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Abstract— This paper focuses on robust model-based fault
detection and fault-tolerant control of distributed energy gen-
eration systems subject to time-varying external disturbances
and control actuator faults. An observer-based output feedback
controller that enforces robust stability with an arbitrary degree
of disturbance attenuation in the absence of faults is initially
designed for each subsystem. Fault detection is performed
locally by comparing the output of the observer with that of
the system, and using the discrepancy as a residual. An explicit
characterization of the fault-free behavior of the closed-loop
system is obtained in terms of a time-varying bound that cap-
tures the effects of discrete measurement sampling, plant-model
mismatch, and external disturbances. This characterization is
used to derive a time-varying alarm threshold on the residual
for robust fault detection, and a controller reconfiguration law
that determines the feasible fall-back control configurations
that preserve robust stability and minimize performance de-

terioration. Contingency measures in the event that local fault
recovery is not possible are discussed. Finally, the design and
implementation of the integrated monitoring and fault-tolerant
control architecture are demonstrated using a simulated model
of a solid oxide fuel cell plant.

I. INTRODUCTION

Distributed power generation refers to the integrated or

stand-alone use of small, modular electric generation de-

ployed close to the point of consumption. Examples of

distributed power sources include internal combustion en-

gines coupled with generators, micro-turbines, fuel cells,

and renewable systems such as photovoltaic arrays and

wind turbines. Such distributed resources offer advantages

over conventional grid electricity by offering end users a

diversified fuel supply; higher power reliability, quality, and

efficiency; lower emissions and greater flexibility to respond

to changing energy needs [1], [2]. However, a distributed

power network with a large number of small generators re-

quires far more sophisticated monitoring and control systems

than a radial grid focused on a few big plants. This has

motivated significant research work over the past decade on

the development and implementation of control strategies for

various kinds of distributed energy generation systems (e.g.,

see [3], [4], [5], [6], [7], [8], [9], [10], [11] for some results

and references in this area).

Compared with the significant and growing body of re-

search work on control of distributed energy systems, the
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problem of integrating fault detection and handling capabili-

ties in the control system design has received less attention.

The significance of this problem stems from the fact that the

distributed power market is primarily driven by the need for

high-quality power and the fact that the impact of local faults

in the distributed power network can be quite substantial,

especially when the power sources are grid-connected and

the disruptions in power supply caused by local failures has

the potential to cascade through the network and interfere

with grid operations. An effort to address this problem

was initiated in [12] where a model-based framework for

the detection and compensation of faults was developed.

The basic idea was to integrate fault detection and control

system reconfiguration at the local level with higher-level

supervisory control measures in the event that local fault

rectification was not possible.

In addition to the need for fault detection, one of the

key issues that needs to be accounted for in the design of

any model-based fault-tolerant control system is robustness

with respect to time-varying exogenous disturbances which

typically arise during the operation of power generation

systems. Such disturbances, if not properly accounted and

compensated for, can degrade the stability and performance

properties of the individual systems, and can also interfere

with the fault diagnosis and fault recovery processes leading

to false or missed alarms and poor supervisory control. These

considerations provide a strong incentive for the development

of robust monitoring and fault-tolerant control systems that

enable distributed generation systems to provide highly reli-

able services under disturbances and fault scenarios.

To address this problem, we present in this paper a

methodology for the integrated design of robust fault de-

tection and reconfigurable control systems for distributed

energy systems subject to external disturbances and control

actuator faults. The rest of the paper is organized as follows.

Following some preliminaries and an overview of the prob-

lem formulation in Section II, a solid-oxide fuel cell plant

model is presented in Section III as a motivating example. An

observer-based robust output feedback controller design that

enforces closed-loop stability and disturbance attenuation

in the absence of faults is then presented and analyzed in

Section IV. An explicit characterization of the fault-free

behavior of the closed-loop system is obtained in terms of

a time-varying bound that captures the combined effects of

measurement sampling, plant-model mismatch, and external
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disturbances. The results are then used in Section V to derive

the necessary rules for robust fault detection and recovery

through control system reconfiguration. Both stability and

performance considerations are addressed in the design of

the fault-tolerant control system, and supervisory control

measures in the event that local fault recovery is not possible

are discussed. Numerical simulations are presented in each

section to demonstrate the implementation of the various

components of the fault-tolerant control architecture.

II. PRELIMINARIES AND PROBLEM FORMULATION

We consider a collection of distributed energy genera-

tion resources managed by a higher-level supervisor. Each

resource is modeled by a continuous-time system with the

following state–space description:

ẋi = fi(xi) + G
k(t)
i (xi)[u

k(t)
i + f

k(t)
a,i ] + Wi(xi)di(t)

yi = hi(xi, ui), k(t) ∈ Ki := {1, · · · , Ni} (1)

where xi ∈ IRni denotes the vector of state variables associ-

ated with the i–th subsystem (e.g., exhaust temperatures and

rotation speed in turbines and internal combustion engines,

operating temperature and pressure in fuel cells), yi ∈ IRqi is

the vector of measured and/or controlled outputs (e.g., output

power, temperature, voltage and frequency), di ∈ IRri is the

vector of time-varying (but bounded) external disturbance

inputs, uk
i ∈ IRmi denotes the vector of manipulated inputs

associated with the k-th control configuration in the i–th

subsystem (e.g., inlet fuel and air flow rates in fuel cells, shaft

speed in turbines), fk
a,i is a fault in the control actuators of

the k-th control configuration, k(t) is a discrete variable that

specifies which control configuration is active at time t, Ni

is the number of available control configurations for the i–th

subsystem, and fi(·), Gk
i (·), Wi(·) and hi(·), are sufficiently

smooth nonlinear functions. In general, the perturbation term

is considered to be non-vanishing, i.e., the nominal and

perturbed systems do not share the same equilibrium point.

Referring to the system of Eq.1, the control objective is

to robustly stabilize each subsystem around the desired set-

point in the presence of control actuator faults and external

disturbances using sampled measurements of the output

at discrete times. To ensure fault-tolerance, a number of

different control configurations are assumed to be available.

Only one of these configurations is used for control at any

given time while the rest are kept dormant for possible use as

backup in the event of faults. The problems under consider-

ation include how to regulate the states of each subsystem in

the absence of faults and suppress the influences of external

disturbances using discretely-sampled measurements, how to

detect faults in the operating control configuration in the

presence of disturbances in a timely fashion, and how to

reconfigure the local control system to maintain the desired

stability and performance properties.

III. MOTIVATING EXAMPLE: TEMPERATURE CONTROL IN

A SOLID OXIDE FUEL CELL

To illustrate the design and implementation of the robust

fault-tolerant control system to be presented in this work, we

consider a solid oxide fuel cell (SOFC) plant as an example

(see the plant model in [10]). Fuel cells are important

distributed resources due to their high efficiency, low levels

of environmental pollution, and flexible modular designs

that match versatile demands of customers. The control

objective is to regulate the temperature of the fuel cell stack

around a desired set-point in the presence of time-varying

disturbances in the load current. The set-point is assumed

to be determined by the supervisor based on its knowledge

of the load changes in the distributed power network that

it manages. Measurements of the SOFC stack temperature

are collected at discrete sampling times and sent to the local

controller where the control action is calculated and sent back

to the actuator. Three control configurations are considered:

one uses the inlet fuel flow rate as the manipulated input

(configuration 1), while the other two employ, respectively,

the inlet air flow rate (configuration 2) and the temperature

of the feed (configuration 3) as the manipulated variable.

To simplify the controller design and implementation, we

consider the problem on the basis of the linearization of the

fuel cell plant model around the desired set-point:

ẋ = Ax + Bk[uk + fk
a ] + Ed, y = Cx, k = 1, 2, 3 (2)

where x, uk, d and y are the state, manipulated

input, disturbance input and measured output

vectors for the plant, respectively, defined by

x = [
xH2

−xs
H2

xs
H2

xO2
−xs

O2

xs
O2

xH2O−xs
H2O

xs
H2O

Ts−T s
s

T s
s

]T ,

u1 =
qin

H2
−q

in,s

H2

q
in,s

H2

, u2 =
qin

O2
−q

in,s

O2

q
in,s

O2

, u3 =
Tin−Tin,s

Tin,s
,

d = I−Is

Is , y =
Ts−T s

s

T s
s

where, i : H2, O2, H2O, xi and

qin
i are respectively the mole fraction and inlet molar flow

rate of component i, Ts is the stack temperature, Tin is the

temperature of the feed, the superscript s denotes the steady

state values of the corresponding states and inputs, and A,

Bk, E, and C are constant matrices given by:

A =




−0.0350 0 0 0
0 −0.3139 0 0
0 0 −0.0117 0

−0.0031 −0.0077 −0.0008 −0.0110


 ,

B1 = [0.0437 0 0 0.0027]
T

, B2 =
[0 0.3304 0 0.0063]

T
, B3 = [0 0 0 0.0130]

T
,

E = [−0.0087 − 0.0164 0.0117 0.0038]
T

and

C = [0 0 0 1].
In the next two sections, we describe how the control strat-

egy is tailored to take the disturbances and faults explicitly

into account. We begin in Section IV with the design and

analysis of the robust fault-free control system. The results

serve as the basis for tackling the robust fault detection and

control system reconfiguration problems in Section V.

IV. ROBUST FAULT-FREE CONTROL: SYNTHESIS,

ANALYSIS AND IMPLEMENTATION

The objective of this section is to design for each actuator

configuration an output feedback controller that enforces

(in the absence of faults) robust closed-loop stability using

sampled measurements, and to characterize the minimum

allowable sampling rate necessary to guarantee practical
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closed-loop stability with an arbitrary degree of attenuation

of the effect of disturbances on the closed-loop state.

A. Robust output feedback controller synthesis

We consider an output feedback controller of the form:

uk = F kη, η̇ = Âη + B̂kuk + L(y − Cη) (3)

where F k is the feedback gain, η is the state of an observer

that generates estimates of x using y, Â and B̂k are constant

matrices that represent models of A and Bk, respectively,

and L is the observer gain. Note that in general Â 6= A and

B̂k 6= Bk to allow for possible plant-model mismatch. The

feedback and observer gains are chosen to account for the

effect of the disturbances and to enforce practical closed-loop

stability in the absence of discrete sampling. Specifically,

given any positive real numbers, D and r, the controller and

observer gains are chosen such that if ‖d(t)‖ ≤ D for all

t ≥ 0, the closed-loop state norm is ultimately bounded by

r, i.e., lim sup
t→∞

‖x(t)‖ ≤ r, where r can be made arbitrarily

small by appropriate selection of F k and L. This argument

can be justified using standard Lyapunov techniques and is

omitted for brevity.

To address the problem when the output measurements

are not available continuously, we include within the local

control system a dynamic model of the plant of Eq.2 to

provide the observer with an estimate of the measured output

when measurements are not available from the sensors. The

state of the model is then updated using the actual output

measurements whenever they are provided by the sensors

at sampling times. Specifically, we consider an inter-sample

model predictor of the form:

ẇ1 = Â11w1 + Â12w2 + B̂k
1uk

ẇ2 = Â21w1 + Â22w2 + B̂k
2uk

(4)

where w1 = ŷ is an estimate of the plant output (e.g., the

SOFC stack temperature), and w2 is the vector of the remain-

ing model states (which provide estimates of the unmeasured

plant states), Â =

[
Â11 Â12

Â21 Â22

]
, B̂k = [B̂kT

1 B̂kT

2 ]T .

With the aid of this inter-sample model predictor, the output

feedback controller can be implemented as follows:

uk(t) = F kη(t), t ∈ (tj , tj+1)

η̇(t) = Âη(t) + B̂kuk(t) + L(ŷ(t) − Cη(t))

ẇ1(t) = Â11w1(t) + Â12w2(t) + B̂k
1uk(t), ŷ(t) = w1(t)

ẇ2(t) = Â21w1(t) + Â22w2(t) + B̂k
2uk(t)

ŷ(tj) = y(tj), j = 0, 1, 2, · · · (5)

where tj is the j-th sampling instance and ∆ := tj+1− tj is

the sampling period. Note that only the output of the model is

re-set using the actual output at the sampling times. Note also

that a choice of Â11 = O, Â12 = O, B̂k
1 = O, corresponds

to the special case of sample-and-hold where in between

consecutive sampling times the last available measurement

is held until the next one is available.

B. Robust closed-loop stability analysis

To simplify the analysis, we focus on the typical case

where the sampling period is constant (extensions to the case

of time-varying sampling periods are possible and the subject

of other research work). To characterize the maximum allow-

able sampling period (equivalently, the minimum sampling

rate) between the sensors and the controller, we define the

model estimation error as e(t) = w1(t) − y(t) = w1(t) −
Cx(t), where e ∈ IRq represents the difference between the

output of the model and the output of the plant. Defining

the augmented state vector χ =
[
xT ηT wT

2 eT
]T

, it can

be shown that the augmented system can be formulated as a

combined discrete-continuous system of the form:

χ̇(t) = Λk
oχ(t) + Hd(t), t ∈ (tj , tj+1)

e(tj) = 0, j = 0, 1, 2, · · · ; tj+1 − tj = ∆
(6)

where

Λk
o=




A BkF k O O

LC Â + B̂kF k − LC O L

Â21C B̂k
2F k Â22 Â21

Â11C − CA B̂k
1F k − CBkF k Â12 Â11


 (7)

is a constant matrix and H = [ET O O − (CE)T ]T . Note

that while the plant state, the observer state, and the estimate

of the unmeasured states all evolve continuously over time,

the error is re-set to zero at each transmission instance since

the output of the model is updated every ∆ seconds using

the true output measurement.

The following proposition provides an explicit character-

ization of the sampled-data closed-loop system behavior in

the absence of faults. The proof can be obtained by solving

Eqs.6-7 and using induction, and will be omitted for brevity.

Proposition 1: The system described by Eqs.6-7 with ini-

tial condition χ(t0) =
[
xT (t0) ηT (t0) wT

2 (t0) 0
]T

= χ0,

has the following response:

χ(t) = eΛk
o(t−tj)(Mk)jχ0 + eΛk

o(t−tj)

j−1∑

i=0

(Mk)iIoΓj−i

+

∫ t

tj

eΛk
o(t−τ)Hd(τ)dτ

(8)
for t ∈ [tj , tj+1), with tj+1 − tj = ∆, where Mk =

Ioe
Λk

o∆, Γj =
∫∆

0
eΛk

oτHd(tj − τ)dτ, j = 1, 2, · · ·,

Io =




In×n O O O
O In×n O O
O O I(n−q)×(n−q) O
O O O O


, I is the identity

matrix.

Having characterized the fault-free closed-loop response

in terms of the sampling period, we are in a position to

state the main result of this section. The following theorem

provides a necessary and sufficient condition for practical

stability and ultimate boundedness of the closed-loop plant

under the sampled-data control structure.

Theorem 1: Consider the closed-loop system of Eqs.2-3

under continuous measurement sampling, where F k and L
are chosen to enforce an ultimate bound rk > 0 on the

closed-loop state for any disturbance satisfying ‖ d(t) ‖ ≤ D
for all t ≥ 0, for any given D > 0. Next, consider

the system of Eqs.6-7 with the initial condition χ(t0) =[
xT (t0) ηT (t0) wT

2 (t0) 0
]T

:= χ0. If the eigenvalues of

the matrix Mk = Ioe
Λk

o∆ lie strictly inside the unit circle,

then given any positive real number δk > rk, there exists
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∆∗ > 0, such that if 0 < ∆ ≤ ∆∗, the state of the sampled-

data closed-loop system satisfies lim sup
t→∞

‖χ(t) ‖ ≤ δk.

Proof: Evaluating the norm of the solution described in
Proposition 1, we have from Eq.8 that for t ∈ [tj , tj+1), j =
0, 1, 2, · · · :

‖χ(t) ‖ ≤ ‖ e
Λk

o (t−tj)(Mk)j
χ0 ‖ + ‖

∫ t

tj

e
Λk

o(t−τ)
Hd(τ )dτ ‖

+ ‖ e
Λk

o (t−tj)

j−1∑

i=0

(Mk)i
IoΓj−i ‖

(9)

Following [13], it can be shown that if the eigenvalues of

Mk lie inside the unit circle (i.e., ‖ (Mk)j ‖ ≤ α̂ke−β̂kj , for

some α̂k, β̂k > 0), then the first term on the right hand side

of Eq.9 satisfies the following bound:

‖ eΛk
o(t−tj)(Mk)jχ0 ‖ ≤ αke−βk(t−t0) · ‖χ0 ‖ (10)

where αk = α̃kα̂keβ̂k = eσk∆α̂keβ̂k , σk is the largest

singular value of Λk
o , and βk = β̂k/∆ > 0. Analyzing the

third term on the right hand side of Eq.9, we obtain:

‖ eΛk
o(t−tj)

j−1∑

i=0

(Mk)iIoΓj−i ‖ ≤ α̃k

j−1∑

i=0

α̂ke−β̂ki‖Γj−i ‖ (11)

where we have used the fact that ‖ Io ‖ = 1, ‖ eΛk
o(t−tj) ‖ ≤

α̃k, ‖ (Mk)i ‖ ≤ α̂ke−β̂ki, and ‖Γj−i ‖ is given by:

‖Γj−i ‖ ≤

∫ ∆

0

‖ eΛk
oτ ‖‖H ‖‖ d(tj−i − τ) ‖dτ

=
eσk∆ − 1

σk

‖H ‖D =
α̃k − 1

σk

‖H ‖D := Γ
(12)

Substituting the last estimate into Eq.11 yields:

‖ eΛk
o(t−tj)

j−1∑

i=0

(Mk)iIoΓj−i ‖ ≤ α̃kΓ

j−1∑

i=0

α̂ke−β̂ki

= α̃kα̂kΓ

(
1 − (e−β̂k)j

1 − e−β̂k

)

≤
α̃kα̂kΓ

1 − e−β̂k (13)

where we have used the fact that for β̂k > 0, 0 < e−β̂k < 1

and lim
j→∞

(e−β̂k)j = 0. With Eq.12 in mind, the second term

on the right hand side of Eq.9 can be similarly bounded:

‖

∫ t

tj

eΛk
o(t−τ)Hd(τ)dτ ‖ ≤

α̃k − 1

σk

‖H ‖D = Γ (14)

Combining Eqs.10, 13 and 14, we conclude that for t ∈
[tj , tj+1), and as j → ∞:

‖χ(t) ‖ ≤ αke−βkt · ‖χ0 ‖ +
α̂kα̃kΓ

1 − e−β̂k

+ Γ (15)

and consequently lim
t→∞

‖χ(t) ‖ ≤

(
α̂kα̃k

1 − e−β̂k

+ 1

)
Γ :=

δ′k(∆), which implies that the sampled-data closed-loop

states are ultimately bounded if the eigenvalues of Mk are

within the unit circle. Let rk be the ultimate bound under

continuous communication (i.e., when ∆ = 0), then from

the continuity of δ′ with respect to ∆, it follows that given

any δk > rk there exists ∆∗ such that δ′k(∆) ≤ δk for

∆ ∈ (0, ∆∗], and therefore limt→∞ ‖χ(t) ‖ ≤ δk.

C. Application to the SOFC plant

To robustly regulate the stack temperature of the SOFC

plant described in Section III in the absence of faults, an

output feedback controller of the form of Eq.3 is designed

where the controller gains for the three control configura-

tions are chosen as F 1 =
[
−0.9853 0 0 10.9306

]
,

F 2 =
[

0 −0.0314 0 19.7681
]
, and F 3 =[

0 0 0 −10.7559
]
, and the observer gain is cho-

sen such that the poles of Â − LC are placed at

(−0.1, −0.06, −1, −0.05) to enhance the speed at which

the fuel cell meets the desired temperature set-point and

to account for the time-varying external disturbances. To

investigate the effect of model uncertainty on the stability

of the sampled-data SOFC plant, we consider as an example

parametric uncertainty in CpH2
and define δ1 = (Cpm

H2
−

CpH2
)/CpH2

, where Cpm
H2

is a nominal value used in the

model, as a measure of model accuracy (any other set of

uncertain parameters can also be considered and analyzed in

a similar fashion).
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Fig. 1. Plots (a)-(f): Dependence of λmax(Mk) (left) and the ultimate
bound (right) on the plant-model mismatch and the sampling period when
the manipulated input is chosen to be: (a)-(b) the inlet fuel flow rate, (c)-
(d) the inlet air flow rate, and (e)-(f) the inlet temperature. Plots (g)-(h):
Dependence of λmax(Mk) (left) and the ultimate bound (right) on the
sampling period for the three different control configurations when an inter-
sample model predictor with δ1 = −9 is used.

Figs.1(a)-1(f) are contour plots that depict the dependence

of the maximum eigenvalue magnitude of the matrix Mk

(left) and the ultimate bound (right) – i.e., the disturbance

attenuation level – on both δ1 and the sampling period for
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each of the three candidate control configurations in the fuel

cell system. In plots (a), (c) and (e), the area enclosed by

the unit contour lines in each plot (unshaded area) represents

the stability region of the linearized plant within which the

sampled-data closed-loop plant can be robustly stabilized

under a given control configuration, while in plots (b), (d)

and (f) the value of each contour line represents an upper

bound on the size of the terminal set that the closed-loop

plant state converges to when the values for δ1 and ∆
are chosen within the zone enclosed by that contour line.

As expected, in general the range of tolerable parametric

uncertainty shrinks as the sampling period is increased. It

can also be seen that the control configuration with the inlet

air flow rate as the manipulated input possesses the largest

stability region of the three configurations. Additionally, for

a given terminal set, the range of feasible sampling periods

shrinks as the plant-model mismatch increases. Also, for

a given plant-model mismatch, the size of the terminal

set in general grows as the sampling period is increased.

These trends are also depicted in Figs.1(g)-1(h), which show,

respectively, λmax(Mk) and the ultimate bound versus the

sampling period for the three control configurations when a

fixed inter-sample model predictor with δ1 = −9 is used. It is

clear from Fig.1(g) that the different control configurations

yield different maximum allowable sampling periods, with

configuration 2 (dashed profile) requiring the lease frequent

sampling, and configuration 3 requiring the fastest sampling

(dash-dotted profile) with the maximum allowable sampling

period ∆ = 3.7 s. Also, Fig.1(h) predicts that for ∆ = 3.8
s, the plant state will converge to a smaller terminal set with

configuration 2 than with configuration 1. These predictions

are further confirmed by the closed–loop temperature and

manipulated input profiles in Fig.2 which show that the

plant with the inlet temperature as the manipulated input

(configuration 3) is unstable when the control system is

operated with a sampling period of ∆ = 3.8 s (dotted

profiles), which is greater than its maximum allowable sam-

pling period, while the plant is stable under the other two

configurations. However, the control configuration with the

inlet air flow rate as the manipulated input (configuration

2) exhibits a better disturbance handling capability than the

configuration with the inlet fuel flow rate as the manipulated

input (configuration 1), since it achieves a smaller ultimate

bound on the closed-loop plant state (solid). These results

are consistent with Figs.1(g)-1(h). In obtaining these plots,

a time-varying pulse disturbance (with an amplitude of 10%
of the nominal value) was introduced into the load current

after 1000 s (see Fig.2(d)).

V. ROBUST FAULT DETECTION AND CONTROL SYSTEM

RECONFIGURATION

In this section, we use the fault-free closed-loop behavior

characterized in the previous section as the basis for deriving

appropriate rules for robust fault detection and reconfigura-

tion. The idea is to use the state observer in Eq.5 as a fault

detection filter and to compare its output with the actual

output of the system at the sampling times to determine the

fault or health status of the control actuators.
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Fig. 2. Plot (a): Fuel cell stack temperature under the sampled-data control
system with model uncertainty δ1 = −9 and a sampling period of ∆ = 3.8
s, with the inlet air flow rate (solid), the inlet fuel flow rate (dashed), and
the inlet temperature (dotted) as the manipulated input. Plots (b)-(c): the
manipulated input profiles. Plot (d): a disturbance in the load current.

A. Robust fault detection

Consider the closed-loop system of Eq.2 and Eq.5, for a

fixed fault-free control configuration, k ∈ K, with fk
a ≡ 0,

and consider the augmented system of Eqs.6-7 where the

sampling period ∆ is chosen such that λmax(Mk) < 1 and

∆ ≤ ∆∗ (from Theorem 1). Then the residual defined by

rd = ‖y−Cη‖ can be shown to satisfy a time-varying bound

of the following form for all t ≥ t0:

rd(t) ≤ ᾱk‖χ0 ‖e
−β̄k(t−t0) + δ̄k(∆, D, F k, L) (16)

where ᾱk = 2‖C‖αk, β̄k = βk and δ̄k = 2‖C‖ δ′k. This

bound can be obtained from the fact that ‖x(t)‖ ≤ ‖χ(t)‖,

‖η(t)‖ ≤ ‖χ(t)‖, and the fact that χ(t) satisfies Eq.15 in

the absence of faults. Based on this result, and for a given

sampling rate (which is robustly stabilizing in the absence

of faults), the bound given in Eq.16 can be used as a time-

varying alarm threshold, and a fault can be declared at any

sampling time that the residual breaches this threshold, i.e.,

rd(Td) > ᾱk‖χ0 ‖e
−β̄k(Td−t0) + δ̄k =⇒ fk

a (Td) 6= 0

for some Td > 0. Note that this threshold accounts for

the disturbances (recall that δ′k depends on the size of the

disturbance), and therefore any breach of this threshold

cannot be attributed to the disturbances. Note also that even

though the threshold is enlarged (relative to the disturbance-

free case where rd(t) is bounded only by the exponentially-

decaying term), the threshold can be tightened as desired

by proper selection of the controller and observer design

parameters (as well as the sampling period) to ensure a

sufficiently small δ′k and minimize detection delays. The

underlying idea here is that by designing the sampled-data

control system to achieve an arbitrary degree of disturbance

attenuation in the absence of faults, the residual threshold

can be made practically less sensitive to the disturbances, and

responsive only to the faults. Furthermore, possible detection

delays due to sampling can be reduced by properly tuning

the controller and observer design parameters to ensure that

the constants ᾱk and β̄k are sufficiently tight; however,
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the smallest possible delay is ultimately constrained by the

feasible sampling rate.

B. Control system reconfiguration logic

Once a fault is detected in the operating control configura-

tion, the local control system needs to determine which fall-

back configuration to select and activate in order to preserve

closed-loop stability and ensure fault-tolerance. Specifically,

consider the closed-loop system of Eq.2 and Eq.5, with

k(t0) = i for some i ∈ K and a sampling period ∆ such

that λmax(Mk) < 1 and ∆ ≤ ∆∗. Let Td be the earliest time

that a fault is detected. Then the following switching rule:

k(t)=






i, 0 ≤ t < Td

ν 6= i, t ≥ Td, λmax(Mν) < 1,
δν(∆) ≤ δl(∆), ∀ l ∈ K \ {i}




 (17)

guarantees that the control system switches to a control

configuration that: (1) is robustly stabilizing for the given

sampling period, and (2) enforces the largest degree of

disturbance attenuation among all the feasible backup can-

didates. Note that a similar logic can be applied to the

case when multiple consecutive faults take place. Following

any reconfiguration event, however, a new residual alarm

threshold needs to be observed and implemented to allow the

detection of future possible faults in the new configuration.

Furthermore, in cases where none of the backup control con-

figurations satisfies the stability and performance conditions

in Eq.17, the problem can be addressed either by adjusting

the controller/observer design parameters (i.e., switching the

controller and observer gains to values for which at least

one backup configuration is stabilizing) or by switching to

alternative sensors that have the required sampling period.

C. Application to the SOFC plant
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Fig. 3. Evolution of the fuel cell stack temperature and fault detection filter
residual under two consecutive faults, at Tf1 = 600 s and Tf2 = 1400 s,
and subsequent switching from configuration 3 to 1 to 3 (plots (a) and (c)),
and switching from configuration 3 to 2 to 3 (plots (b) and (d)).

To illustrate the implementation of the switching logic

in situations where more than one backup configuration is

stabilizing, the plant is initialized using configuration 3 with

∆ = 3 s (this forces the state to converge to the smallest

terminal set as predicted by Fig.1(h)), in the presence of

a pulse disturbance in I with an amplitude of 10% of the

nominal value. An inter-sample model predictor with δ1 =
−9 is used to estimate the evolution of the output between

sampling instances. A fault is introduced at Tf1 = 600 s and

is detected shortly thereafter at Td1 = 603 s. In deciding

which backup control configuration should be activated at

this time, it can be observed from Fig.1(g) that, for the given

sampling period, both backup configurations can robustly

stabilize the closed-loop system since λmax(M1) < 1 and

λmax(M2) < 1. However, according to Fig.1(h), control

configuration 2 exhibits a smaller ultimate bound (and thus a

greater level of disturbance attenuation) at the operating sam-

pling rate than does control configuration 1. This prediction

is further confirmed by the stack temperature profiles shown

in Figs.3(a)-(b) in which a time-varying pulse disturbance is

introduced in the load current. It can been that the closed-

loop system that is reconfigured to configuration 2 (plot

(b)) exhibits better disturbance attenuation capability than

the one switched to configuration 1 (plot (a)). Following the

activation of the new control configuration, a new fault is

introduced in the backup configuration at Tf2 = 1400 s

and is detected immediately, and the control system then

switches back to configuration 3 (which is assumed to have

been repaired by this time). Note from the residual profiles

in Figs.3(c)-(d) that a new alarm threshold is used following

reconfiguration (see dashed lines).
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