt with
TSVD regularization (left) and nuclear norm regularization (right). The true
eigenvalues are indicated with +.
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Fig. 3. Normalized singular values of the matrix ΓpKpZ, resulting from
nuclear norm regularization (∗) for λ = 0.002 (upper), λ = 0.0501 (lower),
and from TSVD regularization (+) for λ = 37.

Note in Figure 1 that in nuclear norm regularization

the dependence of the performance on the regularization

parameter λ is quite complicated. Figure 3 provides more

insight by showing the singular values {σi}
pl
i=1 of the matrix

ΓpKpZ for different values of λ . In general, if we want

to accurately fit the data with an nth order model, the gap

between the singular values {σ1, . . . ,σn} corresponding to

the system dynamics and the other singular values due to

noise, needs to be large. Comparing Figures 1 and 3, it can

be seen that decreased performance indeed occurs when there

is only a small gap between σ2 and σ3 (e.g. for λ = 0.002).

By changing λ we are only directly affecting the balance

between the sum of singular values and the prediction error.

It therefore takes some effort to find a value of λ that results

in a matrix ΓpKpZ with appropriate rank, e.g. in this case

λ = 0.0501 resulting in a well-defined rank 2 for ΓpKpZ.

For higher order systems, it becomes more difficult to use

the nuclear norm regularization to manipulate the parameter

estimation problem so that a minimum rank matrix ΓpKpZ

results.

V. CONCLUSIONS

The main contribution of this paper is a novel nuclear

norm regularization method for LPV identification with the

PBSIDopt method. The nuclear norm regularization stabilizes

the ill-posed parameter estimation problem in the identifica-

tion scheme by adding additional information on the desired

solution to the optimization problem, based on a minimum

order requirement for the resulting LPV model. This infor-

mation consists of a rank requirement on the matrix from

which the state sequence is found. In our understanding, this

requirement is more meaningful than the minimum 2-norm

requirement on the solution of the parameter estimation

problem, that are used by the conventional Tikhonov or

TSVD regularization methods. By using the nuclear norm

as a heuristic for the rank of a matrix in the estimation

problem, the problem remains convex. We have shown in

a simulation example of the identification of a second order

system that the nuclear norm regularization in combination

with the kernel method for the LPV PBSIDopt scheme can

outperform Tikhonov and TSVD regularization. The nuclear

norm regularization method is useful when a relatively small

amount of experimental data is used to identify the model

from. In this case the order reducing capabilities of the

nuclear norm method can prevent overfitting to noise.

For higher order systems, it becomes more difficult to use the

nuclear norm criterion to obtain a state matrix that is both

low rank, and results in a well-conditioned system matrix

estimation problem later on in the scheme. So far, the nuclear

norm method has been proven useful in simulation examples

with models up to order 2 or 3, with up to two scheduling

parameters.

Note that the subspace identification and nuclear norm

regularization scheme presented in this paper, can also be

employed for identifying LTI systems, using µk = 1.
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