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Abstract— In this paper, modeling and control of a vibrating
Euler-Bernoulli beam is considered under the unknown external
disturbances. The dynamics of the beam derived based on
Hamilton’s principle is represented by a partial differential
equation (PDE) and four ordinary differential equations (ODEs)
involving functions of both space and time. To deal with the
system uncertainties and stabilize the beam, robust adaptive
boundary control is developed at the tip of the beam based
on Lyapunov’s direct method. With the proposed boundary
control, all the signals in the closed loop system are guaranteed
to be uniformly bounded. The state of the system is proven
to converge to a small neighborhood of zero by appropriately
choosing the design parameters. The simulations are provided
to illustrate the effectiveness of the proposed control.

I. INTRODUCTION

Beam-type systems and their vibration suppression have

received great attention due to large numbers of applications

in industry. An Euler-Bernoulli beam is a model that can

be used to describe many mechanical flexible systems such

as flexible robotic manipulator [1], [2], flexible marine riser

[3], [4] and moving strips [5]. The paper is motivated by

the industrial applications in boundary control of vibrating

flexible structure. Since the excessive vibration wastes en-

ergy, reduces the system quality, creates unwanted noise and

results in premature fatigue failure, vibration suppression is

well motivated to improve the performance of the system.

Examples of practical applications where vibrating beams are

exposed to undesirable spatiotemporally varying disturbances

include flexible production risers used for offshore oil trans-

portation, free hanging underwater pipelines, and drilling

pipe for drilling mud transportation. Taking into account the

unknown spatiotemporally varying disturbance of the beam

leads to the appearance of oscillations, which makes the

control problems of such systems relatively difficult.

Mathematically, the beam with a tip payload is represented

by a set of infinite dimensional equations (i.e., PDEs describ-

ing the dynamics of the beam) coupled with a set of finite

dimensional equations (i.e., ODEs describing the dynamics

of the tip payload). The dynamics of the flexible mechanical

system modeled by a set of PDEs is difficult to control due

to the infinite dimensionality of the system. Approaches to

control infinite dimensional flexible systems such as finite

element method and assumed modes method [6] are based

on the truncated finite-dimensional models of the system.

The truncated models are obtained via the model analysis or
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spatial discretization, in which the flexibility is represented

by an infinite number of modes by neglecting the higher

frequency modes. Spillover [7] due to truncation of the model

can lead to a unstable system, which should be avoided in

practice.

In order to eliminate the spillover problem, boundary con-

trol [8], [9], [10], [11] combining with several other control

techniques, such as variable structure control [12], sliding

model control [2], energy-based robust control [13] have

been developed for various infinite dimensional systems. Due

to its advantages, boundary control has gained increasing

attention in the literatures. A non-dissipative feedback that

has been shown in [14] to exponentially stabilize an Euler-

Bernoulli beam makes a Rayleigh beam and a Timoshenko

beam unstable. Boundary control is developed in [15] to

ensure a free vibrating beam exponentially stable. Fard

and Sagatun construct a boundary control to exponentially

stabilize a free transversely vibrating beam with axial tension

in [16]. A boundary control is presented to stabilize beams

by using active constrained layer damping [17]. In [18],

backstepping boundary controller and observer are developed

to stabilize the string and beam model respectively. However,

in all the above works, control is designed with neglecting the

unknown spatiotemporally varying disturbance. In this paper,

we study the robust adaptive boundary control problem

for an Euler-Bernoulli beam model with system parametric

uncertainties and under both the unknown spatiotemporally

varying distributed disturbance and unknown time-varying

boundary disturbance. When bounds of the external distur-

bances are not available, the control problems become even

more difficult. The main contributions of this paper include:

(i) A hybrid PDE/ODE model of the Euler-Bernoulli beam

under unknown external disturbances is derived based

on Hamilton’s principle. The governing equations of

system which can be used for the dynamic analysis of

the beam-like structures are described as nonhomoge-

neous PDEs with the unknown disturbance terms.

(ii) A robust adaptive boundary control combined with

a disturbance estimator for vibration suppression and

uncertainties compensation is developed by using Lya-

punov’s direct method.

(iii) With the proposed boundary control, a new theorem

is developed to illustrate that the uniform ultimate

boundedness of the system. The closed loop system

state will eventually converge to a compact set and

the control performance of the system is guaranteed by

suitably choosing the design parameters.
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II. PROBLEM FORMULATION AND PRELIMINARIES

A. Dynamic analysis

For the beam-like systems shown in Fig. 1, w(L, t),
ẇ(L, t) and ẅ(L, t) are the displacement, velocity and accel-

eration of the tip payload respectively, u(t) is the boundary

control force.

Remark 1: For clarity, notions (·)′ = ∂(·)/∂x and ˙(·) =
∂(·)/∂t are used throught this paper.

Fig. 1. A typical Euler-Bernoulli beam system.

The kinetic energy of the beam Ek(t) can be represented

as

Ek(t) =
1

2
m [ẇ(L, t)]

2
+

1

2
ρ

∫ L

0

[ẇ(x, t)]
2
dx, (1)

where x and t represent the independent spatial and time

variables respectively, m denotes the unknown mass of the

payload at the right boundary of the beam, w(x, t) is the

displacement of the beam at the position x for time t, ρ > 0
is the uniform mass per unit length of the beam, and L is

the length of the beam.

The potential energy Ep(t) due to the bending can be

obtained from

Ep(t) =
1

2
EI

∫ L

0

[w′′(x, t)]
2
dx +

1

2
T

∫ L

0

[w′(x, t)]
2
dx,

(2)

where EI is the unknown bending stiffness which is the

product of the elastic modulus E of the beam material and

the area moment of inertia I of the beam cross-section. T is

the unknown tension of the beam.

The virtual work done by disturbances including dis-

tributed disturbance f(x, t) on the beam and boundary dis-

turbance d(t) on the tip payload is given by

δWd(t) =

∫ L

0

f(x, t)δw(x, t)dx + d(t)δw(L, t). (3)

The virtual work done by the control input force u(t) which

produces a transverse force for vibration suppression can be

written as

δWf (t) = u(t)δw(L, t). (4)

Then, we have the total virtual work done on the system as

δW (t) = δWd(t) + δWf (t)

=

∫ L

0

f(x, t)δw(x, t)dx + [u(t) + d(t)] δw(L, t).

(5)

Hamilton’s principle [19] which permits the derivation of

equations of motion from energy quantities in a variational

form is represented by

∫ t2

t1

δ(Ek(t) − Ep(t) + W (t))dt = 0, (6)

where t1 and t2 are two time instants, t1 < t < t2 is the

operating interval and δ denotes the variational operator.

Applying Hamilton’s principle Eq. (6), we derive the

governing equations as

ρẅ(x, t) + EIw′′′′(x, t) − Tw′′(x, t) − f(x, t) = 0, (7)

∀(x, t) ∈ (0, L)× [0,∞), and the boundary conditions of the

system as

w′(0, t) = 0, (8)

w′′(L, t) = 0, (9)

w(0, t) = 0, (10)

−EIw′′′(L, t) + Tw′(L, t) = u(t) + d(t) − mẅ(L, t),

(11)

∀t ∈ [0,∞).
Assumption 1: For the unknown disturbances f(x, t) and

d(t), we assume that there exists constants f̄ , d̄ ∈ R+, such

that |f(x, t)| ≤ f̄ , ∀(x, t) ∈ [0, L] × [0,∞) and |d(t)| ≤ d̄,

∀(t) ∈ [0,∞). Note that both the values of f̄ and d̄ are also

unknown.

Remark 2: This is a reasonable assumption as the distur-

bances f(x, t) and d(t) have finite energy and hence are

bounded, i.e., f(x, t) ∈ L∞([0, L]) and d(t) ∈ L∞.

B. Preliminaries

For the convenience of stability analysis, we present the

following lemmas and properties for the subsequent devel-

opment.

Lemma 1: [20] Let φ1(x, t), φ2(x, t) ∈ R with x ∈ [0, L]
and t ∈ [0,∞), the following inequalities hold

φ1φ2 ≤ |φ1φ2| ≤ φ2
1 + φ2

2, (12)

|φ1φ2| =

∣∣∣∣
(

1√
δ
φ1

)
(
√

δφ2)

∣∣∣∣ ≤
1

δ
φ2

1 + δφ2
2, (13)

∀φ1, φ2 ∈ R and δ > 0.
Lemma 2: [21] Let φ(x, t) ∈ R be a function defined

on x ∈ [0, L] and t ∈ [0,∞) that satisfies the boundary

condition

φ(0, t) = 0, ∀t ∈ [0,∞), (14)

then the following inequalities hold:

φ2 ≤ L

∫ L

0

[φ′]2dx, ∀x ∈ [0, L]. (15)

If in addition to Eq. (14), the function φ(x, t) satisfies the

boundary condition

φ′(0, t) = 0, ∀t ∈ [0,∞), (16)

2989



then the following inequalities also hold:

[φ′]2 ≤ L

∫ L

0

[φ′′]2dx, ∀x ∈ [0, L]. (17)

Property 1: [4]: If the kinetic energy of the system (7)

- (11), given by Eq. (1) is bounded ∀t[0,∞), then ẇ(x, t),
ẇ′(x, t) and ẇ′′(x, t) are bounded ∀(x, t) ∈ [0, L]× [0,∞).

Property 2: [4]: If the potential energy of the system (7)

- (11), given by Eq. (2) is bounded ∀t[0,∞), then w′′(x, t),
w′′′(x, t) and w′′′′(x, t) are bounded ∀(x, t) ∈ [0, L]×[0,∞).

III. CONTROL DESIGN

In this section, the adaptive boundary control u(t) is

designed at the right boundary of the flexible beam and the

closed-loop stability of the system is proved by Lyapunov’s

direct method. The proposed control can compensate the

system uncertainties when the system parameters EI , T , m
and the bounds of the external disturbances f̄ and d̄ are all

unknown. For the system given by governing Eq. (7) and

boundary conditions Eqs. (8) - (11), the following robust

adaptive control law is proposed as

u(t) = −P Φ̂(t) − kua(t) − d̂(t), (18)

where P = [w′′′(L, t) −w′(L, t) ẇ′(L, t)− ẇ′′′(L, t)],

parameter estimate vector Φ̂(t) = [ÊI(t) T̂ (t) m̂(t)]T ,

d̂(t) is the estimate of d̄, k is a positive control parameter

and the auxiliary signal ua(t) is defined as

ua(t) = ẇ(L, t) − w′′′(L, t) + w′(L, t). (19)

We define parameter vector Φ, parameter error estimate

vector Φ̃(t) and disturbance error estimate d̃(t) as

Φ = [EI T m], (20)

Φ̃(t) = Φ − Φ̂(t) = [ẼI(t) T̃ (t) m̃(t)]T , (21)

d̃(t) = d̄ − d̂(t). (22)

After differentiating the auxiliary signal Eq. (19), multiplying

the resulting equation by m, and substituting Eq. (11), we

obtain

mu̇a(t) = EIw′′′(L, t) − Tw′(L, t) + d(t)

−mẇ′′′(L, t) + mẇ′(L, t) + u(t)

= PΦ + u(t) + d(t). (23)

Substituting Eq. (18) into Eq. (23), we have

mu̇a(t) = P Φ̃(t) − kua(t) + d(t) − d̂(t)

≤ P Φ̃(t) − kua(t) + d̃(t). (24)

The adaptation laws are designed as

˙̂
Φ(t) = ΓPT ua(t) − ζ1ΓΦ̂(t), (25)

˙̂
d(t) = γua(t) − ζ2γd̂(t), (26)

where Γ ∈ R3×3 is a diagonal positive-definite matrix, γ,

ζ1 and ζ2 are positive constants. We define the maximum

and minimum eigenvalue of matrix Γ as λmax and λmin

respectively.

Remark 3: All the signals in the boundary control can be

measured by sensors or obtained by a backwards difference

algorithm. w(L, t) can be sensed by a laser displacement

senor at the right boundary of the beam, w′(L, t) can be

measured by an inclinometer and w′′′(L, t) can be obtained

by a shear force sensor.

Remark 4: The control (18) is based on the original

distributed parameter model Eqs. (7) - (11), and the spillover

problems associated with traditional truncated model-based

approaches caused by ignoring high-frequency modes in

controller and observer design are avoided.

Consider the Lyapunov function candidate

V (t) = V1(t) + V2(t) + ∆(t) +
1

2
Φ̃T (t)Γ−1Φ̃(t)

+
1

2
γ−1d̃2(t), (27)

where the energy term V1(t) and the auxiliary term V2(t)
and the small crossing term ∆(t) are defined as

V1(t) =
β

2
ρ

∫ L

0

[ẇ]2dx +
β

2
EI

∫ L

0

[w′′]2dx

+
β

2
T

∫ L

0

[w′]2dx, (28)

V2(t) =
1

2
mu2

a(t), (29)

∆(t) = αρ

∫ L

0

xẇw′dx, (30)

where α and β are two positive weighting constants. Note

that the terms V1(t) and V2(t) are positive semi-definite

while the term ∆(t) is arbitrary.

Lemma 3: The Lyapunov function candidate given by Eq.

(27), can be upper and lower bounded as

λ1(V1(t) + V2(t) + ||Φ̃(t)||2 + d̃2(t)) ≤ V (t)

≤ λ2(V1(t) + V2(t) + ||Φ̃(t)||2 + d̃2(t)), (31)

where λ1 and λ2 are two positive constants.

Proof: Substituting of Ineq. (12) into Eq. (30) yields

|∆(t)| ≤ αρL

∫ L

0

([w′]2 + [ẇ]2)dx

≤ α1V1(t), (32)

where

α1 =
2αρL

min(βρ, βT )
. (33)

Then, we obtain

−α1V1(t) ≤ ∆(t) ≤ α1V1(t). (34)

Considering α is a small positive weighting constant satis-

fying 0 < α < min(βρ,βT )
2ρL

, we can obtain

α2 = 1 − α1 = 1 − 2αρL

min(βρ, βT )
> 0, (35)

α3 = 1 + α1 = 1 +
2αρL

min(βρ, βT )
> 1. (36)
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Then, we further have

0 ≤ α2V1(t) ≤ V1(t) + ∆(t) ≤ α3V1(t), (37)

Given the Lyapunov function candidate Eq. (27), we obtain

0 ≤ γ1(V1(t) + V2(t)) ≤ V1(t) + V2(t) + ∆(t)

≤ γ2(V1(t) + V2(t)), (38)

where γ1 = min(α2, 1) = α2 and γ2 = max(α3, 1) = α3

are positive constants. From the properties of matrix Γ, we

obtain

1

2λmax
||Φ̃(t)||2 ≤ 1

2
Φ̃T (t)Γ−1Φ̃(t) ≤ 1

2λmin
||Φ̃(t)||2. (39)

Combining Eq. (27) and Ineqs. (38), (39), we have

λ1(V1(t) + V2(t) + ||Φ̃(t)||2 + d̃2(t)) ≤ V (t)

≤ λ2(V1(t) + V2(t) + ||Φ̃(t)||2 + d̃2(t)), (40)

where λ1 = min(α2,
1

2λmax

, 1
2γ

) and λ2 =

max(α3,
1

2λmin

, 1
2γ

) are two positive constants.

Lemma 4: The time derivative of the Lyapunov function

candidate Eq. (27) can be upper bounded with

V̇ (t) ≤ −λV (t) + ψ, (41)

where λ > 0 and ψ > 0.

Proof: Differentiating Eq. (27) with respect to time leads

to

V̇ (t) = V̇1(t) + V̇2(t) + ∆̇(t) + Φ̃T (t)Γ−1 ˙̃Φ(t)

+γ−1d̃(t)
˙̃
d(t). (42)

The first term of the Eq. (42)

V̇1(t) = βρ

∫ L

0

ẇẅdx + βEI

∫ L

0

w′′ẇ′′dx

+βT

∫ L

0

w′ẇ′dx. (43)

Integrating Eq. (43) by part and using the boundary condi-

tions, we have

V̇1(t) = β [−EIw′′′(L, t) + Tw′(L, t)] ẇ(L, t)

+β

∫ L

0

f(x, t)ẇdx. (44)

Substituting the Eq. (19) into Eq. (44) and using Ineqs. (13),

we obtain

V̇1(t) ≤ βEI

2
u2

a − βEI

2
{[ẇ(L, t)]2 + [w′′′(L, t)]2

+ [w′(L, t)]2} +
β

δ1
|T − EI|[ẇ(L, t)]2

+ βδ1|T − EI|[w′(L, t)]2 + βEIw′(L, t)w′′′(L, t)

+ βδ2

∫ L

0

[ẇ]2dx +
β

δ2

∫ L

0

f2(x, t)dx, (45)

where δ1 and δ2 are two positive constants. Substituting Eq.

(24) into the second term of the Eq. (42), we have

V̇2(t) = mua(t)u̇a(t)

= −ku2
a(t) + P Φ̃(t)ua(t) + d̃(t)ua(t) (46)

The third term of the Eq. (42)

∆̇(t) = αρ

∫ L

0

(xẅw′ + xẇẇ′)dx

= α

∫ L

0

xw′ [−EIw′′′′ + Tw′′ + f(x, t)] dx

+αρ

∫ L

0

xẇẇ′dx. (47)

After integrating Eq. (47) by parts and applying the Ineqs.

(13) and (17), we have

∆̇(t) ≤ −αEILw′(L, t)w′′′(L, t) − 3αEI

2

∫ L

0

[w′′]2dx

+
αTL2

2

∫ L

0

[w′′]2dx − αT

2

∫ L

0

[w′]2dx

+
αL

δ3

∫ L

0

f2(x, t)dx + αLδ3

∫ L

0

[w′]2dx

+
αρL

2
[ẇ(L, t)]2 − αρ

2

∫ L

0

[ẇ]2dx, (48)

where δ3 is a positive constant. Substituting Eqs. (45), (46)

and (48) into Eq. (27), and using Ineqs. (13) and (17), we

obtain

V̇ (t) ≤ −
(αρ

2
− βδ2

) ∫ L

0

[ẇ]2dx − (
βLEI

2

+
3αEI

2
− αTL2

2
− δ4EI|β − αL|L

− βδ1L|T − EI|)
∫ L

0

[w′′]2dx

−
(

αT

2
− αLδ3

) ∫ L

0

[w′]2dx −
(

k − βEI

2

)
u2

a

−
(

βEI

2
− β

δ1
|T − EI| − αρL

2

)
[ẇ(L, t)]2

−
(

βEI

2
− EI

δ4
|β − αL|

)
[w′′′(L, t)]2

+

(
β

δ2
+

αL

δ3

) ∫ L

0

f2(x, t)dx + Φ̃T (t)Γ−1 ˙̃Φ(t)

+ γ−1d̃(t)
˙̃
d(t) + P Φ̃(t)ua(t) + d̃(t)ua(t), (49)

where δ4 is a positive constant. Substituting Eqs. (25) and

(26) into Ineq. (49), we have

V̇ (t) ≤ −λ3[V1(t) + V2(t)] + ζ1Φ̃
T (t)Φ̂(t)

+ζ2d̃(t)d̂(t) + ε

≤ −λ3[V1(t) + V2(t)] −
ζ1

2
||Φ̃(t)||2 +

ζ1

2
||Φ||2

−ζ2

2
d̃2(t) +

ζ2

2
d̄2 + ε

≤ −λ4[V1(t) + V2(t) + ||Φ̃(t)||2 + d̃2(t)] + ψ,

(50)

where λ4 = min(λ3,
ζ1

2 , ζ2

2 ) is a positive constant and other

constants k, α, β, δ1, δ2, δ3 and δ4 are chosen to satisfy the

following conditions:
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α <
min(βρ, βT )

2ρL
, (51)

βEI

2
− β

δ1
|T − EI| − αρL

2
≥ 0, (52)

βEI

2
− EI

δ4
|β − αL| ≥ 0, (53)

σ1 =
αρ

2
− βδ2 > 0, (54)

σ2 =
βLEI

2
+

3αEI

2
− αTL2

2
− δ4EI|β − αL|L

− βδ1L|T − EI| > 0, (55)

σ3 =
αT

2
− αLδ3 > 0, (56)

σ4 = k − βEI

2
> 0, (57)

λ3 = min

(
2σ1

βρ
,

2σ2

βEI
,
2σ3

βT
,
2σ4

m

)
> 0, (58)

ε =

(
β

δ2
+

αL

δ3

) ∫ L

0

f̄2dx ∈ L∞, (59)

ψ = ε +
ζ1

2
||Φ||2 +

ζ2

2
d̄2. (60)

Combining Ineqs. (38) and (50), we have

V̇ (t) ≤ −λV (t) + ψ, (61)

where λ = λ4/λ2 > 0.

With the above lemmas, we are ready to present the

following stability theorem of the closed-loop beam system.

Theorem 1: For the system dynamics described by (7) and

boundary conditions (8) - (11), under Assumption 1, and the

control law Eq. (18), given that the initial conditions are

bounded, we can conclude that uniform boundedness (UB):

the state of the closed loop system w(x, t) will remain in the

compact set Ω defined by

Ω : =
{
w(x, t) ∈ R

∣∣ |w(x, t)| ≤ D,

∀(x, t) ∈ [0, L] × [0,∞)} , (62)

where constant D =

√
2L

βTλ1

(
V (0) + ψ

λ

)
.

Proof: Multiplying Eq. (41) by eλt yields

∂

∂t
(V (t)eλt) ≤ ψeλt. (63)

Integrating of the above inequality, we obtain

V (t) ≤
(

V (0) − ψ

λ

)
e−λt +

ψ

λ

≤ V (0)e−λt +
ψ

λ
∈ L∞. (64)

which implies V (t) is bounded. Utilizing Ineq. (15) and Eq.

(28), we have

β

2L
Tw2(x, t) ≤ β

2
T

∫ L

0

[w′(x, t)]2dx ≤ V1(t) + V2(t)

≤ 1

λ1
V (t) ∈ L∞. (65)

Appropriately rearranging the terms of the above inequality,

we obtain w(x, t) is uniformly bounded as follows

|w(x, t)| ≤

√
2L

βTλ1

(
V (0)e−λt +

ψ

λ

)
, ∀x ∈ [0, L]. (66)

Remark 5: From Eqs. (40), (64), and (65), we can obtain

that Φ̃(t), d̃(t), V1(t), and V2(t) are bounded ∀t ∈ [0,∞).
Thus, ẇ(x, t), w′′(x, t) and w′(x, t) are bounded ∀(x, t) ∈
[0, L]×[0,∞), and ua is bounded ∀t ∈ [0,∞). Then, we can

obtain that the kinetic energy Eq. (1) and the potential energy

Eq. (2) of the system are also bounded. Using Properties

1 and 2, ẇ′(x, t), ẇ′′′(x, t), w′′′(x, t) and w′′′′(x, t) are

bounded ∀(x, t) ∈ [0, L] × [0,∞). Using Assumption 1,

Eq. (7) and the above statements, we can state that ẅ(x, t)
is also bounded ∀(x, t) ∈ [0, L] × [0,∞). From the above

information, it is shown that the proposed control Eq. (18)

ensures all internal system signals uniformly bounded and

the boundary control Eq. (18) is also bounded ∀t ∈ [0,∞).
Remark 6: It is shown that the increase in the control

gain k will result in a larger σ4, which will lead a greater

λ3. Then the value of λ will increase, which will reduce

the size of Ω and produce a better vibration suppression

performance. We can conclude that the bound of the system

state w(x, t) can be made arbitrarily small provided that

the design control parameters are appropriately selected.

However, increasing k will bring a high gain control scheme.

Therefore, in practical applications, the design parameters

should be adjusted carefully for achieving suitable transient

performance and control action.

IV. NUMERICAL SIMULATIONS

Consider a beam initially at rest w(x, 0) = ẇ(x, 0) = 0,

and then is excited by the disturbances f(x, t) and d(t). The

parameters of the beam is listed below:

Table 1: Parameters of the beam
Parameter Description Value

L Length of beam 100m
EI Bending stiffness 5Nm2

T Tension 10N
ρ Mass per unit length 0.1kg/m
m Mass of the tip payload 1kg

The boundary disturbance d(t) on the tip payload and the

distributed disturbance f(x, t) on the beam generated by the

following equations

d(t) = 1 + sin(πt) + sin(2πt) + sin(3πt), (67)

f(x, t) = 1[1 + sin(0.1πxt) + sin(0.2πxt)

1 + sin(0.3πxt)] × x

1000L
. (68)

Displacement of the beam for free vibration, i.e., u(t) = 0,

under the external disturbances is shown in Fig. 2. Dis-

placement of the beam with the proposed adaptive boundary

control (18), by choosing k = 100000, ζ1 = ζ2 = 0.001,

γ = 1 and Γ = diag{1, 1, 1} subjected to the disturbances

is shown in Fig. 3. Figs. 2 and 3 illustrate that the proposed
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adaptive boundary control is able to stabilize the beam at

the small neighborhood of its equilibrium position. The

corresponding boundary control u(t) is shown in Fig. 4.

V. CONCLUSION

In this paper, robust adaptive boundary control has been

studied for a vibrating beam under unknown spatiotem-

porally varying distributed disturbance and unknown time-

varying boundary disturbance. Both the parametric uncertain-

ties and disturbances uncertainties have been compensated.

The proposed control has been proved to ensure all the

signals of the closed-loop system uniformly bounded despite

the presence of an unknown payload mass, stiffness and

tension. Numerical simulations have been provided to verify

the effectiveness of the proposed boundary control.
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Fig. 2. Displacement of the beam without control.
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Fig. 3. Displacement of the beam with adaptive boundary control.
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