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Abstract— In this paper, we discuss the control of a ball and
beam system subject to an input constraint. Model predictive
control (MPC) approaches are employed to derive a nonlinear
control law satisfying the constraint. The control law is given by
solving the optimization problem at each sample time, where
the primal-dual interior point algorithm is implemented and
used as the optimization solver. An experimental comparison
of three control methods, two different MPCs and saturated
LQR, has been presented for the control of the ball and beam
system.

I. INTRODUCTION

Almost all physical systems have constraints such as

limitations on the input and output signals. Performance

degradation or, at worst, instability might occur if these

constraints are not taken into account in the design of

control systems. Model predictive control (MPC) is one

of the most advanced control methods that can deal with

system constraints explicitly [1]. In MPC, the control input

is calculated by solving an optimization problem on-line,

and hence, MPCs have been traditionally used for systems

with relatively slow dynamics. Recently, several studies have

proposed various optimal and suboptimal MPC methods for

reducing on-line computational burden of the optimization

of MPC (e.g., [2], [3]). Using these methods, MPCs can be

applied to a broader class of systems having fast dynamics,

such as mechanical systems and electrical systems. Further,

it is important that MPCs not only satisfy constraints but

also provide robustness against uncertainty and disturbance;

therefore, robust MPCs have also been studied (e.g., [4], [5],

[6]).

In this paper, we consider the control of a ball and beam

system (Fig. 1), which is a popular mechanical system in

control laboratories. The system is driven by a DC motor and

has a constraint on the input voltage reference signal. Various

nonlinear control methods have been applied to ball and

beam systems; however, very few studies have evaluated the

use of MPCs. In [7], a nonlinear MPC was applied to the ball

and beam systems; however, no constraints were imposed. In

this paper, we employ two different MPC methods, standard

MPC and MPC with disturbance attenuation. A comparison

between these MPC methods is presented, and the perfor-

mance of the MPC laws is evaluated experimentally. We

implemented the infeasible primal-dual interior point method

[8] in C language to solve the optimization problems on-line

in MPC.
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Fig. 1. Ball and beam system.

II. BALL AND BEAM SYSTEM

The state-space equation for the ball and beam system

(Fig. 1) linearized around the origin is given by

ẋ(t) = Ax(t) +B2u(t) +B1w(t), (1)

x(t) := [z(t), ż(t), θ(t), θ̇(t)]T

where x(t), u(t), w(t) denote the state, control input (volt-

age signal to the DC motor), and disturbance, respectively.

The objective of the control is to regulate the ball to the

origin by applying an appropriate control input to the DC

motor. This should be achieved by satisfying constraint

umin ≤ u(t) ≤ umax on the control input.

III. MODEL PREDICTIVE CONTROL

We consider a discretized system of (1) with sample time

T [s]:

xk+1 = Axk +B2uk +B1wk, (2)

s.t. umin ≤ uk ≤ umax. (3)

Here, we briefly review the MPC and MPC with disturbance

attenuation.

A. MPC

Consider the finite-horizon constrained linear quadratic

(LQ) control problem

PLQ : min
u0,u1,...,uN−1

J =
N−1
∑

k=0

{xT
kQxk + uT

kRuk}+ xT
NPxN

s.t. umin ≤ uk ≤ umax, k = 0, 1, . . . , N − 1

where N is the prediction horizon, Q > 0, R > 0 are

weighting matrices, and P > 0 is the stabilizing solution

to the Riccati equation

P = ATPA+Q−ATPB(R+BTPB)−1BTPA. (4)
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This is a finite-horizon control problem and can be refor-

mulated as an optimization problem (quadratic program). In

MPC, the control input is calculated in the receding horizon

manner as follows: 1) solve the optimization problem and

obtain a control input sequence over the prediction horizon,

2) apply only the first control move to the system, and then,

3) based on the new state measurement and shifted prediction

horizon, solve the optimization problem again and repeat the

same procedure. Note that the control law is equivalent to the

infinite horizon LQ control when no constraints are imposed

because the terminal weight P is given by the solution to

the Riccati equation (4).

B. MPC with disturbance attenuation

Although MPC is a feedback control method and has

disturbance attenuation property to some extent, the effect

of disturbance is not taken into account explicitly. Here,

we present an MPC that aims at attenuating the effect of

disturbance (or model uncertainty) explicitly [6]. For the cost

functional

J1 =

N−1
∑

k=0

{xT
kQxk + uT

kRuk − γ2wT
k R1wk}+ xT

k+NPxk+N ,

(5)

consider the following min-max control problem:

P1 : min
V

max
W

J1

s.t. umin ≤ Kx̃k + vk ≤ umax,

x̃k+1 = Acx̃k +B2vk, x̃0 = x0

k = 0, 1, . . . , N − 1,

Ac := A+B2K,

V := [vT0 , . . . , v
T
N−1]

T,

W := [wT
0 , . . . , w

T
N−1]

T.

The matrix K represents the pre-stabilizing feedback gain,

which reduces the conservativeness of the resulting MPC law.

For a small value of γ in (5), the control aims to attenuate

the effect of disturbance wk, whereas for a relatively large

value of γ, the control becomes equivalent to the standard

MPC. In order to guarantee the existence of a disturbance

sequence maximizing J1, the parameter γ should be chosen

to satisfy the following condition:

γ > 0 : R̂1 > B̄T
γ Q̃Āc

B̄γ +BT
γφPBγφ, (6)

Bγ := γ−1B1, Bγφ := γ−1B1φ,

Biφ := [AN−1
c Bi, AN−2

c Bi, . . . , Bi], i = 1, 2,

Q̃Āc
:= (I − Āc)

−T Q̂′(I − Āc)
−1,

Q′ := (Q+KTRK),

where the symbols ¯ and ˆ denote the matrix operations

defined by

Ḡ :=

[

0 0
diag(G, . . . , G) 0

]

, Ĝ := diag(G, . . . , G)

for any matrix G. Under the condition (6), there exists

the maximizing disturbance sequence, and the min-max
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Fig. 2. Experimental setup.

optimization problem is then reformulated as the following

minimization problem

P ′

1 : min
V

J ′

1

s.t. umin ≤ Kx̃k + vk ≤ umax,

x̃k+1 = Acx̃k +B2vk, x̃0 = x0

k = 0, 1, . . . , N − 1,

J ′

1 := V THV + 2V TFTx0 + xT
0 Y x0,

where H,F, Y are appropriate matrices [6]. This optimiza-

tion problem yields the optimal sequence v∗0 , v
∗

1 , . . . , v
∗

N−1.

We employ only the first move v∗0 for the current control

input: u0 = Kx0 + v∗0 , and repeat the same procedure for

the new state measurement at each sample time over a shifted

horizon.

Remark 1: The closed-loop stability of an MPC is not

necessarily guaranteed as MPC only solves the finite-horizon

optimal control problem at each sample time. However, it is

possible to ensure stability by including some additional con-

ditions in optimization problem formulation or by employing

sufficiently long prediction horizons [1].

IV. EXPERIMENTAL SETUP

Fig. 2 shows the experimental setup of the ball and beam

system. We measure the ball position and motor angle of

the system and a PC calculates the control law based on the

control methods shown in the previous section (the states

that are not directly measured are obtained by backward

difference). We set the control interval (sample time) to

100 [ms]. In the case of MPC and MPC with disturbance

attenuation, we need to solve the quadratic programming

(QP) problem. We employ the infeasible primal-dual interior

point algorithm [8] to solve the QP problem on-line. The

algorithm was implemented in C, and the free GSL library

(GNU Scientific Library) was used for matrix calculations.

V. EXPERIMENTAL RESULTS

We design the MPC control laws such that the imposed

input constraint, −1 ≤ uk ≤ +1, is satisfied. We first

choose the design parameters for MPC and MPC with

disturbance attenuation. For each control method, we use

the weighting matrices, Q = diag(1000, 10, 10, 0.01), and

R = 1. The prediction horizon for MPC and MPC with

disturbance attenuation is N = 10, which indicates that the

controller predicts the 1 [s] future behavior of the plant at

each sampling instant and determines the control action. In

the case of MPC with disturbance attenuation, the feedback
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gain is given by the infinite horizon LQR gain K = KLQ =
−(R+BT

2 PB2)
−1BT

2 PA, and the minimum γ satisfying the

inequality in (6) is calculated as 33.7316. For comparison,

we also apply the saturated LQR control uk = sat(KLQxk),
where sat is the saturation function. Note that when no

constraints are imposed, MPC and saturated LQR yield the

same control input. To investigate the disturbance attenuation

performance of the cotrol methods, the base of the ball and

beam system is inclined at an angle of 1◦ as a source of

artificial disturbance.

Figs. 3–5 show the experimental results for three con-

trol methods, MPC, MPC with disturbance attenuation, and

saturated LQR, for initial condition z(0) = 0.21 [m] (ball

position). As can be inferred from Fig. 3, similar responses

are obtained for MPC and saturated LQR. Indeed, the

numerical simulation (this is not provided here due to the

space limitation) shows that MPC and saturated LQR yield

the same control law for the initial state considered here.

The response of MPC with disturbance attenuation keeps the

ball position near the origin. Note that because there is an

artificial inclination angle of 1◦, the ball position does not

converge to the origin. Fig. 4 shows the control input; we

observe that the imposed input constraint (±1) is satisfied.

Although there are no significant differences between the

results of saturated LQR and MPC, closed-loop stability can

be guaranteed in the case of the MPC by imposing additional

conditions such as terminal constraints. The saturated LQR

is easy to implement; however, the state constraint cannot be

handled. The deviation observed in Fig. 3 can be removed

by incorporating the integral action into the controller. How-

ever, since the main objective of this study is to compare

the fundamental performance of the three different type of

controllers, we have not included the integral action.

VI. CONCLUDING REMARKS

In this paper, we discussed the control of a ball and beam

system under the input constraint. A comparison of two

different MPCs and saturated LQR was presented for the

regulation control.

Various approaches to implement MPCs have been re-

ported so far, such as in [2], [3]. Since each method has both
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strengths and limitations, one of the future research direction

is to provide criteria for selecting the most suitable MPC

method while taking into account the available hardware

and software resources, system size, required control interval,

control performance, cost, etc.
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