
Gossip algorithms for distributed ranking

Alessandro Chiuso, Fabio Fagnani, Luca Schenato, Sandro Zampieri

Abstract— Ranking a set of numbers plays a key role in
many application areas such as signal processing, statistics,
computer science and so on. Distributed algorithms for ranking
have been proposed in the computer science literature first
for tree networks. Extension to general networks has been
performed by constructing a spanning tree, which can be done
in a distributed manner. In this paper we propose and analyze a
gossip algorithm for distributed ranking. The advantage of the
proposed algorithm is, on the one hand, its inherent robustness
to changes and/or failures in the network and, on the other, its
implementation simplicity. The algorithm is proved to converge,
in the sense of giving the correct ranking, in finite time with
probability one.

I. INTRODUCTION

In recent years, we have witnessed an increasing interest in
the design of control and estimation algorithms which can
operate in a distributed manner over a network of locally
communicating units. A prototype of such problems is the
average consensus algorithm [1], [2], which can be used as
a distributed procedure providing the average of a set of
real numbers. The average is the building block for many
estimation methods, so that the average consensus has been
proposed as a possible way to obtain distributed estimation
algorithms and, in particular, to perform distributed Kalman
filtering [3], [4].

It is widely recognized that the plain average is not
a robust statistic [5](e.g. for the estimation of a location
parameter) in the presence of possible outliers in the data [6];
robust estimators (such as winsorized means, see [6] page
75 for a definition) require order statistics [7], since they
are based on weighting the data depending of their ranking.
We recall here that given a set of N symbols {y1, ..,yN}
belonging to a totally ordered set, ranking means attaching
to each yi an integer oi which is the position of yi in the
ordered list (e.g. ok = 1 if yk is the smallest of the yi’s).

Besides the applications in robust estimation [8], [6],
[5], order statistics are fundamental tools in a variety of
estimation and classification problems in rather diverse areas,
such as signal processing ([9] and references therein), in

This research has been partially supported by EU FP7-ICT-223866-
FeedNetBack project, by CaRiPaRo Foundation “WISE-WAI” project and
by the Progetto di Ateneo CPDA090135/09 funded by the University of
Padova.

Alessandro Chiuso is with the Department of Management and
Engineering, Università di Padova, Stradella S. Nicola, 3 - 36100
Vicenza, Italy, ph. +39-049-8277709, fax. +39-049-8277699, e-mail:
chiuso@dei.unipd.it

Fabio Fagnani is with the Department of Mathematics, Polytechnic of
Turin fabio.fagnani@polito.it

Luca Schenato and Sandro Zampieri are with the Department of Informa-
tion Engineering, Università di Padova, Via Gradenigo, 6/b, 35100 Padova,
Italy. e-mail:{schenato,zampi}@dei.unipd.it

modeling extremal events e.g. in financial risk management
and actuarial sciences [10] and so on.

Our main motivation for studying this problem comes
indeed from a very specific distributed estimation and clas-
sification problem in sensor networks [11], [12]; in these
papers it is shown that maximum likelihood estimators can
be easily found as a function of ranked observations. Hence,
solving the problem of distributed ranking is instrumental for
the (distributed) solution of the problem in [11], [12].

Besides the few applications mentioned above, ranking is
a fundamental task in computer science applications, and it
has been widely studied in the past years. Even the problem
of distributed ranking as a long history in the computer
science community which goes back to the eighties, see for
instance [13]. Most of the literature addresses the problem
of distributed ranking in tree-networks; solving the problem
in general (connected) networks requires finding a spanning
tree, which can be done in a distributed manner [14]. Ro-
bust version of these algorithms (so-called “self-stabilizing”
algorithms) have been also studied, see e.g. [15].

In this paper we take instead a different approach which
has, essentially, the same motivations as gossip algorithms
for (average) consensus. The algorithm has to be simple,
robust to node failures and changes in the network topology.
Hence, we propose a gossip based algorithm for distributed
ranking in a general (connected) network. It is shown that
this algorithm solves (almost surely) in finite time the ranking
problem. The structure of the paper is as follows: Section II
states the problem and sets up notation. Section III describes
the ranking algorithm while in Section V some simulation
results are presented. Conclusions end the paper. The proof
of the main result in given in the Appendix.

II. PROBLEM FORMULATION AND NOTATION

The problem we consider in this paper can be formalized
as follows: Consider a set N of labeled agents N :=
{1, ..,N} which can be thought of as the vertices (or nodes)
of an undirected1 graph G := (N ,E), where E ⊆N ×N is
the set of edges which encode the communication links, i.e.
nodes i and j can communicate iff (i, j) ∈ E . We assume
that each agent has an observation yi ∈ Y where Y is
a totally ordered set. Without loss of generality we shall
assume Y = R.

Our purpose is to rank the yi’s, i.e. we would like each
agent i is able to compute its ordered position oi. E.g. if
the observation yi of agent i is the smallest2 among all

1A graph G := (N ,E) is undirected if (i, j) ∈ E implies (j, i) ∈ E .
2For simplicity of exposition we shall assume that it is not possible that

any two agents have the same observation, i.e. @(i, j), i 6= j : yi = y j .

2011 American Control Conference
on O'Farrell Street, San Francisco, CA, USA
June 29 - July 01, 2011

978-1-4577-0079-8/11/$26.00 ©2011 AACC 5468

observations (i.e. yi < y j, ∀ j 6= i) then oi = 1; if yk is the
second smallest ok = 2 and so on. The map o· : N →N is
of course a permutation of the set N = {1, ..,N}. Using a
notation which is rather common in the statistics literature,
we can define [·] : N →N as the inverse permutation w.r.t
o·, i.e. [oi] = i, which implies that

yi = y[oi].

III. DECENTRALIZED RANKING COMPUTATION

In this section we introduce a novel distributed algorithm
that can rank the nodes of a network based on the ordered list
of the magnitudes of their measurements. The algorithm is
randomized in the same spirit of randomized gossip average
consensus [16], [17], i.e. at each time an edge of the network
is selected at random and corresponding nodes exchange
information and update their local variables. The pseudo-
code of this algorithm is given in Algorithm 1 and illustrated
in Figures 1 and 2. The algorithm works as follows.

• Initialization (lines 1-3 of the algorithm): In the ini-
tialization phase each node sets a number of variables
as shown in Figure 1. The variable rkloc is the local
estimate that the nodes i has about its own ranking,
which is initialized with the node ID i. Each node also
creates a copy of its information, i.e. node ID idwnd ,
measurement ywnd and ranking rkwnd , to be stored on
a virtual node that will be exchanged with neighboring
nodes thus creating wandering virtual nodes. The vari-
ables relative to the wandering nodes are distinguished
by the subscript wnd.

• At each time step k, an edge (i, j) is selected and the
corresponding nodes perform the operations illustrated
in Figure 2:

– wnd ordering (lines 6-10 of the algorithm): The
nodes check if the ordering of the ranking rkwnd

in the wandering nodes is consistent with the cor-
responding measurements ywnd . If ordering is not
consistent, then the nodes exchange their ranking
rkwnd , while if ordering is consistent, then the nodes
keep their rkwnd .

– loc ordering (lines 11-15 of the algorithm): The
nodes check if the ordering of the ranking rkloc is

Fig. 1. Initialization of variables of Algorithm 1.

Algorithm 1 Randomized Gossip Ranking
Require: graph G = (N ,E), probability distribution pi j

over E , measurements yi, node “i” has ID i.
1: for all node i do
2: rkloc

i (0) = i, idwnd
i (0) = i, rkwnd

i (0) = i, ywnd
i (0) = yi

k = 0.
3: end for
4: randomly select edge (i, j) ∈ E with P[(i, j)] = pi j
5: repeat
6: if (ywnd

i (k)− ywnd
j (k))(rkwnd

i (k)− rkwnd
j (k))< 0 then

7: rkwnd
i (k+1) = rkwnd

j (k), rkwnd
j (k+1) = rkwnd

i (k)
8: else
9: rkwnd

i (k+1) = rkwnd
i (k), rkwnd

j (k+1) = rkwnd
j (k)

10: end if
11: if (yi− y j)(rkloc

i (k)− rkloc
j (k))< 0 then

12: rkloc
i (k+1) = rkloc

j (k), rkloc
j (k+1) = rkloc

i (k)
13: else
14: rkloc

i (k+1) = rkloc
i (k), rkloc

j (k+1) = rkloc
j (k)

15: end if
16: idwnd

i (k+1) = idwnd
j (k), idwnd

j (k+1) = idwnd
i (k)

17: ywnd
i (k+1) = ywnd

j (k), ywnd
j (k+1) = ywnd

i (k)
18: temp = rkwnd

i (k+1)
19: rkwnd

i (k+1) = rkwnd
j (k+1), rkwnd

j (k+1) = temp
20: if idwnd

i (k+1) = i then
21: rkloc

i (k+1) = rkwnd
i (k+1)

22: end if
23: if idwnd

j (k+1) = j then
24: rkloc

j (k+1) = rkwnd
j (k+1)

25: end if
26: for all `= 1, . . . ,N, ` 6= i, ` 6= j do
27: rkloc

` (k+1) = rkloc
` (k)

28: rkwnd
` (k+1) = rkwnd

` (k)
29: idwnd

` (k+1) = idwnd
` (k)

30: ywnd
` (k+1) = ywnd

` (k)
31: end for
32: k = k+1
33: until k > M

consistent with the corresponding local measure-
ments y. If ordering is not consistent, then the nodes
exchange the values of rkloc, while if ordering is
consistent, then the nodes keep their rkloc.

– swapping (lines 16-19 of the algorithm): The nodes
swap all their wandering variables ywnd ,rkwnd and
idwnd .

– Overwriting (lines 20-25 of the algorithm): Finally
(iii) each of the two the nodes checks if the
corresponding wandering node has the same id of
the node, and in this case it overwrites the ranking
rkwnd from the wandering node to the local estimate
rkloc.

– Remaining nodes actions (lines 26-31 of the al-
gorithm): All the other nodes do not perform any
update.

5469

Fig. 2. Graphical representation of Algorithm 1.

The swapping step has the property that each wandering
virtual node will eventually reach (almost surely) any node
in the network (which of course we assume to be connected)
since its dynamics is similar to a random walk on the graph.
Moreover, it also guarantees that eventually (almost surely in
finite time) any virtual node pair will meet and will perform
the ordering. In practice, it is as if the wandering nodes lived
on a complete graph where the communication probability is
state dependent. As a consequence, any distributed algorithm
that works only on complete graphs can be made to work
by means of the wandering virtual nodes. Since any pair of
virtual nodes eventually meets, this imply that also the node
with the largest measurement and the node which stores the
largest ranking N will meet, and therefore after the ordering
procedure the node with the largest measurement will have
the correct ranking and will remain fixed from then on.
A similar argument can be repeated for the node with the
second largest measurement and the node with the second
largest estimated ranking, so that also the node with the
second largest measurement will have the correct ranking,
and so on until all notes are ordered. As a consequence,
eventually all wandering virtual nodes will have the exact
ranking and no ordering will occur. As explained above, each
wandering virtual node will eventually return to the fixed
node with the same ID, and therefore eventually also all local
fixed nodes will have the correct ranking. This reasoning
is formally stated in the following theorem, whose proof is
given in the appendix:

Theorem 1 (Randomized Gossip Ranking): Consider Al-
gorithm 1. If the graph G is connected and pi j > 0 for all
edges (i, j) ∈ E then there exists T > 0 such that

rkloc
i (k) = oi ∀k ≥ T, i = 1, . . . ,N almost surely

Before moving to the next section, a few remarks are
in order. One might wonder if the wandering virtual nodes
are really necessary, which is equivalent to ask whether the
swapping procedure is necessary. If this was not performed,
i.e. if lines 16-19 were removed from Algorithm 1 and
the graph is not complete, it would be possible that the
algorithm ended in a deadlock for which no additional update
of the ranking is performed but the local ranking has not
reached the correct value. The other question is why to
perform the ordering also of the local ranking (lines 11-
15), since eventually the wandering nodes will overwrite
the ordering of the local ranking. In fact, Theorem 1 is

valid even if local ordering of ranking (lines 11-15), is
removed from Algorithm 1. The reason is that each fixed
node has to wait for the corresponding wandering node
to come back before performing any ranking update, thus
slowing down convergence “rate”. In practice, the proposed
algorithm tries to take the benefits of local ranking ordering,
i.e. fast convergence, and the wandering virtual nodes, i.e.
guaranteed convergence to exact ordering. This is illustrated
in Figure 3 and discussed in Section V.

IV. PERFORMANCE: SOME ANALYTICAL RESULTS

In this section we propose an analytical study of the
performance of the previous algorithm in the case of a
complete communication graph. The analysis is not easy
especially for the presence of the two dynamics, the local
one coded inside the variables rkloc

i (k), and the wandering
one coded in rkwnd

i (k), and their intertwining. We will not
be able to say much about this phenomenon, rather we will
concentrate on the variables rkwnd

i (k) and we will estimate
their convergence time. Finally, adding the time needed
for the wandering variables to go back home where they
originated, it will be possible to give an estimation of the
total time needed to complete the ranking.

We start from a complete network with N agents and
we assume that pi j = 1/e for all (i, j) with i 6= j, where
e = N(N−1) is the number of directed edges in the graph.
We will use the same notation as in the proof of Theorem
1. In particular we put Vk = Ψ(rkwnd(k),ywnd(k)) the number
of (directed) edges not correctly ordered at the time step
k. Clearly, given Vk, the probability to select a correctly
ordered edge at time k is exactly (e−Vk)/e. If this happens,
then Vk+1 = Vk. Otherwise (see the proof of Theorem 1),
Vk+1 ≤Vk−1. Let Xt be a sequence of independent geomet-
ric random variables, of parameters, respectively, (e− t)/e.
Previous considerations show that the average time to bring
Vk to 0 is upper bounded by

E[X0 +X1 + · · ·+Xe−1] =
e−1

∑
t=0

e
e− t

� e lne� N2 lnN for

where the asymptotic equivalence holds for N → +∞. Re-
garding the extra time needed for all the wandering variables
to go back to their generating nodes we can estimate it,
in average, as follows. Starting form the node having the
maximum value of y, its wandering is simply governed by

5470

a another geometric r.v. Y of parameter 1/e. The average
time needed for the wandering variable to go back to its
generating node is thus E(Y) = N(N− 1). Similarly all the
subsequent nodes. Therefore, a further � N3 time is needed
for this final redistribution. The total average time is thus
� N3.

When the graph is not complete no such simple estimation
can be carried on. A possibility would be to use the mean-
field techniques employed in studying spin glass models in
statistical mechanics. This will be studied in a future paper.

V. SIMULATIONS

We have tested the proposed algorithm on a connected
random geometric graph with 50 nodes and, on average, 5
neighbors per node; we have performed 100 Monte Carlo ex-
periments (randomizing the values yi’s). For each realization
we have computed the ranking error3

Jk
loc := Ψ(rkloc

i (k),y) (1)

and averaged the results over the Monte Carlo runs. The
logarithm of the average ranking error is displayed in figure
3. The key role played by the “wandering” structures is
clear from the results. In fact, without these “wandering”
virtual nodes, the ranking error (dash-dotted) has a nonzero
asymptotic value, meaning that the algorithm gets locked
into a local minimum. Differently, the algorithm without the
local ordering of the ranking eventually converges to the
exact ranking, but the transient is much worse than in the
proposed algorithm. The figure also shows the ranking error
of the wandering virtual nodes Jk

wnd := Ψ(rkwnd
i (k),ywnd) i.e.

the ranking error that we would have if the wandering nodes
could instantaneously communicate with their corresponding
fixed node. The difference between Jwnd and Jloc highlights
the effect of the delay due to the return time of each node
to its corresponding fixed node in the proposed algorithm.

In addition the simulation results suggest that, after a tran-
sient dominated by the “local” ordering (solid/dash-dotted
curves for “small” number of gossip steps), convergence
“rate” is governed by how fast the “wandering” virtual nodes
travel across the network (solid/dashed).

VI. CONCLUSIONS

We have presented a gossip algorithm for distributed
ranking in sensor networks. It has been proved that, almost
surely, the algorithm correctly ranks the nodes in finite
time. Some simulation results show the performance of the
algorithm on a connected network with 50 nodes.

Future work will focus on a more detailed analysis of
the algorithm in particular w.r.t. to the relation between the
network properties and its convergence “rate”.

APPENDIX

Let z ∈ RN and x = (x1, . . . ,xN) be a permutation of N
(xi ∈N , xi 6= x j if i 6= j). Define the following function

Ψ(x,z) := |{(i, j) ∈N ×N | (xi− x j)(zi− z j)< 0}| (A.2)

3The function Ψ is defined in (A.2).

0 500 1000 1500 2000 2500 3000
2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

Iteration k

L
o
g
 o

f
R

a
n
k
in

g
 E

rr
o
r

ln
(J

)

J
loc

J
loc

 (no local ordering)

J
wnd

J
loc

 (no swapping)

Fig. 3. Average (over 100 Monte Carlo runs) of the ranking error of
Algorithm 1 in a random geometric graph with 50 nodes and 250 edges.

Notice that

Ψ(x,z) =
N

∑
i=1

N

∑
j=1

χ[−(xi− x j)(zi− z j)]

where χ : R→ R is defined as follows

χ(x) =
{

1 if x > 0
0 if x≤ 0

The function Ψ will be useful to prove Theorem 1. In
particular two properties of this function will be crucial.

Assume that Π∈ {0,1}N×N is a permutation matrix. Then
it is easy to see that

Ψ(Πx,Πz) = Ψ(x,z) (A.3)

The second property is more difficult to prove and it will be
given through the following lemma.

Lemma 2: Let Πi j ∈ {0,1}N×N is the permutation matrix
which exchange the entry i with the entry j and assume that
z∈RN and x is a permutation such that (xi−x j)(zi−z j)< 0.
Then

Ψ(x,Πi jz)< Ψ(x,z) (A.4)
Proof We need compute Ψ(x,z)−Ψ(x,Πi jz). Notice indeed
that

Ψ(x,z)−Ψ(x,Πi jz) =
∑
r,s

χ[(xr− xs)(zs− zr)]−χ[(xr− xs)((Πi jz)s− (Πi jz)r)]

We split the sum in various parts separating the cases in

5471

which one or both the indices r,s are equal to i, j

Ψ(x,z)−Ψ(x,Πi jz) =

∑
r,s 6=i, j

χ[(xr− xs)(zs− zr)]−χ[(xr− xs)((Πi jz)s− (Πi jz)r)]

+ ∑
r 6=i, j

χ[(xr− xi)(zi− zr)]−χ[(xr− xi)((Πi jz)i− (Πi jz)r)]

+ ∑
r 6=i, j

χ[(xr− x j)(z j− zr)]−χ[(xr− x j)((Πi jz) j− (Πi jz)r)]

+ ∑
s 6=i, j

χ[(xi− xs)(zs− zi)]−χ[(xi− xs)((Πi jz)s− (Πi jz)i)]

+ ∑
s 6=i, j

χ[(x j− xs)(zs− z j)]−χ[(x j− xs)((Πi jz)s− (Πi jz) j)]

+χ[(xi− xi)(zi− zi)]−χ[(xi− xi)((Πi jz)i− (Πi jz)i)]
+χ[(x j− x j)(z j− z j)]−χ[(x j− x j)((Πi jz) j− (Πi jz) j)]
+χ[(xi− x j)(z j− zi)]−χ[(xi− x j)((Πi jz) j− (Πi jz)i)]
+χ[(x j− xi)(zi− z j)]−χ[(x j− xi)((Πi jz)i− (Πi jz) j)]

Now we use the fact that (Πi jz)r = zr if r 6= i, j and that
(Πi jz)i = z j and (Πi jz) j = zi.

Ψ(x,z)−Ψ(x,Πi jz) =

∑
r 6=i, j

χ[(xr− xi)(zi− zr)]−χ[(xr− xi)(z j− zr)]

+ ∑
r 6=i, j

χ[(xr− x j)(z j− zr)]−χ[(xr− x j)(zi− zr)]

+ ∑
s 6=i, j

χ[(xi− xs)(zs− zi)]−χ[(xi− xs)(zs− z j)]

+ ∑
s 6=i, j

χ[(x j− xs)(zs− z j)]−χ[(x j− xs)(zs− zi)]

+χ[(xi− x j)(z j− zi)]−χ[(xi− x j)(zi− z j)]
+χ[(x j− xi)(zi− z j)]−χ[(x j− xi)(z j− zi)] =

2 ∑
r 6=i, j

χ[(xr− xi)(zi− zr)]−χ[(xr− xi)(z j− zr)]

+2 ∑
r 6=i, j

χ[(xr− x j)(z j− zr)]−χ[(xr− x j)(zi− zr)]+2

Notice finally that, since χ[xy] = χ[x]χ[y]+χ[−x]χ[−y], we
can argue that

χ[(xr− xi)(zi− zr)]−χ[(xr− xi)(z j− zr)]+
χ[(xr− x j)(z j− zr)]−χ[(xr− x j)(zi− zr)] =

(χ[xr− xi]−χ[xr− x j])(χ[zr− z j]−χ[zr− zi])+
(χ[xi− xr]−χ[x j− xr])(χ[z j− zr]−χ[zr− zi])

(A.5)

Assume now that xi < x j which implies that zi > z j. In this
case, since χ[·] is a monotonic non decreasing function, we
have that χ[xr−xi]≥ χ[xr−x j], χ[zr−z j]≥ χ[zr−zi], χ[xi−
xr]≤ χ[x j−xr] and χ[z j− zr]≤ χ[zr− zi] which implies that
the last term of (A.5) is non-negative. We can conclude that

Ψ(x,z)−Ψ(x,Πi jz)≥ 2

The case in which xi > x j and zi < z j is analogous.
Notice that the same proof works if we choose χ[x] = x

or

χ(x) =
{

x if x > 0
0 if x≤ 0

In case we take χ[x] = x we get

Ψ(x,z) = ∑
N
i=1 ∑

N
j=1−(xi− x j)(zi− z j) =

2
(
∑

N
i=1 xi

)(
∑

N
i=1 zi

)
−2N

(
∑

N
i=1 xizi

)
Therefore we could use in the proof also the cost function

Ψ(x,z) =−
N

∑
i=1

xizi =−xT z

Notice finally that minimizing Ψ(x,z) is the same as mini-
mizing ∑i(zi− xi)

2.

Proof of Theorem 1.
We first show that, with probability 1, there exists a time

K1 > 0 such that

rkwnd
i (k) = oidwnd

i (k) ∀k ≥ K1, ∀i ∈N (A.6)

Suppose now that the edge (i, j) is selected at time k. Then
if,

(ywnd
i (k)− ywnd

j (k))(rkwnd,i
i (k)− rkwnd

j (k))≥ 0

we say that (i, j) is correctly ordered at time k and we clearly
have that

Ψ(rkwnd(k+1),ywnd(k+1)) = Ψ(rkwnd(k),ywnd(k))

We call it a gossip step of type I. If instead

(ywnd
i (k)− ywnd

j (k))(rkwnd
i (k)− rkwnd

j (k))< 0 (A.7)

we say that (i, j) is not correctly ordered at time k and, by
the previous lemma, we have that

Ψ(rkwnd(k+1),ywnd(k+1))< Ψ(rkwnd(k),ywnd(k)) (A.8)

This is instead called a gossip step of type II.
Consider now the Markov chain on the state space

H = {(i, j) ∈N ×N | i 6= j}

defined by

Q(i, j),(h,k) =

Pih if i 6= h , j = k
Pjk if i = h , j 6= k
Pi j if i = k , j = h
1−∑ 6̀= j Pi`−∑ 6̀=i Pj`−Pi j if i = h , j = k
0 otherwise

Notice that Q is irreducible. Suppose now that at a certain
time k, we have that Ψ(rkwnd(k),ywnd(k)) ≥ 1. Then, there
exists a pair (i, j) which is not correctly ordered at time
k. If (i, j) ∈ E , then, consider any path of some length s,
of positive probability according to Q, that starts in (i, j)
and ends with the edge (i, j)→ (j, i). Each step in the the
path corresponds to a gossip step in the algorithm. Now
there are two possibilities: either there is at least one gossip
step of type II in the first s− 1 steps, or all first s− 1
steps correspond to gossip steps of type I. In the first case
we clearly obtain that Ψ(rkwnd(k+ s−1),ywnd(k+ s−1))<
Ψ(rkwnd(k),ywnd(k)). In the second case,

ywnd
i (k+ s−1) = ywnd

i (k) , rkwnd
i (k+ s−1) = rkwnd

i (k)
ywnd

j (k+ s−1) = ywnd
j (k) , rkwnd

j (k+ s−1) = rkwnd
j (k)

5472

Therefore, the gossip step at time k+s is of type II and there-
fore Ψ(rkwnd(k + s),ywnd(k + s)) < Ψ(rkwnd(k),ywnd(k)).
Since Q is irreducible, the time to hit edge (i, j)→ (j, i) start-
ing from vertex (i, j) is finite with probability one. Hence,
our argument above shows that if Ψ(rkwnd(k),ywnd(k)) ≥ 1
and there exists (i, j) ∈ E not correctly ordered at time k,
then, with probability one, there exists s such that

Ψ(rkwnd(k+ s),ywnd(k+ s))< Ψ(rkwnd(k),ywnd(k)) (A.9)

If instead all edges are correctly ordered at time k, fix any
(i, j) ∈ N ×N not correctly ordered at time k. Consider
now any path of some length s, of positive probability
according to Q, connecting (i, j) to E and argue like above.
If any of the gossip steps corresponding to this walk is of
type II, then (A.9) holds true. If instead all gossip steps
are of type I, at the end of it we will have an edge
(h,k) ∈ E not correctly ordered at time k + s and we are
back in the case studied above. Therefore, we have proven
that if Ψ(rkwnd(k),ywnd(k)) ≥ 1, then, with probability one,
there exists s such that (A.9) holds true. This easily im-
plies that, with probability 1, there exists K1, such that
Ψ(rkwnd(K1),ywnd(K1)) = 0. This yields (A.6).

Let i be such that rkwnd
i (K1) = N and put j = idwnd

i (K1).
Using now the irreducible Markov chain on N defined by

Ri, j =

{
Pi j if i 6= j
1−∑ 6̀= j Pi`

and arguing as above, it is straightforward to prove that,
with probability 1 there exists s1 ∈ N such that idwnd

j (K1 +

s1) = idwnd
i (K1) = j. Moreover, since all gossip steps, since

time K1, are of type I, we also have rkwnd
j (K1 + s1) =

rkwnd
i (K1) = N, and (see lines 23− 25 in the algorithm)

rkloc
j (K1 + s1) = N. In other words, y j is the maximum and

at time K1 + s1 agent j has acquired in its local register
the right ordered information. Noticing that condition at line
11 of the algorithm will never be true for node j since time
K1+s1 (because j has got the right highest ordered position),
we will have that rkloc

j (k) = N for all k ≥ K1 + s1. Now
we can repeat the argument with the second highest value:
with probability one at a certain time K1 + s1 + s2, we will
have that idwnd

j′ (K1+ s1+ s2) = j′ with rkwnd
j′ (K1+ s1+ s2) =

N − 1 and, consequently, also rkloc
j′ (K1 + s1 + s2) = N − 1.

Now notice that also in this case condition at line 11 of
the algorithm will never be true for node j′ since time
K1 + s1 + s2 (because agent j′ has got the right second
highest ordered position, and the agent with the highest
value j has previously obtained the right highest ordered
position). Hence, rkloc

j′ (k) = N for all k ≥ K1 + s1 + s2. A
formal inductive argument along these lines, leads now to
the proof of the result.

REFERENCES

[1] R. Olfati-Saber and R. M. Murray, “Consensus problems in networks
of agents with switching topology and time-delays,” Automatic Con-
trol, IEEE Transactions on, vol. 49, no. 9, pp. 1520–1533, Sept. 2004.

[2] R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and
cooperation in networked multi-agent systems,” Proocedings of IEEE,
vol. 95, no. 1, pp. 215–233, 2007.

[3] R. Olfati-Saber, “Distributed Kalman filter with embedded consensus
filters,” Decision and Control, 2005 and 2005 European Control
Conference. CDC-ECC ’05. 44th IEEE Conference on, pp. 8179–8184,
Dec. 2005.

[4] R. Carli, A. Chiuso, L. Schenato, and S. Zampieri, “Distributed
Kalman filtering based on consensus strategies,” IEEE Journal on
Selected Areas in Communications, vol. 26, pp. 622–633, 2008.

[5] P. Huber, Robust Statistics. Wiley, New York, 1981,.
[6] ——, “Robust estimation of a location parameter,” The Annals of

Mathematical Statistics, vol. 35, no. 1, pp. 73–101, March 1964.
[7] H. David and H. Nagaraja, Order Statistics. Wiley, New Jersey, 2003.
[8] J. Hodges and E. Lehmann, “Estimates of location based on rank

tests,” Annals of Mathematical Statistics, vol. 19, pp. 598–611, 1963.
[9] R. Öten and R. Figuereido, “Adaptive alpha-trimmed meand filters

under deviations from assumed noise models,” IEEE Transactions on
Signal Processing, vol. 13, no. 5, 2004.

[10] P. Embrechts, C. Klüppelberg, and T. Mikosch, Modeling Extremal
Events. Springer, New York, 1997.

[11] A. Chiuso, F. Fagnani, L. Schenato, and S. Zampieri, “Simultaneous
distributed estimation and classification in sensor networks,” in Pro-
ceedings of IFAC NECSYS, 2010.

[12] ——, “Gossip algorithms for simultaneous distributed estimation and
classification in sensor networks,” Univ. of Padova, Tech. Rep., 2010,
to appear in http://paduaresearch.cab.unipd.it/.

[13] S. Zaks, “Optimal distributed algorithms for sorting and ranking,”
IEEE Transactions on computers, vol. 5, no. 1, 1985.

[14] R. Gallager, P. Humbler, and P. Spira, “A distributed algorithm for
minimum-weight spanning trees,” ACM Transactions on Programming
Languages and Systems, vol. 16, pp. 1–15, April 1983.

[15] A. Datta and S. Tixeuil, “Self-stabilizing distributed sorting in tree
networks,” International Journal of Parallel, Emergent and Distributed
Systems, vol. 16, pp. 1–15, April 2001.

[16] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Randomized gossip
algorithms,” IEEE Transactions on Information Theory/ACM Transac-
tions on Networking, vol. 52, no. 6, pp. 2508–2530, June 2006.

[17] F. Fagnani and S. Zampieri, “Randomized consensus algorithms over
large scale networks,” Selected Areas in Communications, IEEE Jour-
nal on, vol. 26, no. 4, pp. 634–649, May 2008.

5473

