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Abstract— Risk and reward are fundamental concepts in the
cooperative control of unmanned systems. This paper focuses on
a constructive relationship between a cooperative planner and
a learner in order to mitigate the learning risk while boosting
the asymptotic performance and safety of agent behavior. Our
framework is an instance of the intelligent cooperative control
architecture (iCCA) where a learner (Natural actor-critic,
Sarsa) initially follows a “safe” policy generated by a cooper-
ative planner (consensus-based bundle algorithm). The learner
incrementally improves this baseline policy through interaction,
while avoiding behaviors believed to be “risky”. This paper
extends previous work toward the coupling of learning and
cooperative control strategies in real-time stochastic domains
in two ways: (1) the risk analysis module supports stochastic
risk models, and (2) learning schemes that do not store the
policy as a separate entity are integrated with the cooperative
planner extending the applicability of iCCA framework. The
performance of the resulting approaches are demonstrated
through simulation of limited fuel UAVs in a stochastic task
assignment problem. Results show an 8% reduction in risk,
while improving the performance up to 30%.

I. INTRODUCTION

Risk mitigation is a particularly interesting topic in the
context of the intelligent cooperative control of teams of
UAVs [1,2]. The concept of risk is common among humans,
robots and software agents alike. Amongst the latter, risk
models combined with relevant observations are routinely
used in analyzing potential actions for unintended or risky
outcomes. In previous work, the basic concepts of risk and
risk-analysis were integrated into a planning and learning
framework called iCCA [3,4]. This research generalizes the
embedded risk model with the goal of learning to mitigate
risk more effectively in stochastic environments.

In a multi-agent setting, task assignment and planning
algorithms implicitly rely on knowing agent capabilities to
provide any guarantees on resulting performance. In many
situations however, an agent remaining capable of its adver-
tised range of tasks is a strong function of how much risk the
agent takes while carrying out its assignments. Taking high
or unnecessary risks jeopardizes an agent’s capabilities and
thereby also the performance/effectiveness of the cooperative
plan. Cooperative control algorithms are often based on
simple, abstract models of the underlying system. Using
simplified models may aid computational tractability and
enable quick analysis, but at the cost of ignoring real-world
complexities, thus implicitly introducing the possibility of
significant risk elements into cooperative plans. The notion
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Fig. 1. intelligent Cooperative Control Architecture, a template framework
for the integration of cooperative control algorithms and machine learning
techniques [4].

of “risk” here may include noise, unmodeled dynamics
and uncertainties in addition to no-fly zones. The research
question addressed here can then be stated as:

How can a cooperative planner and domain knowl-
edge be used to mitigate the risk involved in
learning, while improving the performance and
safety of the cooperative plans over time in the
presence of noise and uncertainty?

We adopt the intelligent cooperative control architecture
(iCCA [4]) as a framework for more tightly coupling co-
operative planning and learning algorithms. Fig. 1 shows
the iCCA framework which is comprised of a cooperative
planner, a learner, and a performance analyzer. Each of these
modules is interconnected and plays a key role in the overall
architecture. In this research, the performance analysis mod-
ule is implemented as risk analysis where actions suggested
by the learner can be overridden by the baseline cooperative
planner if they are deemed too risky. This synergistic planner-
learner relationship yields a “safe” policy in the eyes of the
planner, upon which the learner can improve.

Here, we extend our previous work [3] in two ways:
• The risk analyzer component is extended to handle

stochastic models
• By introducing a new wrapper, learning methods with

no explicit policy formulation can be integrated within
the iCCA framework

The first extension allows for accurate approximation of
realistic world dynamics, while the second extension broad-
ens the applicability of iCCA framework to a larger set of
learning methods.

The paper proceeds as follows: Section II provides back-
ground information and Section III highlights the problem of
interest by defining a pedagogical scenario where planning
and learning algorithms are used in conjunction with stochas-
tic risk models. Section IV outlines the proposed technical
approach for learning to mitigate risk, and the performance
of the approach is then analyzed in Section V.

2011 American Control Conference
on O'Farrell Street, San Francisco, CA, USA
June 29 - July 01, 2011

978-1-4577-0079-8/11/$26.00 ©2011 AACC 3393



II. BACKGROUND

A. Markov Decision Processes
Markov decision processes (MDPs) provide a general for-

mulation for sequential planning under uncertainty [5]–[9].
MDPs are a natural framework for solving multi-agent plan-
ning problems as their versatility allows modeling of stochas-
tic system dynamics as well as inter-dependencies between
agents. An MDP is defined by tuple (S,A,Pass′ ,Rass′ , γ),
where S is the set of states, A is the set of possible actions.
Taking action a from state s has Pass′ probability of ending up
in state s′ and receiving reward Rass′ . Finally γ ∈ [0, 1] is the
discount factor used to prioritize early rewards against future
rewards.1 A trajectory of experience is defined by sequence
s0, a0, r0, s1, a1, r1, · · · , where the agent starts at state s0,
takes action a0, receives reward r0, transits to state s1, and
so on. A policy π is defined as a function from S × A to
the probability space [0, 1], where π(s, a) corresponds to the
probability of taking action a from state s. The value of each
state-action pair under policy π, Qπ(s, a), is defined as the
expected sum of discounted rewards when the agent takes
action a from state s and follow policy π thereafter:

Qπ(s, a) = Eπ

[ ∞∑
t=1

γt−1rt

∣∣∣∣s0 = s, a0 = a,

]
.

The optimal policy π∗ maximizes the above expectation for
all state-action pairs: π∗ = argmaxaQ

π∗(s, a).

B. Reinforcement Learning in MDPs
The underlying goal of the two reinforcement learning

algorithms presented here is to improve performance of
the cooperative planning system over time using observed
rewards by exploring new agent behaviors that may lead to
more favorable outcomes. The details of how these algo-
rithms accomplish this goal are discussed in the following
sections.

1) Sarsa: A popular approach among MDP solvers is to
find an approximation to Qπ(s, a) (policy evaluation) and
update the policy with respect to the resulting values (policy
improvement). Temporal Difference learning (TD) [10] is a
traditional policy evaluation method in which the current
Q(s, a) is adjusted based on the difference between the
current estimate of Q and a better approximation formed
by the actual observed reward and the estimated value of the
following state. Given (st, at, rt, st+1, at+1) and the current
value estimates, the temporal difference (TD) error, δt, is
calculated as:

δt(Q) = rt + γQπ(st+1, at+1)−Qπ(st, at).
The one-step TD algorithm, also known as TD(0), updates
the value estimates using:

Qπ(st, at) = Qπ(st, at) + αδt(Q), (1)

where α is the learning rate. Sarsa (state action reward state
action) [11] is basic TD for which the policy is directly

1γ can be set to 1 only for episodic tasks, where the length of trajectories
are fixed.

derived from the Q values as:

πSarsa(s, a) =

{
1− ε a = argmaxaQ(s, a)
ε
|A| Otherwise .

This policy is also known as the ε-greedy policy2.
2) Natural Actor-Critic: Actor-critic methods parameter-

ize the policy and store it as a separate entity named actor.
In this paper, the actor is a class of policies represented as
the Gibbs softmax distribution:

πAC(s, a) =
eP (s,a)/τ∑
b e
P (s,b)/τ

,

in which P (s, a) ∈ R is the preference of taking action a in
state s, and τ ∈ [0,∞) is a knob allowing for shifts between
greedy and random action selection. Since we use a tabular
representation, the actor update amounts to:

P (s, a)← P (s, a) + αQ(s, a)

following the incremental natural actor-critic framework
[12]. The value of each state-action pair (Q(s, a)) is held by
the critic and is calculated/updated in an identical manner to
Sarsa, mentioned in Eqn. (1).

III. PROBLEM STATEMENT

This section uses a pedagogical example to explain: (1) the
effect of unknown noise on the planner’s solution, (2) how
learning methods can improve the performance and safety of
the planner solution, and (3) how the approximate model and
the planner solution can be used for faster and safer learning.

A. The GridWorld Domain: A Pedagogical Example

Consider a grid world scenario shown in Fig. 2-(left),
in which the task is to navigate a UAV from the top-left
corner (•) to the bottom-right corner (?). Red areas highlight
the danger zones where the UAV will be eliminated upon
entrance. At each step the UAV can take any action from the
set {↑, ↓,←,→}. However, due to wind disturbances, there
is 30% chance that the UAV is pushed into any unoccupied
neighboring cell while executing the selected action. The
reward for reaching the goal region and off-limit regions are
+1 and −1 respectively, while every other move results in
−0.001 reward.

Fig. 2-(middle) illustrates the policy (shown as arrows)
calculated by a planner that is unaware of the wind together
with the nominal path highlighted as a gray tube. As ex-
pected, the path suggested by the planner follows the shortest
path that avoids directly passing through off-limit areas. The
color of each cell represents the true value of each state
(i.e., including the wind) under the planner’s policy. Green
indicates positive, white indicates zero, and red indicates
negative values3.

The optimal policy and its corresponding value function
and nominal path are shown in Fig. 2-(right). Notice how
the optimal policy avoids the risk of getting close to off-
limit areas by making wider turns. While the new nominal

2Ties are broken randomly, if more than one action maximizes Q(s, a).
3We set the value for blocked areas to −∞, hence the intense red color
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Fig. 2. The GridWorld domain (a), the corresponding policy calculated with a planner assuming deterministic movement model and its true value function
(b) and the optimal policy with the perfect model and its value function (c). The task is to navigate from the top left corner highlighted as • to the right
bottom corner identified as !. Red regions are off-limit areas where the UAV should avoid. The movement dynamics has 30% noise of moving the UAV
to a random free neighboring grid cell. Gray cells are not traversable.

critic and is calculated/updated in an identical manner to
Sarsa.

III. PROBLEM STATEMENT

In this section, we use a pedagogical example to explain:
(1) the effect of unknown noise on the planner’s solution,
(2) how learning methods can improve the performance and
safety of the planner solution, and (3) how the approximate
model and the planner solution can be used for faster and
safer learning.

A. The GridWorld Domain: A Pedagogical Example

Consider a grid world scenario shown in Fig. 2-(a), in
which the task is to navigate a UAV from the top-left
corner (•) to the bottom-right corner (!). Red areas highlight
the danger zones where the UAV will be eliminated upon
entrance. At each step the UAV can take any action from the
set {↑, ↓,←,→}. However, due to wind disturbances, there
is 30% chance that the UAV is pushed into any unoccupied
neighboring cell while executing the selected action. The
reward for reaching the goal region and off-limit regions are
+1 and −1 respectively, while every other move results in
−0.001 reward.

Fig. 2-(b) illustrates the policy (shown as arrows) cal-
culated by a planner that is unaware of the wind together
with the nominal path highlighted as a gray tube. As
expected the path suggested by the planner follows the
shortest path that avoids direct passing through off-limit
areas. The color of each cell represents the true value of
each state (i.e., including the wind) under the planner’s
policy. Green indicates positive, white indicate zero, and red
indicate negative values3. Lets focus on the nominal path

3We set the value for blocked areas to −∞, hence the intense red color

from the start to the goal. Notice how the value function
jumps suddenly each time the policy is followed from an
off-limit neighbor cell (e.g., (8, 3) → (8, 4)). This drastic
change highlights the involved risk in taking those actions
in the presence of the wind.

The optimal policy and its corresponding value function
and nominal path are shown in Fig. 2-(c). Notice how the
optimal policy avoids the risk of getting close to off-limit
areas by making wider turns. Moreover, the value function
on the nominal path no longer goes through sudden jumps.
While the new nominal path is longer, it mitigates the risk
better. In fact, the new policy raises the mission success
rate from 29% to 80%, while boosting the value of the
initial state by a factor of ≈3. Model-free learning techniques
such as Sarsa can find the optimal policy through mere
interaction, although they require many training examples.
More importantly, they might deliberately move the UAV
towards off-limit regions to gain information about those
areas. If the learner is integrated with the planner, the
estimated model can be used to rule out intentional poor
decisions. Furthermore, the planner’s policy can be used as
a starting point for the learner to bootstrap on, reducing the
amount of data the learner requires to master the task.

Though simple, the preceding problem is fundamentally
similar to more meaningful and practical UAV planning sce-
narios. The following sections present the technical approach
and examines the resulting methods in this toy domain and
a more complex multi-UAV planning task where the size of
the state space exceeds 200 million state-action pairs.

IV. TECHNICAL APPROACH

This section provides further details of the intelligent
cooperative control architecture (iCCA), describing the pur-

Fig. 2. GridWorld domain (left), the corresponding policy calculated with a
planner assuming deterministic movement model and its true value function
(middle) and the optimal policy with the perfect model and its value function
(right). The task is to navigate from the top left corner highlighted as • to the
right bottom corner identified as ?. Red regions are off-limit areas where the
UAV should avoid. The movement dynamics has 30% noise of moving the
UAV to a random free neighboring grid cell. Gray cells are not traversable.

path is longer, it mitigates the risk better. In fact, the new
policy raises the mission success rate from 29% to 80%,
while boosting the value of the initial state by a factor
of ≈3. Model-free learning techniques such as Sarsa can
find the optimal policy through mere interaction, although
they require many training examples. More importantly, they
might deliberately move the UAV towards off-limit regions
just to gain information about those areas. However, when
integrated with the planner, the learner can rule out inten-
tionally poor decisions. Furthermore, the planner’s policy can
be used as a starting point for the learner to bootstrap on,
reducing the amount of data the learner requires to master
the task.

Though simple, the preceding problem is similar to more
meaningful and practical UAV planning scenarios. The fol-
lowing sections present the technical approach and examines
the resulting methods in this toy domain and a more complex
multi-UAV planning task where the size of the state space
exceeds 200 million state-action pairs.

IV. TECHNICAL APPROACH

This section provides further details of the intelligent
cooperative control architecture (iCCA), describing the pur-
pose and function of each element. Fig. 3 shows that the
consensus-based bundle algorithm (CBBA) [13] is used as
the cooperative planner to solve the multi-agent task alloca-
tion problem. The learning algorithms used are the natural
actor-critic [12] and Sarsa [11] methods. These algorithms
use past experience to explore and suggest promising behav-
iors leading to more favorable outcomes. The performance
analysis block is implemented as a risk analysis tool where
actions suggested by the learner can be overridden by the
baseline cooperative planner if they are deemed too risky.
The following sections describe each of these blocks in
detail.

A. Cooperative Planner

At its fundamental level, the cooperative planner yields a
solution to the multi-agent path planning, task assignment or
resource allocation problem, depending on the domain. This
means it seeks to optimize an underlying, user-defined objec-
tive function. Many existing cooperative control algorithms
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Fig. 3. iCCA framework as implemented. CBBA planner coupled with risk
analysis and reinforcement learning modules, where the latter two elements
are formulated within an MDP.

use observed performance to calculate temporal-difference
errors which drive the objective function in the desired direc-
tion [14,15]. Regardless of how it is formulated (e.g., MILP,
MDP, CBBA), the cooperative planner, or cooperative control
algorithm, is the source for baseline plan generation within
iCCA. The formulation of CBBA as the cooperative planner
for this work is nearly identical to that shown previously
[3], with the exception that this research adds additional
constraints on fuel supply to ensure agents cannot bid on task
sequences that require more fuel than they have remaining or
that would not allow them to return to base upon completion
of the sequence. For further details, the reader is referred to
previous work [3,13,16].

B. Risk/Performance Analysis

As discussed earlier, learning algorithms may encourage
the agent to explore dangerous situations (e.g., flying with
low fuel level) in hope of improving the long-term per-
formance. While some degree of exploration is necessary,
unbounded exploration can lead to undesirable scenarios
such as losing a UAV. Hence in this research, akin to our
previous work [3], we implemented the performance analysis
module as a risk analysis element where candidate actions are
evaluated for their risk level. Actions deemed too “risky” are
replaced with another action of lower risk. The next section
details the process of overriding risky actions. It is important
to note that the risk analysis and learning algorithms are
coupled within an MDP formulation, as shown in Fig. 3,
which implies a fully observable environment.

C. Learning Algorithm

A focus of this research is to integrate a learner into iCCA
that suggests candidate actions to the cooperative planner
that it sees as beneficial. Suggested actions are generated
by the learning module through the learned policy. In our
previous work [3], we integrated natural actor-critic through
iCCA framework. We refer to this algorithm as Cooperative
Natural Actor-Critic (CNAC).

Algorithm 1 illustrates this algorithm in more detail. In
order to encourage the policy to initially explore solutions
similar to the planner solution, preferences for all state-
action pairs, P (s, a), on the nominal trajectory calculated
by the planner are initialized to a fixed number ξ ∈ R+. All
other preferences are initialized to zero. As actions are pulled
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Algorithm 1: Cooperative Natural Actor-Critic (CNAC)
Input: πp, ξ
Output: a
a ∼ πAC(s, a)
if not safe(s, a) then

P (s, a)← P (s, a)− ξ
a← πp

Q(s, a)← Q(s, a) + αδt(Q)
P (s, a)← P (s, a) + αQ(s, a)

Algorithm 2: safe
Input: s, a
Output: isSafe
risk ← 0
for i← 1 to M do

t← 1
st ∼ T p(s, a)
while not constrained(st) and not
isTerminal(st) and t < H do

st+1 ∼ T p(st, πp(st))
t← t+ 1

risk ← risk + 1
i (constrained(st)− risk)

isSafe← (risk < ψ)

from the policy for implementation, they are evaluated for
their safety by the risk analysis element. If they are deemed
unsafe (e.g., may result in a UAV running out of fuel), they
are replaced with the action suggested by the planner (πp).
Furthermore, the preference of taking the risky action in
that state is reduced by parameter ξ, therefore dissuading
the learner from suggesting that action again, reducing the
number of “emergency overrides” in the future. Finally, both
the critic and actor parameters are updated.

Previously, we employed a risk analysis component which
had access to the exact world model dynamics. Moreover,
we assumed that the transition model related to the risk
calculation was deterministic (e.g., movement and fuel burn
did not involve uncertainty). In this paper, we introduce a
new risk analysis scheme which uses the planner’s inner
model, which can be stochastic, to mitigate risk. Algorithm
2, explains this new risk analysis process. We assume the
existence of the constrained function: S → {0, 1}, which
indicates if being in a particular state is allowed or not. Risk
is defined as the probability of visiting any of the constrained
states. The core idea is to use Monte-Carlo sampling to
estimate the risk level associated with the given state-action
pair if planner’s policy is applied thereafter. This is done by
simulating M trajectories from the current state s. The first
action is the suggested action a, and the rest of actions come
from the planner policy, πp. The planner’s inner transition
model, T p, is utilized to sample successive states. Each
trajectory is bounded to a fixed horizon H and the risk of
taking action a from state s is estimated by the probability of
a simulated trajectory reaching a risky state within horizon
H . If this risk is below a given threshold, ψ, the action is
deemed to be safe.

The initial policy of actor-critic type learners is biased
quite simply as they parameterize the policy explicitly.

Algorithm 3: Cooperative Learning
Input: N, πp, s, learner
Output: a
a← πp(s)
πl ← learner.π
knownness← min{1, count(s,a)N }
if rand() < knownness then

a′ ∼ πl(s, a)
if safe(s, a′) then

a← a′

else
count(s, a)← count(s, a) + 1

learner.update()

For learning schemes that do not represent the policy as
a separate entity, such as Sarsa, integration within iCCA
framework is not immediately obvious. In this paper, we
present a new approach for integrating learning approaches
without an explicit actor component. Our idea was motivated
by the concept of the Rmax algorithm [17]. We illustrate our
approach through the parent-child analogy, where the planner
takes the role of the parent and the learner takes the role of
the child. In the beginning, the child does not know much
about the world, hence, for the most part s/he takes actions
advised by the parent. While learning from such actions,
after a while, the child feels comfortable about taking a self-
motivated actions as s/he has been through the same situation
many times. Seeking permission from the parent, the child
could take the action if the parent thinks the action is safe.
Otherwise the child should follow the action suggested by
the parent.

Algorithm 3 details the process. On every step, the learner
inspects the suggested action by the planner and estimates the
knownness of the state-action pair by considering the number
of times that state-action pair has been experienced following
the planner’s suggestion. The N parameter controls the shift
speed from following the planner’s policy to the learner’s
policy. Given the knownness of the state-action pair, the
learner probabilistically decides to select an action from its
own policy. If the action is deemed to be safe, it is executed.
Otherwise, the planner’s policy overrides the learner’s choice.
If the planner’s action is selected, the knownness count of the
corresponding state-action pair is incremented. Finally the
learner updates its parameter depending on the choice of the
learning algorithm. What this means, however, is that state-
action pairs explicitly forbidden by the baseline planner will
not be intentionally visited. Hence, if the planner’s model
designed poorly, it can hinder the learning process in parts
of the state space for which the risk is overestimated. Also,
notice that any control RL algorithm, even the actor-critic
family of methods, can be used as the input to Algorithm 3.

V. EXPERIMENTAL RESULTS

This section compares the empirical performance of
cooperative-NAC and cooperative-Sarsa with pure learning
and pure planning methods in the GridWorld example men-
tioned in Section III, and a multi-UAV mission planning sce-
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nario where both dynamics and reward models are stochastic.
The optimal solution for both domains were calculated using
dynamic programming (took approximately two days for the
UAV scenario). As for the planning, the CBBA algorithm
was executed online given the expected deterministic version
of both domains. Pure planning results are averaged over
10, 000 Monte Carlo simulations. For all learning methods,
the best learning rates were calculated by

αt = α0
N0 + 1

N0 + Episode#1.1 .

The best α0 and N0 were selected through experimental
search of the sets of α0 ∈ {0.01, 0.1, 1} and N0 ∈
{100, 1000, 106} for each algorithm and scenario. The best
preference parameter, ξ, for NAC and CNAC were em-
pirically found from the set {1, 10, 100}. τ was set to 1.
Similarly, the knownness parameter, N , for CSarsa was
selected out of {10, 20, 50}. The exploration rate (ε) for Sarsa
and CSarsa was set to 0.1. All learning method results were
averaged over 60 runs. Error bars represent 95% confidence
intervals.

A. GridWorld Domain

Fig. 4 compares the performance of CSarsa, CNAC,
Sarsa, NAC, the baseline planner (Fig 2-middle), and the
expected optimal solution (Fig 2-right) in the pedagogical
GridWorld domain. The X-axis shows the number of steps
the agent executed an action, while the Y-axis highlights
the cumulative rewards of each method after each 1, 000
steps. Notice how cooperative methods outperformed pure
learning approaches. In particular CNAC outperformed the
planner (red) after 6, 000 steps by navigating farther from the
danger zones. NAC, on the other hand, could not outperform
the planner by the end of 10, 000 steps. While Sarsa was
also inferior to CSarsa, it outperformed NAC. We conjecture
that Sarsa learned faster than NAC because Sarsa’s policy is
embedded in the Q−value function, whereas NAC’s policy
requires another level of learning for the policy on the top
of learning the Q−value function.

B. Multi-UAV Planning Scenario

Fig. 5-(a) depicts the mission scenario introduced in our
previous work [3], where a team of two fuel-limited UAVs
cooperate to maximize their total reward by visiting valuable
target nodes in the network and return back to the base
(green circle), targets are shown as blue circles and agents
as triangles. The total amount of fuel for each agent is
highlighted by the number inside each triangle. For those
targets with an associated reward it is given as a positive
number nearby. The constraints on the allowable times when
the target can be visited are given in square brackets and the
probability of receiving the known reward when the target is
visited is given in the white cloud nearest the node.4 Each
reward can be obtained only once and traversing each edge
takes one fuel cell and one time step. UAVs are allowed to

4If two agents visit a node at the same time, the probability of visiting
the node would increase accordingly.
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Fig. 4. In the pedagogical GridWorld domain, the performance of
the optimal solution is given in black. The solution generated by the
deterministic planner is shown in red. In addition, the performance of NAC,
CNAC (left) and Sarsa and CSarsa (right) are shown. It is clear that the
cooperative learning algorithms (CNAC and CSarsa) outperform their non-
cooperative counterparts and eventually outperform the baseline planner
when given a sufficient number of interactions. This result motivates the
application of the cooperative learning algorithms to more complex domains,
such as the Multi-UAV planning scenario.

loiter at any node. The fuel burn for loitering action is also
one unit, except for any UAV at the base, where they are
assumed to be stationary and thus there is no fuel depletion.
The mission horizon was set to 10 time steps. If UAVs are
not at base at the end of the mission horizon, or crash due
to fuel depletion, a penalty of −800 is added for that trial.
In order to test our new risk mitigation approach, we added
uncertainty to the movement of each UAV by adding 5%
chance of edge traverse failure. Notice that our previous risk
analyzer [3,4] could not handle such scenarios, as it assumed
the existence of an oracle knowing catastrophic actions in
each state.

Figs 5(b)-(d) show the results of the same battery of
algorithms used in the GridWorld domain applied to the UAV
mission planning scenario. In this domain, we substituted
the hand-coded policy with the CBBA algorithm. Fig. 5-
(b) represents the solution quality of each method after 105

steps of interactions. Fig. 5-(c) depicts the optimality of each
solution, while Fig. 5-(d) exhibits the risk of executing the
corresponding policy. At the end of training, both NAC and
Sarsa failed to avoid the crashing scenarios, thus yielding
low performance and more than a 90% probability of failure.
Both these methods are below 50% optimal. This observation
coincides with our previous experiments with this domain
where the movement model was noise free [4], highlighting
the importance of biasing the policy of learners in large
domains. On average, CNAC and CSarsa improved the
performance of CBBA by about 15% and 30% respectively
(translated into 3% and 7% optimality improvement). At the
same time they reduced the probability of failure by 6% and
8%.

VI. CONCLUSIONS

This paper extended the capability of the previous work
on merging learning and cooperative planning techniques
through two innovations: (1) the risk mitigation approach
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(d) Failure Probability
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Fig. 5. (a) Mission scenarios of interest: A team of two UAVs plan to maximize their cumulative reward along the mission by cooperating to visit targets.
Target nodes are shown as circles with rewards noted as positive values and the probability of receiving the reward shown in the accompanying cloud. Note
that some target nodes have no value. Constraints on the allowable visit time of a target are shown in square brackets. (b,c) Results of NAC, Sarsa, CBBA,
CNAC, and CSarsa algorithms at the end of the training session in the UAV mission planning scenario. Cooperative learners (CNAC, CSarsa) perform
very well with respect to overall reward and risk levels when compared with the baseline CBBA planner and the non-cooperative learning algorithms.

has been extended to stochastic system dynamics where the
exact world model is not known, and (2) learners without a
separate policy parametrization can be integrated in the iCCA
framework through the cooperative learning algorithm. Using
a pedagogical GridWorld example, we explained how the
proposed algorithms can improve the performance of existing
planners. Simulation results verified our hypothesis in the
GridWorld example. We finally tested our algorithms in a
multi-UAV planning scenario including stochastic transition
and rewards models, where none of the uncertainties were
known a priori. On average, the new cooperative learning
methods boosted the performance of CBBA up to 30% (7%
optimality improvement), while reducing the risk of failure
up to 8%.

For future work, we are interested in increasing the
learning speed of cooperative learners by taking advantage
of function approximators. Function approximation allows
generalization among the values of similar states often boost-
ing the learning speed. However, finding a proper function
approximator for a problem is still an active area of research,
as poor approximations can render the task unsolvable, even
with infinite amount of data. While in this work, we assumed
a static model for the planner, a natural extension is to
adapt the model with the observed data. We foresee that
this extension will lead to a more effective risk mitigation
approach as the transition model used for Monte-Carlo
sampling resembles the actual underlying dynamics with
more observed data.
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