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Abstract— The travel time spent in traffic networks is one
of the main concerns of the societies in developed countries. A
major requirement for providing traffic control and services is
the continuous prediction, for several minutes into the future.
This paper focuses on an important ingredient necessary for the
traffic forecasting which is the real-time traffic state estimation
using only a limited amount of data. Simulation results illustrate
the performances of the proposed state-estimation technique.

Index Terms— Highway traffic analysis, observer, switching
mode model

I. INTRODUCTION

The increased travel time in congested sections has a

dramatic social and economic impact. This led to an increas-

ing research on freeway traffic control and development of

intelligent transportation systems which are able to provide

continuous forecasting of the traffic. A nice survey on the

existing techniques for short-term traffic flow prediction can

be found in [3]. One of the prerequisites for continuous pre-

diction is an efficient real-time traffic conditions estimation

using only a limited amount of data [9], [10]. The real-time

density estimation is a challenging problem since the traffic

is described by a system which is observable only when

a segment situated between two vehicle detector stations

(sensors) is entirely congested or entirely free.

Simulation modeling is a popular tool for analyzing trans-

portation problems. Several studies focus on the valida-

tion of different microscopic or macroscopic models. Once

the models validated they are used for open-loop state-

estimation, forecasting and control ([5], [8]). Other papers

present imputation techniques to determine the missing on-

ramp and off-ramp flows [10].

In [4] it was shown that the traffic dynamics has two

globally asymptotically stable equilibrium points which cor-

respond to strictly feasible and infeasible demand (the link is

either entirely free or entirely congested). This is the reason

why approximating the dynamics using random switches

between the mentioned two modes, the density is fairly

well estimated. The drawback is, as observed in [6], the

system is no longer a conservation law (vehicles may ap-

pear/disappear in the network). In order to overcome this

inconvenient we use in this paper a deterministic constrained

model that reduce the number of possible affine dynamics

of the system and preserve the number of vehicles in the
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network. Moreover, we use the vehicles conservation law to

guaranty that the estimation error does not increase during

the unobservable modes. This model is used to recover the

state of the traffic network and precisely localize the eventual

congestion front. The state of the network is recovered using

what we call forward/backward observers.

The highway network is designed as a sequence of nodes

relied by links. Since the sensors are located to the node

level, one can easily determine if the node is over saturated

or under saturated. Thus, the main concern for the traffic

conditions is the estimation of the density inside the links.

In order to better locate the congestions appearing into the

network, each link is partitioned in several cells. It is worth

noting here that the estimation problem is decentralized to the

link level. In other words the density of the cells belonging

to a link is estimated using only the data provided by the

sensors located on the link boundary.

The structure of the paper is as follows: in Section II we

introduce the deterministic constrained model that describe

the density dynamics. Section III is devoted to observability

of the system under consideration and in Section IV we

propose an observer design. Section V focuses on the density

estimation for each cell of a highway segment. In this section

we also study the global observability of the traffic state.

Simulation results are provided in Section VI before some

concluding remarks.

II. CONSTRAINED SWITCHING MODEL FOR TRAFFIC

ESTIMATION

The traffic dynamics models are based on the car conser-

vation principle. The simplest continuous macroscopic traffic

model, involving only the density ρ, is the LWR model

introduced in [7], [11]. The constitutive assumption of this

model, motivated by experimental data, is that the vehicles

tend to travel at an equilibrium speed v = v(ρ) where

ρ represents the density of a specific section at a specific

time. Thus the equilibrium speed depends implicitly on the

location and on the time. Since the flow is defined as ϕ(ρ) =
ρv(ρ), one can depict an equilibrium flow function ϕ = ϕ(ρ)
called the fundamental diagram in traffic engineering.

In the sequel, we use the macroscopic traffic flow model

called the switching mode model (SMM) derived from the

cell transmission model (CTM) proposed by Daganzo [1].

The SMM is a piecewise linear state-dependent model in

which the flow on each interface is a trade-off between the

supply and the demand

ϕi = min{Di−1, Si} (1)
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with

Di−1 = min{vi−1ρi−1, ϕm,i−1},

Si = min{ϕm,i, wi(ρm,i − ρi)}

where ϕm,i is the maximum flow allowed by the capacity of

cell i, ρm,i is the jam density (i.e. the maximum density that

can be reached), vi corresponds to the free flow speed and wi

is the congestion wave speed in cell i. All these parameters

can be the same for all cells or allowed to vary for each cell.

It is noteworthy that Di−1 is the flow that can be delivered

by the cell i − 1 while Si is the flow that can be received

by the cell i.
Definition 1: A cell i ∈ {2, . . . , N} is considered free if

it is able to accept the flow delivered by its upstream neigh-

boring cell (i.e. ϕi = Di−1) and is considered congested if

it is not free (i.e. ϕi = Si). The first cell is free if ϕ1 ≤ S1

and is congested otherwise.

The state of the system is given by the vector ρ =
(ρ1, . . . , ρN ), the measured data used by the system are

the upstream and downstream flows (ϕu, ϕd). In order to

simplify the analysis we consider that only one congestion

wave may exist in the highway segment. Thus one can have

only N + 1 modes since the congestions always appear

at cell N and propagate upstream. Furthermore, the front

wave moves downstream when the congestion disappears.

Denoting by F the free state of a cell and by C the congested

one, two adjacent cells can be in one of the following

situations: FF, FC or CC.

Fig. 1. The switching mode model based on cell transition model.

Let us introduce the index s(k) ∈ {0, 1, . . . , N} in order to

precise the mode of the entire highway segment. This index

roughly locates the congestion front. Precisely, s(k) = i ∈
{0, 1, . . . , N} if and only if the first i cells are free while

the last N − i are congested (see Table I for illustration).

s(k) Cell 1 Cell 2 . . . Cell N

0 C C . . . C

1 F C . . . C

2 F F . . . C

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

N F F . . . F

TABLE I

OPERATING MODE TABLE

With this notation the system dynamics writes as:










ρ(k + 1) = As(k)ρ(k) +Bϕ(k) +Bm,s(k)ρm

s(k + 1) = s(k) + f(ρ(k), ϕ(k))

y(k) = h(ρ(k))

(2)

where ϕ = (ϕu, ϕd) is the input, ρm = (ρm,1, . . . , ρm,N ),

h(ρ(k)) =











w1(ρm,1 − ρ1(k)), if s(k) = 0

vNρN (k), if s(k) = N

0, otherwise

(3)

and

f(ρ(k), u(k)) =











− 1 if C−(ρ(k), s(k))

0 if C0(ρ(k), s(k), ϕ(k))

1 if C+(ρ(k), s(k))

(4)

with

C−(ρ(k), s(k)) = (s(k) > 0)∧
(

vs(k)−1ρs(k)−1(k) > ws(k)(ρm,s(k) − ρs(k)(k))
)

C0(ρ(k), s(k), ϕ(k)) =
[

(s(k) = 0) ∧
(

ϕu(k) = w1(ρm,1 − ρ1(k))
)

]

∨
[

(s(k) = N) ∧
(

vN−1ρN−1(k) ≤ wN (ρm,N − ρN (k))
)

]

∨
[

(0 < s(k) < N)∧
(

vs(k)−1ρs(k)−1(k) ≤ ws(k)(ρm,s(k) − ρs(k)(k))
)

∧
(

vs(k)ρs(k)(k) ≥ ws(k)+1(ρm,s(k)+1 − ρs(k)+1(k))
)

]

C+(ρ(k), s(k)) = (s(k) < N)∧
(

vs(k)ρs(k)(k) < ws(k)+1(ρm,s(k)+1 − ρs(k)+1(k))
)

It is worth noting here that the function f(ρ(k), ϕ(k))
formalize the conditions characterizing the forward/backward

motion of the congestion front. Precisely, the cell s(k)
becomes congested in the moment when the conditions

C−(ρ(k), s(k)) hold true. The cell s(k) + 1 becomes free

when the conditions C+(ρ(k), s(k)) hold true. When the

conditions C0(ρ(k), s(k)) are verified the front of congestion

is kept inside the cell s(k) sufficiently far from the interface

between cells s(k) − 1 and s(k). All these conditions are

based on the interface flows adjoint to the cell s(k).
In order to define the matrices Ai ∈ R

N×N , Bi ∈
R

N×2, Bm,i ∈ R
N×N , ∀i ∈ {0, 1, . . . , N} used in (2) we

introduce the following notation:

Γi :=











1− T
l1
v1 0 . . . 0 0

T
l2
v1 1− T

l2
v2 . . . 0 0

...
...

...
...

...

0 0 . . . T
li
vi−1 1











∈ R
i×i,

∀i = 1, . . . , N

For all i = 1, . . . , N − 1 one defines the matrix ∆i ∈
R

(N−i)×(N−i) by

















1−
T

li+1
wi+1

T

li+1
wi+2 0 . . . 0

0 1−
T

li+2
wi+2

T

li+2
wi+3 . . . 0

...
...

...
...

...

0 0 0 . . .
T

lN−1
wN

0 0 0 . . . 1−
T

lN
wN
















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





































AN = ΓN , A0 =

(

1
(

T
l1
w2,0

⊤

N−2

)

0N−1 ∆1

)

Ai =





Γi

(

0i−1,N−i

(T
li
wi+1,0

⊤

N−i−1)

)

0N−i,i ∆i



 ,

∀ 1 ≤ i ≤ N − 1

B =











T
l1

0

0 0
...

...

0 − T
lN











,































Bm,N = 0N,N , Bm,0 = IN −A0

Bm,i =





0i−1,i 0i−1,N−i

0
⊤

i (−T
li
wi+1,0

⊤

N−i−1)

0N−i,i IN−i −∆i



 ,

∀ 1 ≤ i ≤ N − 1

where 0 represents either a column vector (one index) or a

matrix (two indices) having all the components equal zero.

III. OBSERVABILITY

The observability for different SMM modes (see [9] and

the references therein) is summarized in Table II. Based

Upstream Cells Downstream Cells Observable with

Free-flow Free-flow Downstream measurement

Congested Congested Upstream measurement

Congested Free-flow Up. and Down. measurement

Free-flow Congested Unobservable

TABLE II

OBSERVABILITY FOR DIFFERENT SMM MODES

on this table we define the notions of forward/backward

observability. In order to better explain these concepts let

us consider a simple case study where the highway segment

has only one cell.

ρ(k + 1) =



























ρ(k) +
T

l

(

ϕu(k)− vρ(k)
)

, if FF

ρ(k) +
T

l

(

w(ρm − ρ(k))− ϕd(k)
)

, if CC

ρ(k) +
T

l

(

ϕu(k)− ϕd(k)
)

, if FC

y(k) = h(ρ(k))

where FF means the upstream and the downstream flows are

free, CC means the upstream and the downstream flows are

congested while FC means the upstream flow is free and the

downstream flow is congested.

In FF case ϕu is not restricted by the density of the cell while

ϕd = vρ which is state dependent. In other words ϕu is the

input and ϕd the output of the system. The observability

matrix is equal with v. Since v 6= 0, the observability

condition is satisfied and we say the system is backward

observable (i.e. using downstream measurements).

In CC case ϕd is measured and ϕu = w(ρm − ρ). Thus we

have a reversed situation in which ϕd is the input and ϕu is

the output of the system. In this case the observability matrix

is w. Since w 6= 0, the observability condition is satisfied and

we say the system is forward observable (i.e. using upstream

measurements).

Finally in FC case neither ϕu, nor ϕd depend on the density

of the cell. The observability matrix is 0 and the density is

unobservable but as we shall see the system is open-loop

stable.

IV. OBSERVER DESIGN

An open-loop estimator for system (2) should be described

by
{

ρ̂(k + 1) = Aŝ(k)ρ̂(k) +Bϕ(k) +Bm,ŝ(k)ρm

ŝ(k + 1) = ŝ(k) + f(ρ̂(k), ϕ(k))
(5)

But, computations similar with those provided in the proof

of Proposition 3 below, show that using this scheme the

estimation error will remain always constant. Therefore, if

the initial estimation is bad the algorithm is worthless.

In the next section we propose an observer that use the

measures (vu, vd) to detect the moment when the congestion

front pases over the sensor. Doing so, we design the input and

the output of the system according to the operating mode in

order to assure the estimation error decreasing. The observer

design is illustrated in figure 2 (see also (6) below).

Input/Output 
selector

Mode
selector

Observer

ϕd(k)

ϕu(k) u(k)

y(k)

ρ̂(k)

ŝ(k)

Fig. 2. The proposed observer architecture.

V. TRAFFIC STATE ESTIMATION

A. Density estimation for a highway segment

In the sequel we consider a highway segment partitioned

in N cells. We suppose that all the cells have the same length

(i.e. li = l). We also consider the estimation dynamics


















ρ̂(k + 1) = Aŝ(k)ρ̂(k) +Bϕ̂(k) +Bm,ŝ(k)ρm

+ Lŝ(k)(y(k)− ŷ(k))

ŝ(k + 1) = ŝ(k) + f(ρ̂(k), ϕ̂(k))

ŷ(k) = h(ρ̂(k))

(6)

where ϕ̂ will be defined according to different possible

situations. As in the single cell case we study three situations.

Situation 1: backward observer for the FF mode. The

upstream and the downstream flows are free. In this case ϕu

is measured and not restricted by the density of the first cell

while ϕd = vNρN . Thus, the density dynamics is given by:

ρ(k + 1) = ANρ(k) +Bϕ(k) +Bm,Nρm (7)

Let us consider ϕ̂(k) = (ϕu, vN ρ̂N ) and the initial estima-

tion ρ̂(0) = (0, 0, . . . , 0)⊤.
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Proposition 1: If the upstream and the downstream

flows are free the open-loop estimation error is expo-

nentially decreasing and the decreasing rate is given by

max
i=1,n

(

1−
T

li
vi

)

.

Proof: As before the estimation error at step k will be

denoted by ρ̃(k) := ρ(k) − ρ̂(k). Straightforward computa-

tion shows that

ρ̃(k + 1) = E1ρ̃(k),

E1 ,











1− T
l1
v1 0 . . . 0 0

T
l2
v1 1− T

l2
v2 . . . 0 0

...
...

...
...

...

0 0 . . . T
lN

vN−1 1− T
lN

vN











The eigenvalues of E1, and of E⊤
1 as well, are 1− T

li
vi, i ∈

{1, . . . , N}. Therefore, denoting by ||E1|| the spectral norm

of E1 and by |x| the Euclidean norm of the vector x, one

obtains:

|ρ̃(k + 1)| ≤ ||E1|||ρ̃(k)| =
√

λmax(E⊤
1 E1)|ρ̃(k)|

≤ max
i=1,n

(

1−
T

li
vi

)

|ρ̃(k)|

where λmax(E
⊤

1 E1) stands for the largest eigenvalue of the

symmetric matrix E⊤
1 E1.

Remark 1: Using the definition of h(·) (see (3)), when

s(k) = N one gets y(k)− ŷ(k) = vN ρ̃(k). Thus, in the FF

case the closed-loop error dynamics is given by

ρ̃(k + 1) = (E1 − LF · CF )ρ̃(k)

where LF = LNvN := (ℓF,1, ℓF,2, . . . , ℓF,N )⊤ and CF =
(0, . . . , 0, 1). The eigenvalues and the spectral norm of E1−
LF · CF =











1− T
l1
v1 0 . . . 0 −ℓF,1

T
l2
v1 1− T

l2
v2 . . . 0 −ℓF,2

...
...

...
...

...

0 0 . . . T
lN

vN−1 1− T
lN

vN − ℓF,N











can be arbitrarily decreased by choosing an appropriate

observer gain LF .

It is worth noting that E1 is a non-negative matrix and

the choice of ρ̂(0) = (0, 0, . . . , 0)⊤ will assure the non-

negativity of the vector ρ̃. Therefore, we always underesti-

mate the traffic state in the FF mode.

Situation 2: forward observer for the CC mode. The

upstream and the downstream flows are congested. In this

case ϕd is measured and does not depend on ρN . On the

other hand ϕu = w1(ρm,1 − ρ1). The density dynamics is

given by:

ρ(k + 1) = A0ρ(k) +Bϕ(k) +Bm,0ρm (8)

In this situation we consider ϕ̂(k) = (w1(ρm,1 − ρ̂1), ϕd)
and the initial estimation ρ̂(0) = ρm.

Proposition 2: If the upstream and the downstream flows

are congested the open-loop estimation error is expo-

nentially decreasing and the decreasing rate is given by

max
i=1,n

(

1−
T

li
wi

)

.

Proof: The dynamics of the estimation error is given

in this case by

ρ̃(k + 1) = E2ρ̃(k),

E2 ,

















1− T
l1
w1

T
l1
w2 0 . . . 0

0 1− T
l2
w2

T
l2
w3 . . . 0

...
...

...
...

...

0 0 0 . . . T
lN−1

wN

0 0 0 . . . 1− T
lN

wN

















The eigenvalues of E2, and of E⊤
2 as well, are 1− T

li
wi, i ∈

{1, . . . , N}. Denoting by ||E2|| the spectral norm of E2 one

obtains:

|ρ̃(k + 1)| ≤ ||E2|||ρ̃(k)| =
√

λmax(E⊤
2 E2)|ρ̃(k)|

≤ max
i=1,n

(

1−
T

li
wi

)

|ρ̃(k)|

where as before λmax(E
⊤

2 E2) stands for the largest eigen-

value of the symmetric matrix E⊤
2 E2.

Remark 2: Using the definition of h(·) (see (3)), when

s(k) = 0 one obtains y(k)− ŷ(k) = −w1ρ̃(k). Thus, in the

CC case the closed-loop error dynamics is given by

ρ̃(k + 1) = (E2 − LC · CC) ρ̃(k)

where LC = −L0w1 := (ℓC,1, ℓC,2, . . . , ℓC,N )⊤ and CC =
(1, 0, . . . , 0). The eigenvalues and the spectral norm of E2−
LC · CC =
















1− T
l1
w1 − ℓC,1

T
l1
w2 0 . . . 0

−ℓC,2 1− T
l2
w2

T
l2
w3 . . . 0

...
...

...
...

...

−ℓC,N−1 0 0 . . . T
lN−1

wN

−ℓC,N 0 0 . . . 1− T
lN

wN

















can be arbitrarily decreased by choosing an appropriate

observer gain LC .

It is worth noting that E2 is a non-negative matrix and the

choice of ρ̂(0) = ρm will assure the non-positivity of the

vector ρ̃. Therefore, we always overestimate the traffic state

in congested flow mode.

Situation 3: Open-loop estimator for the coupled FC

mode. The upstream flow is free and the downstream flow

is congested. In this case neither ϕu, nor ϕd depend on the

density of the first cell or last cell. Furthermore, in this

situation we cannot detect how many cells are congested.

As even in a single cell case we are not able to provide

an algorithm for the density estimation, we show that (6)

keeps the estimation error constant during this transition

phase between Situation 1 and Situation 2.

Remark 3: If we initialize the system when both the

upstream and downstream flows are either free or congested,
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the density of each cell can be very well approximated before

encountering the situation 3. On the other hand, if the length

of the highway segment is not very large we can propagate

the estimation error for a short period before switching to

Situation 1 or Situation 2 and starting to decrease it.

In this situation we consider ϕ̂(k) = ϕ(k) and we initialize

with 0 the densities of the cells assumed free and with the

corresponding component of the vector ρm the densities of

the cells assumed congested. As we shall see our assumption

on the number of free/congested has no impact on the state

estimation algorithm.

Proposition 3: If the upstream flow is free and the down-

stream flow is congested the estimation error provided by

the equations (2) and (6) does not increase.

Proof: For all i belonging to {1, . . . , N} let us intro-

duce the following quantity:

Ki(k) =
T

l

(

viρi(k)− wi+1(ρm,i+1 − ρi+1(k))
)

(9)

Without any loss of generality let us suppose that s(k) =
i ∈ {1, . . . , N} and ŝ(k) = i + j ∈ {1, . . . , N}, j ≥ 0.

Therefore, (2) and (6) lead to
{

ρ(k + 1) = Aiρ(k) +Bϕ(k) +Bm,iρm

ρ̂(k + 1) = Ai+j ρ̂(k) +Bϕ̂(k) +Bm,i+jρm

Therefore, since Bi = Bi+j and ϕ(k) = ϕ̂(k) one obtains

ρ̃(k + 1) = Aiρ(k)−Ai+j ρ̂(k) +Bm,iρm −Bm,i+jρm

= Ai+j ρ̃(k) +

j
∑

ℓ=1

(Ai+ℓ−1 −Ai+ℓ)ρ(k)+

+

j
∑

ℓ=1

(Bm,i+ℓ−1 −Bm,i+ℓ)ρm

= Ai+j ρ̃(k) +



























0i−2

Ki−1(k)
Ki(k)−Ki−1(k)
Ki+1(k)−Ki(k)

...

Ki+j(k)−Ki+j−1(k)
−Ki+j(k)
0N−i−j



























Thus, Sum(ρ̃(k+1)) = Sum(Ai+j ρ̃(k)). On the other hand

Sum(Aix) = Sum(Γi(x1, . . . , xi)
⊤) +

T

l
wi+1xi+1

+ Sum(∆i(xi+1, . . . , xN )⊤)

= Sum((x1, . . . , xi)
⊤) + Sum((xi+1, . . . , xN )⊤)

= Sum(x), ∀x ∈ R
n, ∀i ∈ {1, . . . , N}

We conclude that Sum(ρ̃(k + 1)) = Sum(ρ̃(k)) which

means that the estimation error is constant in average inside

the highway segment but it may be distributed in different

way at each time-step. Precisely, the estimation error will

decrease inside the cells where both the inflow and outflow

are either free or congested for the real and the estimation

model in the same time and it will accumulate in the other

cells.

B. Global observability for traffic state

From the previous sections it is clear that the hybrid

system (2) is not observable since some of its mode are

unobservable. Nevertheless, during the unobservable mode

the state estimation error remains constant. This means that

using only partial data we are able to asymptotically recon-

struct the state of the system if the following Assumption is

satisfied.

Assumption 1: The coupled FC mode periods are shorter

than δ.

It is noteworthy that Assumption 1 is satisfied in practice

and δ can be fixed by studying the behavior of the network

during several weeks.

Definition 2: We say that a system is globally observable

if there exists a non-increasing function V : R 7→ R+

characterizing the error estimation and some fixed strictly

positive constants δ ∈ Z and α < 1 such that V (k + pδ) <
αpV (k), ∀p ∈ Z.

Proposition 4: If Assumption 1 holds, the estimate given

by the observer (6) asymptotically converge to the state of

the system (2).

Proof: Let us consider V (k) = |ρ̃(k)| and α =
max {||E1 − LCN ||, ||E2 − LC0||} < 1. Since we are not

able to assure the decreasing of V during the coupled FC

mode periods we shall consider the observer gain L = 0
during these periods. Doing so we get V (k + 1) ≤ V (k)
for all k ≥ 0. On the other hand Assumption 1 assures

as that during δ steps at least one time the forward or the

backward observability situation is encountered. Taking into

account the definition of α one obtains V (k + δ) < αV (k)
which leads straightforwardly to the global observability of

the system (2).

VI. SIMULATION RESULTS

In the sequel, the theoretical results are illustrated by some

simulations. The fundamental diagram of the network has

been done using the technique described in [2]. Precisely,

we consider a highway segment with five identical cells. The

jam density is ρm,i = 200 V eh/Km, the free flow speed is

vi = 90 Km/h and the front of congestion speed is wi =
16 Km/h.

The macroscopic simulation has been done during 140

minutes. The upstream flow was sequentially increased while

the downstream flow was set constant to a half of the

maximal capacity of the road. This has been done in order

to create a congestion which expand backwards. When all

the cells have been congested we have drastically decreased

the upstream flow inducing the congestion vanishing. It is

worth noting here that the macroscopic simulation accurately

reproduce the measured densities(see Figure 3).

Figure 4 emphasize the behavior of the network and

the congestion front motion. Figure 5 shows the estimation

results when the estimation starts after 50 minutes when the

fifth cell is already congested. Therefore, we have initialized

the densities of the first four cells to zero and the density of

the last cell to the jam density ρm,5 = 200 V eh/Km. The
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Fig. 3. The density evolution given by the macroscopic simulation is
smoother but it accurately reproduces the behavior of the measured density.
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Fig. 4. The congestion front appears downstream and propagates backward
from the fifth cell to the first one.

estimated densities approach the simulated ones during the

CC mode.

VII. CONCLUSIONS

In this paper we proposed a strategy for real-time density

estimation for traffic networks. To this aim, we introduced a

deterministic constrained macroscopic model which reduce

the number of possible affine dynamics of the system and

preserve the number of vehicles in the network. This model

is used to recover the state of the traffic network and asymp-

totically locate the eventual congestion front. The state of the

network is recovered using what we call forward/backward

observers. We pointed out that during unobservable modes

the estimation error is preserved due to vehicle conserva-

tion law. Numerical simulations show the efficiency of the

proposed strategy.
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