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Abstract— In this paper it is presented an analysis on
observability properties of systems of cooperative flying robots
equipped with inertial (IMU) and bearing sensors. Relating to
the cooperative localization and mapping problem, the main
issue of the present work is to enstablish which quanties are
observable and thus can be estimated by the robots.

I. INTRODUCTION

In recent years, flying robotics has received significant
attention from the automation and robotics community. The
ability to fly allows easily avoiding obstacles and quickly
having an excellent birds eye view. These navigation facil-
ities make flying robots the ideal platform to solve many
tasks like exploration, mapping, reconnaissance for search
and rescue, environment monitoring, security surveillance,
inspection etc. In the framework of flying robotics, micro
aerial vehicles (MAV) have a further advantage. Due to the
small size they can also be used in narrow out- and indoor
environment and they represent only a limited risk for the
environment and people living in it. A fundamental prereq-
uisite for many applications is the capability to perform lo-
calization. However, systems navigating on GPS information
only are not sufficient any more. Fully autonomous operation
in cities or other dense environments requires the MAV to
fly at low altitude or indoors where GPS signals are often
shadowed and to actively explore unknown environments
while avoiding collisions and creating maps. A main problem
to investigate is to understand if it is possible to perform
localization by only fusing monocular vision and inertial
measurements. Localization is an estimation problem. The
first issue to be addressed in any estimation problem is the
observability property of the system. In control theory, a
system is defined as observable when it is possible to recon-
struct its initial state by knowing, in a given time interval, the
control inputs and the outputs [7]. The observability property
has a very practical meaning. It is easy to realize from the
definition that when a system is observable it contains all the
necessary information to perform the estimation with an error
which is bounded [7]. Regarding the localization problem,
this means that the observability implies a bound error in
the localization. The value of this bound obviously depends
on the accuracy of the sensors. Regarding the localization
problem, the observability analysis was carried out from
several authors. Roumeliotis [17] presented it for a multi
robots system equipped with encoder and sensors able to pro-
vide an observation consisting of the relative configuration
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between each pair of robots. The analysis was performed
through the linear approximation. The main result of this
observability analysis was that the system is not observable
and it becomes observable when at least one of the robots
in the team has global positioning capabilities. Bonnifait
and Garcia considered the case of one robot equipped with
encoders and sensors able to provide the bearing angles of
known landmarks in the environment [3]. The observability
analysis was carried out by linearizing the system (as in
the previous case) and by applying the observability rank
condition introduced by Hermann and Krener in [6] for
nonlinear systems. As in many nonlinear systems, they
found that in some cases while the associated linearized
system is not observable, the system is observable. Bicchi
and collaborators extended this result to the Simultaneous
Localization and Mapping (SLAM) problem ([2], [10]). They
considered one robot equipped with the same bearing sensors
of the previous case. They considered in the environment
landmarks with a priori known position and landmarks whose
position has to be estimated. They found that two landmarks
are necessary and sufficient to make the system observable.
Furthermore, they applied optimal control methods in order
to minimize the estimation error. In particular, in [10] they
maximized the Cramer-Rao lower bound as defined in [9].
In [16] a distributed GPS-based localization algorithm for
3D cooperative multi robot systems has been presented
by the authors; in particular it turns out that the entire
system is observable for such measurements. On the other
hand, the unavailability of GPS-data could lead to a lack of
observability.
In this paper we present an observability analysis for 3D
cooperative localization and mapping. We consider a system
of cooperative flying robots equipped with bearing sensors
(cameras) and inertial sensors (accelerometers, gyroscopes).
It will be taked into account three main issues: relative
localization between two robots, localization with respect to
a common global frame, mapping. We have found that, while
the considered systems are completely observable for relative
localization and mapping, in the case of global localization
an invariance with respect to rotations around the vertical
axis arises. In particular it is not possible to estimate the
yaw angle of all the robots of the team.

II. PROBLEM STATEMENT

We provide here a mathematical description of our system.
We introduce a global frame, whose z-axis is the vertical one.
Let us consider a robot equipped with IMU proprioceptive
sensors (an accelerometer and a gyroscope) as well as some
suitable exteroceptive sensors (GPS, range sensors). In this
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paper we assume that the IMU data are unbiased. From a
practical point of view, unbiased data can be obtained by
continuously calibrating the IMU sensors (see for instance
[8]). The configuration of the robot is described by a vector
(r, v, θ) ∈ R9 where r = (rx, ry, rz) ∈ R3 is the position,
v = (vx, vy, vz) ∈ R3 is the speed and θ = (θr, θp, θy) ∈ R3

assignes the robot orientation: θr is the roll angle, θp is the
pitch angle and θy is the yaw angle. We will adopt lower case
letters to express a quantity in the global frame, while capital
letters for the same quantity exptressed in the local frame (i.e.
the one attached to the robot).The system description can
be simplified adopting a quaternions framework. We recall
that the quaternions space H is the noncommutative set of
elements

H = {qt + qxi+ qyj + qzk : qt, qx, qy, qz ∈ R,
i2 = j2 = k2 = ijk = −1

}
.

For an arbitrary quaternion q = qt + qxi + qyj + qzk, we
define the conjugate element q∗ = qt − qxi− qyj − qzk and
the norm ||q|| =

√
qq∗ =

√
q∗q =

√
q2
t + q2

x + q2
y + q2

z .

Denoting by A,Ω the accelerometer and the gyroscope
values respectively and by ag the gravity acceleration (i.e.
ag = −(0, 0, g) with g ' 9.81m/s2), the continuous-time
dynamics of the robot is given by the following system of
ordinary differential equations

ṙ = v

v̇ = q ·A · q∗ + ag

q̇ =
1

2
q · Ω

(1)

where r, v,Ω, A are purely imaginary quaternions, while q is
a unitary quaternion. The following relations for roll, pitch
and yaw angles θr, θp, θy hold

θr =
qtqx + qyqz

1− 2(q2
x + q2

y)

θp = qtqy − qxqz

θy =
qtqz + qyqx

1− 2(q2
y + q2

z)
.

Let us consider a single feature environment and suppose
to have a robot equipped with a camera. As shown
in [14], the dimension of the maximal observable
subsystem is 9: the camera measurements together with
the IMU sensors do not provide enough information
in order to estimate the yaw angle θy. Following
[13], we can reformulate the above proposition saying
that S = (−2ry, 2rx, 0,−2vy, 2vx, 0,−qz,−qy, qx, qt),
corresponding to a rotation around the z-axis, constitutes
the only continuous symmetry of the system with bearing
observations.
When systems composed by more than one robot are
considered, the observability properties should change.
Two main issues to address are the observability of the

relative system (placing a local frame on one of the
robots) as well as the observability in the presence of
features (mapping process). To this purpose, in the present
paper we will discuss the answers to the following questions:

1) Let consider a system composed by two robots
performing relative observation via cameras. Does the
system contains enough information to estimate the
relative pose of the robots?

2) Let us consider a system composed by several
robots equipped with cameras and a fixed landmark
associated to a global reference frame. Which are the
observable quantities of the problem?

3) When, during the mapping process, the state vector
is increased by the addition of some new feature
coordinates, is the augmented state observable?

Sections III, IV and V are, respectively, dedicated to the
answers of such questions. For linear control systems there
exists a closed-formula to express the observable subspace
and the observability properties can be checked by simple
algebraic conditions; nonlinear observability is a harder task
to deal with. Following the results by Hermann and Krener
and by Isidori ([6], [7]), we can ensure the system observ-
ability providing that, among the set of all Lie derivatives
of the observation functions, it is satisfied the so called
observability rank condition: the dimension of the maximal
observable subspace is equal to the rank of the matrix having
as rows the differantials of Lie derivatives of all robots
observations.

Fig. 1. Two robots scenario: cooperative localization and mapping.

III. LOCAL FRAME OBSERVABILITY
Let us suppose that N = 2 and assume that the robots

perform only relative observation, i.e. no feature measure-
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ments are involved in the estimation process. The aim of
this section is to investigate the observability of the system
when the relative dynamics is considered. Let us assume the
first robot configuration as the reference frame and express
the pose of the second robot using relative coordinates. We
obtain a system very similar to (1); the key difference is
the dependence on several control functions. Adopting the
notations r = r2−r1, v = v2−v1, q = q2 ·q∗1 , the following
equations system describes the relative dynamics:

ṙ = v

v̇ = qA2q
∗ −A1

q̇ =
1

2
(qΩ2 + Ω∗1q

∗)

(2)

The camera on the second robot provides the observation

h = [h1, h2]T =

[
(q∗rq)x
(q∗rq)z

,
(q∗rq)y
(q∗rq)z

]T
, (3)

Remark 3.1: It is worth to note that q = q2 · q∗1 is still a
unitary quaternion:

q · q∗ = q2 · q∗1 · (q2 · q∗1)∗ = q2 · q∗1 · q1 · q∗2 = 1.

As a consequence, the quaternion norm

h0 = q · q∗ (4)

can be treated as a further observation In the following we
will use the notations

Ai = [0, Ax
i , A

y
i , A

z
i ] Ωi = [0,Ωx

i ,Ω
y
i ,Ω

z
i ] i = 1, 2.

We can define the vector fields F? : R10 → R10

F0 = (vx, vy, vz, 0, 0, 0, 0, 0, 0, 0)

FAx
1

= (0, 0, 0,−1, 0, 0, 0, 0, 0, 0)

FAy
1

= (0, 0, 0, 0,−1, 0, 0, 0, 0, 0)

FAz
1

= (0, 0, 0, 0, 0,−1, 0, 0, 0, 0)

FAx
2

= (0, 0, 0, q2
t + q2

x − q2
y − q2

z ,
2(qxqy + qtqz), 2(qxqz − qyqt), 0, 0, 0, 0)

FAy
2

= (0, 0, 0, 2(qxqy − qtqz),

q2
t + q2

y − q2
x − q2

z , 2(qxqt + qyqz), 0, 0, 0, 0)

FAz
2

= (0, 0, 0, 2(qxqz + qtqy), 2(qyqz − qtqx),
q2
t + q2

z − q2
y − q2

x, 0, 0, 0, 0)

FΩx
1

=
1

2
(0, 0, 0, 0, 0, 0,−qx, qt, qz,−qy)

FΩy
1

=
1

2
(0, 0, 0, 0, 0, 0,−qy,−qz, qt, qx)

FΩz
1

=
1

2
(0, 0, 0, 0, 0, 0,−qz, qy,−qx, qt)

FΩx
2

=
1

2
(0, 0, 0, 0, 0, 0,−qx,−qt,−qz, qy)

FΩy
2

=
1

2
(0, 0, 0, 0, 0, 0,−qy, qz,−qt,−qx)

FΩz
2

=
1

2
(0, 0, 0, 0, 0, 0,−qz,−qy, qx,−qt)

The system dynamics can be rewritten as

(ṙ, v̇, q̇) = F0 +
∑

i = 1, 2
? ∈ {x, y, z}

(
FA?

i
A?

i + FΩ?
i
Ω?

i

)
. (5)

The above equation is dependant on 10 independent vari-
ables. The following theorem states that system is fully
observable in the local frame.

Theorem 3.1: It is given the equation (5) together with
the observation function h = [h1, h2]T assigned by (3). The
system verifies the observability rank condition, i.e. all the
system variables are observable quantities.

Proof: Let us consider the Lie derivatives of the
functions h1, h2 along the vector fields F?. We need to prove
that, within the family of all Lie derivatives, a subset can
be choosen such that the whole state space is spanned by
the corresponding differentials. It is easy to verify that the
requested property is satisfied, for example, by

L0h1, L1
F0
h1, L1

Ωx
1
h1, L1

Ωy
1
h1, L1

Ωx
2
h1, L1

Ωz
2
h1,

L2
Ax

1F0
h1, L2

Ax
2F0

h1, L2
Ωx

2F0
h1, L1

F0
h2.

The explicit computation, as it is long but trivial, is omitted.

Compared to the problem studied in [14], the robot to which
is attached the local frame, is not treated as a simple feature:
due to the presence of IMU sensors of both robots, it is
possible to estimate the (relative) yaw angle too. This means
that, having two or more robots equipped with cameras, the
cooperative relative localization problem can be completely
solved.

IV. GLOBAL FRAME OBSERVABILITY

Consider now the case of two robots whose coordinates
are expressed in a common global frame identified with the
position of a fixed landmark. For sake of notation clarity
let us denote with (r, v, q) the pose of the first robot and
with (p, w, b) the pose of the second one. The camera on
the first robot observes the feature at the origin while the
second robot performs a relative observation. The dynamics
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dynamics is described by the following systems.

First robot: 

ṙ = v

v̇ = q ·A1 · q∗ + ag

q̇ =
1

2
q · Ω1

(6)

h = [h1, h2]T =

[
(q∗rq)x
(q∗rq)z

,
(q∗rq)y
(q∗rq)z

]T
, (7)

h0 = q · q∗. (8)

Second robot: 

ṗ = w

ẇ = b ·A2 · b∗ + ag

ḃ =
1

2
b · Ω2

(9)

k = [k1, k2]T =

[
(b∗(p− r)b)x
(b∗(p− r)b)z

,
(b∗(p− r)b)y
(b∗(p− r)b)z

]T
, (10)

k0 = b · b∗. (11)

We can rewrite the equations, as for the local frame case, as

(ṙ, v̇, q̇, ṗ, ẇ, ḃ) = F0 +
∑

i = 1, 2
? ∈ {x, y, z}

(
FA?

i
A?

i + FΩ?
i
Ω?

i

)
.

Following the previous case, the expressions for the vector
fields F? : R20 → R20 can be easily derived; for example
we have

F0 = (vx, vy, vz, 0, ..., 0)⊕ (wx, wy, wz, 0, ..., 0),

FAx
1

= (0, 0, 0, q2
t + q2

x − q2
y − q2

z , 2(qxqy + qtqz),
2(qxqz − qyqt), 0, 0, 0, 0)⊕ (0, 0, ..., 0)

FΩz
2

= (0, 0, ..., 0)⊕ 1

2
(0, 0, 0, 0, 0, 0,−bx, bt, bz,−by),

where we have adopted the notation

(u1, ..., un1
)⊕ (ω1, ..., ωn2

) = (u1, ..., un1
, ω1, ..., ωn2

).

As mentioned before (see [14]) the first system is observable
up to an invariance with respect to the z-axis (associated to
yaw angle). It is worth to note that nine Lie derivatives can
be choosen independent without involving the control Ω1.
These are for example:

L1 =
{
L0h1, L0h2, L1

F0
h1, L1

F0
h2, L2

Ax
1F0

h1,

L2
F0F0

h1, L2
F0F0

h2, L3
F0Ax

1F0
h1, L0h0

}
.

Combining the observations performed by both robots, we
are able to estimate all state vector components but one; there
is again an invariance with respect to rotation of the entire
system around the vertical axis This invariance is due to the

absence of an absolute orientation reference. We can state
the following result

Theorem 4.1: Consider the two robots system given by
equations (6)-(11). The maximal observable subspace has
dimension 19, that is, all system variables but one can be
estimated; in particular the system configuration is invariant
with respect to rotations around the z-axis.

Proof: The maximum number of independent Lie
derivatives is 19. This can be verified by direct inspection;
for example, the diffentials of following set of Lie derivatives
together with those given in L1, constitute a 19× 20 matrix
with maximum rank, i.e. rk(dL1 ∪ dL2)) = 19 :

L2 =
{
L0k1, L0k2, L1

F0
k1, L1

F0
k2, L2

Ax
1F0

k1,

L2
Ay

1F0
k1, L2

F0F0
k1, L2

Ay
1F0

k1, L2
Ax

zF0
k2, L0k0

}
.

As before the explicit computation is omitted. The invariance
with respect to rotations around the z-axis can be obtained
observing that the null space of the matrix generated by all
Lie derivatives differentials is spanned by the vector

ω = (−2ry, 2rx, 0,−2py, 2px, 0,−2vy, 2vx, 0,

−2wy, 2wx, 0,−qz,−qy, qx, qt,−bz,−by, bx, bt).

Let us point out that the continuous symmetry ω (see [13])
has the same structure of the symmetry S obtained for a
single robot.

Corollary 4.1: It follows from the structure of the Lie
derivatives set L1 ∪ L2, that the observability is guaranteed
without the explicit employing of the data from the gyro-
scopes Ω1, Ω2.

V. OBSERVABILITY AND MAPPING

In the previous section a simplified two-robots scenario
has been analized; nevertheless, the derived observability
analysis can be applied straightforward to general multi robot
systems. In particular, considering a N robots system and
therefore a 10N dimensional state vector, 10N-1 independent
observable quantities can be found. This can be seen noting
that the observations of the form (10) are independent one to
each other if performed by different robots, this meaning that
any of the components of the team is able to provide up to
10 independent observable quantities. These considerations
lead us to the statement that, in the cooperative localization
problem, all variables but one are observable quantities. In
this section we will analize the problem of observability in
cooperative localization and mapping. In particular we are
interested in the observability of the system when a new
feature is observed and as a consequence the dimension of
the state vector, which contains also the environment map,
has to be increased. We will not discuss the algorithm used
to perform the estimation process.

1633



The state of the system, composed by the poses of N robots
and the coordinates of M observed features is given by

X = (r1, v1, q1, , ..., rN , vN , qN , x1, y1, z1, ..., xM , yM , zM ).

When a new feature is observed, the state vector is changed
by the rule

X → X ⊕ (xM+1, yM+1, zM+1).

The feature observation by robot j, with respect to the global
frame reference is expressed by the equation

h(M+1) = [h
(M+1)
1 , h

(M+1)
2 ]T =

=

[
(q∗j (rj − %M+1)qj)x

(q∗j (rj − %M+1)qj)z
,

(q∗j (rj − %M+1)qj)y

(q∗j (rj − %M+1)qj)z

]T
, (12)

where %M+1 = (0, xM+1, yM+1, zM+1) is the position of
the feature in the global frame. Each time a new feature is
added to the map, the vector fields F? are modified as follows

F? → F? ⊕ (0, 0, 0).

Proposition 5.1: The observation function h(M+1) allows
estimating of the variables (xM+1, yM+1, zM+1).

Proof: The validity of the proposition is straightfor-
ward. It is sufficient to consider the Lie derivatives

LM+1 =
{
L0h

(M+1)
1 , L0h

(M+1)
2 , L1

F0
h

(M+1)
1

}
;

set the operator ∇%M+1 = (∂xM+1
, ∂yM+1

, ∂zM+1
) and

define the matrix HM+1 as

HM+1 =

 ∇%M+1L0h
(M+1)
1

∇%M+1L0h
(M+1)
2

∇%M+1L1
F0
h

(M+1)
1


Since rk(HM+1) = 3 and ∇%M+1L0h? = 0 for any h? 6=
h

(M+1)
1 , h

(M+1)
2 , we see that the observability rank condition

in satisfied.

We can conclude our analysis with the following statement:

Corollary 5.1: In the cooperative SLAM problem for N
flying robots the number of observable independent quanti-
ties is given by

10N − 1 + 3M,

where M is the number of observed features.

Remark 5.1: A key issue in the simoultaneous localization
and mapping problem (SLAM) is the so called loop-closure,
this meaning the re-observation of a feature already stored
in the estimated map. In particular in the presence of a
loop closure, a good SLAM algorithm is asked to perform a
correction over the whole estimated state. Nevertheless such
critical situation does not change anything on the system
observability properties.

VI. CONCLUSIONS

In this paper we have focused our analysis on the
obserbaility properties for the problem of cooperative
localization and mapping using measurements obtained
from bearing sensors and inertial sensors. We have addressed
the following points:

• Relative localization: The problem of relative
localization between two robots has been considered;
using only cameras and inertial sensors measurements
the system is observable, i.e. the relative configuration
can be completelty estimated.

• Global-frame localization: The obserbability analysis
has been extended to cooperative localization of
N robots with respect to a common global frame
(assumed to be attached to a known feature). In this
case, employing the measurements obtained by cameras
and accelerometers, all the system variables but one
can be estimated, i.e. since the configuration of each
robot is characterized by 10 independent variables, the
maximal observable subsystem has dimension 10N−1.
The absolute yaw angle is not observable, since the
entire system configuration is invariant with respect to
rotations around the vertical axis.

• Mapping: It has been showed that, if the state vector is
augmented by adding the coordinates of a new observed
feature, the observations provided by the camera are
able to estimate such new variables without violating
the observability properties of the system; in particular,
the mapping problem is observable.
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