
Distributed resource management using iterative gradient update
synthesis

Karl Mårtensson and Vladimeros Vladimerou

Abstract— We consider load balancing on a network. Servers
of limited bandwidth move a single commodity through a
network of buffers (or queues) while external random processes
generate and consume this commodity. Our contribution is
a distributed algorithm for regulating the backlogs of these
queues to a given reference while balancing the mean flow in
the network.

We formulate this as a fluid buffer regulation problem and
use distributed gradient descent to update the feedback gains
for an LQG controller. Our proposed distributed algorithm both
implicitly and explicitly estimates the statistics of the external
process flows using only local information on fixed time intervals
and updates the feedback matrix for the regulator accordingly.

We demonstrate our method on a simulation of an industrial
floor where autonomous vehicles remove palettes from produc-
tion line buffers.

I. INTRODUCTION

Flow optimization and load balancing problems presented
on computer queuing networks, can be examined from a
discrete or continuous point-of-view, using algorithms on
graph structures. Given a graph, the interconnection of
sources and destinations, linear programming [6], [5] and
fast approximate solutions can be applied for solving single-
or multi-commodity flow maximization problems [7].

Also related to flow maximization is the problem of load
balancing, where many servers partake in servicing incoming
tasks and the goal is to maintain a load balance so as to not
overload some of the queues while allowing others to idle.
In [1], the authors used Discrete Event Systems models on
a metric state space and Lyapunov theory for the analysis of
load balancing systems. In [9] the authors also deal with
load sharing in terms of buffered systems, in the same
DES framework, with optimal solutions to the allocation of
bandwidth and buffer size.

In Fig. 1 we see the configuration where a network of
three servers are connected with 7 queues. In the work by
[13] the models allow the servers to route jobs from each
queue to another.

From some queues, the servers can consume the jobs,
getting them outside of the system. Traffic with specified
destination gets generated at the queues with some random
rates (usually with bounded burst rates), and the goal is to
balance/stabilize the queues and route traffic to its destination
where it gets consumed, or converted to another type of
traffic.

This work is supported by EU/IST project CHAT, and the LCCC
Karl Mårtensson is with the Dept. of Automatic Control, LTH, Lund

University karl.martensson@control.lth.se
Vladimeros Vladimerou is with the LCCC Linneaus Center in LTH, Lund

University vladimeros.vladimerou@control.lth.se

Fig. 1. Servers B1,B2, and B3 serve queues 1,2,3,4, 5,6, and 7 as shown.
Incoming traffic can be routed to other queues (for example from queue 1
to queues 5 or 6) or out of the system (for example, from queue 4 or 6).

Other work considers discretely enabled links in order to
avoid interference [3]. Distributed weighted graph matching
algorithms are the main method used in that and similar
work. Longest queue first (LQF) schemes also fall in the
the category of discrete service activation. Local pooling
[4] properties have been long used for providing guarantees
for stability of such schemes. Stability proofs follow from
Lyapunov theory as the longest queue becomes then the
Lyapunov function for the system.

Quite similarly, the backpressure algorithm [13], in various
forms, uses an intuitive method of feedback that gives
stability of the queues. For example in Fig. 2 we see that
server B1 is allocated to one of queues 1,2,3. The filled
areas in the figure represent quantitatively the backlogs of
the queues. Jobs are routed according to the differential
“pressure” induced by the size of the queue backlogs at the
servers’ sources and destinations.

Fig. 2. Backpressure algorithm intuition: Server i serves queues Bi =
{1,2,3}. Traffic from queue 2 can be routed by server i to any queue in
the set R2 = {5,6,7}. In this example, with the queue backlog as the filled
area in each queue, server i will choose queue 2 to service and will direct
its traffic to buffer 7.

We present a combined flow optimization and load bal-

2011 American Control Conference
on O'Farrell Street, San Francisco, CA, USA
June 29 - July 01, 2011

978-1-4577-0079-8/11/$26.00 ©2011 AACC 3435

ancing algorithm. Our work considers the allocation of
server resources in routing identical items from their sources
to possible destinations through a network of buffers (or
queues) so as to balance the queue backlogs and avoid
overflows. Our model is very similar to the classic one in [13]
with one of the main differences being that it is formulated
on a continuous state space to begin with. Unlike the
above references which use, in the heart of their algorithms,
differential queue comparison, we use a distributed LQG
regulator, which allows for very fast localized computation.
At the same time, in longer intervals, we update the statistics
and improve the performance of our feedback rule using
a distributed gradient descent algorithm introduced in [10],
[11] and a linear program. Our method has fast computation
times so it can be applied to both vehicular traffic as well as
digital computer networks.

The rest of this article is structured in sections as follows:
(II) after this introduction we give a preliminary overview

of our distributed iterative learning control (ILC)
scheme

(III) we formulate the problem on a networked buffer model
and give our complete algorithm

(IV) we demonstrate the effectiveness of our algorithm in
an example application: an industrial multi-vehicle
system for handling product palettes

(V) we conclude with some remarks and future plans

II. DISTRIBUTED ITERATIVE LEARNING CONTROL

In this section we will summarize the theory behind the
method for distributed ILC, found in [10], [11]. The systems
considered have an associated graph, whose set of vertices
is a partition of the system states in such a way that each
vertex represents a subsystem of the complete system. An
edge between two vertices indicates that two subsystems
directly affect each other. The edges also specify with which
subsystems a certain vertex can communicate. Consider a
discrete time system in state space form

x[n+1] = Ax[n]+Bu[n]+w[n] (1)

where w is independent, zero-mean, Gaussian noise with
variance σ2

w. Let the associated graph be G = (V ,E) where
V is the set of vertices and E the set of edges (i.e. ordered
pairs of vertices). Then there will be a partition of the states

over the vertices, x =
[
xT

1 . . .xT
|V |

]T
(we write xi for the

states associated to vertex vi). According to the edges of the
graph, we restrict the blocks of the dynamics matrix A by

Aki 6= 0 =⇒ (vi,vk) ∈ E or (vk,vi) ∈ E

We also assume that each subsystem has a distinct set of
control signals, implying that the B matrix will be block
diagonal.

The control scheme will be state feedback, i.e. u[n] =
−Lx[n]. In a similar manner as with the dynamics matrix,
we impose a restriction on the allowed feedback matrices L

Lki 6= 0 =⇒ (vi,vk) ∈ E or (vk,vi) ∈ E

The structure of the feedback matrix implies that for a
subsystem to calculate its control signal, it is allowed to use
measurements from other subsystems only if those are its
neighbors, i.e. there is a edge between them in the graph.

We introduce the performance

J(L) = E(|x|2Q + |u|2R)

where x satisfies (1) in stationarity with u=−Lx. The weight
matrix Q is assumed to be block-diagonal, positive semi-
definite and R is assumed to be block-diagonal positive
definite. Note that the performance J is only defined for
stabilizing feedback matrices L.

The objective of the distributed ILC scheme is to use
measurements of x and u from neighboring agents to update
the feedback matrix to improve the performance J. This will
be done by determining a descent direction G of J with
respect to L and change L according to

Lnew = L+ γG

where γ is sufficiently small. All calculations are to be
performed in a localized manner, i.e. to update the feed-
back in agent xi, only local measurements and local model
information may be used.

In order to find a descent direction of J(L), we determine
the gradient of J(L).

Proposition 1: Given a stabilizing state feedback u[n] =
−Lx[n] to the system (1), the gradient of J with respect to
L is

∇LJ = 2
[
RL−BT P(A−BL)

]
X (2)

where X and P satisfy the Lyapunov equations

X = (A−BL)X(A−BL)T +σ
2
w (3)

P = (A−BL)T P(A−BL)+Q+LT RL (4)

Proof. We use the fact that J = tr(Pσ2
w). Denote

AL = A−BL

M = dLT (RL−BT PAL)

By differentiating (4) w.r.t. L we see that dP satisfies the
Lyapunov equation

dP = AT
L dPAL +M+MT

Hence,

dP =
∞

∑
k=0

(AT
L)

k(M+MT)Ak
L

and

dJ = tr
(
dP ·σ2

w
)
= 2tr

(
M

∞

∑
k=0

Ak
Lσ

2
w(A

T
L)

k

)
=

= 2tr
(
dLT (RL−BT PAL)X

)
We conclude the proof by using the fact that dZ =
tr(dXTY)⇒ ∇X Z = Y for matrices XT ,Y ∈ Rn×p. �

3436

By introducing adjoint (or dual) state variables, (2) can
be rewritten so that the gradient in can be computed in a
distributed way.

Proposition 2: Under the assumptions of Proposition 1,
let the stationary process λ defined by the backwards iteration

λ(t−1) = (A−BL)T
λ[n]− (Q+LT RL)x[n] (5)

where x[n] is the state of the original system (λ is called the
adjoint or dual state). Then

∇LJ = 2(RLExxT +BT EλxT) (6)
Proof. Denote QL = Q+LT RL. The dynamics equation of
λ gives

λ[n] =−
∞

∑
j=n+1

(AT
L)

j−n−1QLx[j] =

=−
∞

∑
j=0

(AT
L)

jQLA j+1
L x[n]+

+Ψ{(w[n],w[n+1], . . .)}

where the operator Ψ is the appropriate linear operator of
how the noise w[k] affects λ[n] for k ≥ n. Hence

Eλ[n]x[n]T =−E

(
∞

∑
j=0

(AT
L)

jQLA j+1
L x[n]x[n]T

)
=

=−PALX

since w[k] and x[n] are independent for k ≥ n. �

By running the system for a number of steps and simulating
the adjoint equations backwards in time, each subsystem can
collect measurements of local states x and local adjoint states
λ. These can then be used to determine estimates of the
variances and cross-covariances in (6) and hence determine
an estimate of a part of the gradient of J used to update
the part of the feedback matrix relevant to that subsystem.
In subsystem vi the parts of the gradient relevant to update
Li is [∇LJ]ik where (vi,vk) ∈ E or (vk,vi) ∈ E . Further
analysis on how this procedure actually is distributed, i.e.
all computations can be performed while using the allowed
communication links, can be found in [10].

III. MODEL AND DESIGN DESCRIPTION

Our system is described by a directed bigraph G = (V ,E)
with vertex set V = S ∪Q , where S is a set of servers
or routers, and Q is a set of queues or buffers. We use a
continuum of fluid material to represent items routed by the
servers from queue to queue. At each queue i ∈ Q , based
on a stationary discrete-time random process wi[n] ∈ R, a
continuum of fluid is produced (E(wi) ≥ 0), or consumed
(E(wi) < 0) every time instant n. Each server j ∈ S has
a bandwidth capacity C j which allows it to redirect fluid
among different queues. More specifically, at each time
instant, it can move some fluid from any queue in its
incoming set Q in

j = {i|(i, j) ∈ E} ⊂ Q to any queue in its
outgoing set Q out

j = {k|(j,k) ∈ E} ⊂ Q for up to a total of
C j units of fluid. Similarly, each queue is characterized by an
incoming set S in

i = { j|(j, i) ∈ E} ⊂ S and an outgoing set

S out
i = {k|(i,k) ∈ E} ⊂ S of servers, which can reroute its

fluid backlog. For shorthand we define Q i = Q out
i ∪Q in

i and
Si = S out

i∪S in
i. We also define: Pk = {i|∃ j . j ∈ Sk∧ j ∈ Si},

the set of peers of queue k (other queues that share servers).
When E(wi)≥ 0 (E(wi)< 0) then we say that queue i is

an input (output) node. This is shown in Fig. 3.

Fig. 3. An example of a network subsumed by our formulation. Here, for
example, S out

q2
= {s1,s2}, S in

q2
= {s4}, S out

q4
= {s3}, S in

q4
= {s1,s2}, Q out

s1
=

{q3,q4}, Q in
s1
= {q1,q2}. Queues q1,q2, and q4 are input nodes and queues

q3,q5 are output nodes.

The system equations are thus:

qi[n+1] = qi[n]+wi[n]

− ∑
j∈Sout

i

∑
k∈Q out

j

u jik[n]

+ ∑

j∈S in
i

∑

l∈Q in
j

u jli[n] (7)

where u jik[n] is the amount of fluid routed at time n by
server j from queue i to queue k, and wi[n] is Gaussian
∼ N(µi,σ

2
i) for every i,n, indicating an uncertain produc-

tion/consumption rate. One can consider infinite capacity
queues, or queues with an upper backlog limit 0 ≤ qi[n] ≤
Qi, ∀i,n. In addition, one can either assume a closed system
where fluid only enters and leaves the system via the random
processes wi, or an open system where some queue is allowed
to have an infinite backlog (positive or negative). Using the
latter one can model situations where a external resource can
consume or produce fluid in the network at rates much higher
than the processes in the queues.

Given that we have finite routing capacity for each server,
i.e. that ∑

(i,k)∈Q in
j ×Q out

j

u jik ≤C j, for some C j > 0 for each j ∈

S , the goal is to design the process ui jk[n] so that the variance
of q− qnom, for some given reference qnom is minimal. In
other words, we would like to control the backlogs of the
queues to be as close to some fixed value as possible.

A. Nominal Operating Points

The first step in designing a controller for our system
is to remove the nonzero means from the random pro-
duction/consumption processes wi[n], so that we bring the
problem into an LQG formulation. One has to assume that
the nominal consumption/production rates are sustainable
given the capacities of the servers. This can be verified via
max-flow or feasibility analysis [6], [5] using a simple linear
program.

3437

After part of the server capacity is used to balance
out the nonzero-mean noise, the rest can be allocated to
regulate fluctuations in the system fluid. Without feedback
for variance regulation, the queues will have a zero mean
but unfortunately, the open-loop variance of their backlogs
grows to infinity linearly with n, E|(q[n]−qnom)2|= σ2n.

An intuitive way to distribute server capacity towards
variance regulation is to partition a static bandwidth u jik
of each server j allocated to each link i → j → k into:
u jik = unom

jik +uslack
jik where unom

jik is used to remove the nominal
mean of the exogenous inputs wi and the slack uslack

jik is used
for variance regulation. This we can do using the following
linear program:

max
unom

jik

min
i

(∑
j∈Sout

i

∑
k∈Q out

j

uslack
jik + ∑

j∈S in
i

∑
l∈Q in

j

uslack
jli −σi) (8)

u jik = unom
jik +uslack

jik ∀ j ∈ S , i,k ∈ Q (9)

µi− ∑
j∈Sout

i

∑
k∈Q out

j

unom
jik + ∑

j∈S in
i

∑
l∈Q in

j

unom
jli = 0 ∀i ∈ Q (10)

∑
i ∈ Q in

j
k ∈ Q out

j

u jik ≤C j ∀ j ∈ S (11)

u jik,unom
jik ,uslack

jik ≥ 0 if (i, j),(j,k) ∈ E , zero else (12)

The cost function to be maximized in (8) is the minimum
difference between the sum of the incoming and outgoing
slack component of the server bandwidth over all queues.
The constraint (10) allocates the nominal components to
balance the mean flow in the system and together qnom gives
the nominal operating point for the system. This allows us to
eliminate the effect of the non-zero means µi = E[wi] of the
external flows in/out of the system, while, at the same time,
allocating enough bandwidth to handle fluctuations where the
noise has large variance σi. Constraint (11) gives the capacity
bound for each server, and (12) gives the graph structure.

This program is used to calculate a “DC” component of
the server bandwidth as shown in Fig. 4. It may be run
periodically as the statistics of the production/consumption
processes change. Sparsity of the system graph implies that
one can use distributed constraint consensus algorithms such
as the one in [12].

The quantization block in Fig. 4 is used to indicate a
countable nature of the commodity - discrete items instead
of continuous fluid. The saturation block is used to enforce
the capacity limitation of the servers. In practice, saturation
is avoided by the maximization of the minimum slack com-
ponent of our servers together with the appropriate choice
of Q and R matrices in the following LQG formulation.
When saturation (seldomly) happens, we distribute the entire
capacity of server j while maintaining the ratios belonging to
each component u jik, for example if u1 = u112 +u113 +u114
where u112 = 1,u113 = 3,u114 = 3 and C1 = 5 the actual used

capacities will be uactual
112 = (5

6)(1),u
actual
113 = (5

6)(3),u
actual
114 =

(5
6)(3), summing to 5 units.

B. Distributed ILC Scheme

The theory described in the section II will now be used
to minimize the variance around the nominal operating point
found in III-A. Let q̃ = q− qnom, ũ = u− unom and let w
be independent, zero-mean, Gaussian noise. Translating (7)
around the nominal operating point qnom we get:

q̃[n+1] = q̃[n]+Bũ[n]+w[n] (13)

The matrix B will be on the form
[
B1 . . . B|S |

]
where

each B j correspond to each server in S . The column of each
B j consists of all column vectors [B j]iin,iout

, for (iin, iout) ∈
Q in

j ×Q out
j , with zeros in all entries except for a 1 in position

iin and −1 in iout.
The servers are not allowed to use measurements of all

queues to decide which of the queues to pick up from and
deliver to. Each server s j may only receive measurements
from the queues in Q j, i.e. only from the queues it serves.
This imposes the restriction on the feedback matrix L =[
LT

1 . . . LT
|S |

]T
where L j is associated with server s j. The

columns in each L j must satisfy

[L j]i = 0 when i /∈ Q j

With the structure imposed on L this means that BL =

∑ j∈S B jL j where the elements of each B jL j are

[B jL j]ik =
|Q |

∑
m=1

bim`mk = ∑
(i,m)∈Q j

`mk

Hence [B jL j]ik = 0 unless k ∈ Q j.
Now, we will use the theory presented in II for an

algorithm to control the system of queues. The distributed
algorithm becomes

Algorithm 1: Between times nk and nk+1−1, let the state
feedback law be ũ[n] =−L(k)q̃[n] with the constant feedback
matrix L(k). To update the feedback matrix L(k)

j in each server
s j:

1) Let the system of queues run for times between nk and
nk+1−1.

2) Each queue i determines its corresponding λi[n] by com-
municating with neighboring queues according to (5).

3) Each server s j receives measurements of all qi[n] and
λi[n] for i ∈ Q j.

4) Each server determines estimates of all E ũ jq̃i for i∈Q j
and Eλi1 q̃i2 for i1, i2 ∈ Q j.

5) Each server determines a descent direction G j in which
to update its feedback matrix L(k)

j by

G ji =−2
[
R j(E ũ jq̃i)est +BT

j (Eλq̃i)est
]

6) In each server, for all i ∈ Q j, let

L(k+1)
j = L(k)

j + γG ji

for some step length γ.
7) Increase k by one and go to 1).

3438

Fig. 4. Overview of our queue backlog management design. The required backlog level enters as a reference to a feedback system with bounded-sum,
quantized inputs and additive non-zero mean Gaussian noise. We note that although in our case the mean of incoming noise vector w is known in advance,
it can be also estimated by the controller as shown in the outermost loop.

Remark 1. In step 5 in Algorithm 1 one might presume that
the second term BT

j (Eλq̃i)est requires all λ, but by the sparse
structure of B j it is easily seen that only λi for i ∈ Q j is
needed to form the product BT

j λ.

IV. CASE STUDY

A. Model overview

We now consider a scenario where autonomous vehicles
pick up ready-product palettes from queues in front of pro-
duction lines and deliver them to stretch-wrapping stations
for further processing. These stations lie across the queues
as shown in Fig. 5 and process palettes at a very fast rate.
Vehicles, are only limited to operating on a subset of the
queues.

We assume that there exists a vehicle routing algorithm
with time windows [2] which guarantees that vehicle j can
pick up at least C j palettes per unit time from any of its
assigned queues and deliver them to its respective station.

A nonzero-mean random number wi[n] of palettes is gen-
erated at each queue i at time period n, and each vehicle j
picks up u jk[n] palettes from queue k at the same time (the
third subscript index is not needed here).

Fig. 5. Production queues (in blue) with their servers delivering palettes
to stretch-wrapping lines (in red).

The goal is to use our scheme to keep the number of
palettes in each queue from varying above their capacity,
as this requires halting of the production line and manual
emptying of the queues, a very costly process.

B. Numerical Example

For a numerical example, we consider 4 production
queues, each holding a maximum of 20 items. If a queue
reaches this maximum, the production to that queue is
stopped and restarted after the queues are manually emptied,
something which is quite costly to the process. Note that
this procedure is not shown in the simulation plots where we
allow the queues to overflow for demonstration purposes.

Each queue is driven by the production noise w∈N (6,2).
The queues are served by 6 servers, where each server has
a capacity of 5 units per time sample.

The servers are allocated to the queues according to:
Queue i is served by server i, i + 1 and i + 2. With this
scheme the sets Si become

Si = {i, i+1, i+2} 1≤ i≤ 4

and sets Q j are

Q1 = {1} Q2 = {1,2} Q3 = {1,2,3}
Q4 = {2,3,4} Q5 = {3,4} Q6 = {4}

With this allocation setup and the knowledge of the noise
statistic of the production rate, the nominal operating point
for the servers can be determined using the method described
in section III-A. The nominal operating points were only
calculated once and are

σ1 = {3.5} σ2 = {1.60,2.46}
σ3 = {0.90,1.77,1.77} σ4 = {1.77,1.77,0.90}
σ5 = {2.46,1.60} σ6 = {3.5}

When the nominal operating point is determined, the online
iterative gradient descent method for ILC can be used to
minimize the variance of the number of units on the queues.

3439

The cost that will be considered is

E

(
∑

1≤i≤Nq

|q̃i(t)|2 + ∑
1≤ j≤Nv

[∣∣∣∣ ∑
i∈Q j

ũi j(t)
∣∣∣∣2 + ε

∣∣ũ j j(t)
∣∣2])

where ε = 10−4 is to insure that the resulting weight matrix
for the control signals, R, is positive definite. The reason of
summing the effort of each server over the queues it serves, is
that the variance of the servers total effort is to be minimized.

Following the method in section III-B, the length of the
time interval between updates of the feedback matrix is set
to be 5 time samples (∆nk = nk+1− nk = 5 for all k). The
initial feedback matrix is set to be close zero, meaning that
there is in principal no feedback in the beginning. The result
of simulating the system for 300 time sample is shown in
Fig. 6 together with the result of the same system simulated
without feedback, i.e. only using the nominal control.

Fig. 6. The number of items on each queue when controlling the system
with feedback is shown in blue and without feedback is shown in green for
the first two queues of the system. Notice the costly overflows that occur
throughout the feedback-less case.

We see large improvement when introducing feedback.
Worth noting is that the simulation with feedback actually
starts without feedback, but before it can be seen in the plots,
the gradient method is able to determine a feedback matrix
which improves the performance. A large cost occurs when
the non-feedback regulation goes above the queue capacity
(here 20 items), where the production has to be stopped and
the queues emptied.

We also compared our approach to a one where we used
a longest-queue-first algorithm, i.e.. the servers allocate their
capacity so that the current largest residual from the reference
is minimized. Although the results where quite similar,
the computational time required by the longest-queue-first
method was approximately 100 times larger than our method
since it required the solution of a linear program at each time
step.

V. CONCLUSION

We have outlined a comprehensive method for load balanc-
ing on queue networks, which using only local information

regulates the variance of the networked buffer contents. It
is a novel approach which uses a classical method from
control engineering, namely LQG regulation, it is very fast
computationally and distributed. With unbounded buffer and
server capacity our method guarantees suboptimality bounds
[11]. When the bounds are in place, our proposed quasi-static
re-allocation of server bandwidths helps in reducing server
overflow during variance regulation.

In future work we will look at the stability analysis of
the quantized version of the scheme as well as stochastic
analysis of the expected queue sizes. Currently the Q and R
matrices are tuned in order to minimize overflow of the server
capacities. For handling the server capacity constraints more
rigorously we will also look at receding horizon approach,
adapting work from [8].

REFERENCES

[1] Kevin L. Burgess and Kevin M. Passino. Stability analysis of load
balancing systems. In American Control Conference, 1993, pages 2415
–2419, 2-4 1993.

[2] Jacques Desrosiers, Yvan Dumas, Marius M. Solomon, and Franois
Soumis. Chapter 2 time constrained routing and scheduling. In
C.L. Monma M.O. Ball, T.L. Magnanti and G.L. Nemhauser, editors,
Network Routing, volume 8 of Handbooks in Operations Research and
Management Science, pages 35 – 139. Elsevier, 1995.

[3] S. Dhakal, B.S. Paskaleva, M.M. Hayat, E. Schamiloglu, and C.T.
Abdallah. Dynamical discrete-time load balancing in distributed
systems in the presence of time delays. In Decision and Control,
2003. Proceedings. 42nd IEEE Conference on, volume 5, pages 5128
– 5134 Vol.5, 9-12 2003.

[4] Antonis Dimakis and Jean Walrand. Sufficient conditions for stability
of longest-queue-first scheduling: second-order properties using fluid
limits. Adv. in Appl. Probab, 38(2):505–521, 2006.

[5] P. Elias, A. Feinsteini, and C. E. Shannon. A note on the maximum
flow through a network. IRE Transactions on Information Theory IT
2, pages 117–119, 1956.

[6] L. R. Ford and D. R. Fulkerson. Maximal flow through a network.
Canadian Journal of Mathematics, 8:399–404, 1956.

[7] Naveen Garg, Vijay V. Vazirani, and Mihalis Yannakakis. Approximate
max-flow min-(multi)cut theorems and their applications. In STOC
’93: Proceedings of the twenty-fifth annual ACM symposium on Theory
of computing, pages 698–707, New York, NY, USA, 1993. ACM.

[8] Pontus Giselsson and Anders Rantzer. Distributed model predictive
control with suboptimality and stability guarantees. In Proceedings of
the 49:th IEEE Conference on Decision and Control 2010, Atlanta,
GA, USA, December 2010. Accepted for publication.

[9] K. Kumaran and D. Mitra. Performance and fluid simulations of
a novel shared buffer management system. In INFOCOM ’98.
Seventeenth Annual Joint Conference of the IEEE Computer and
Communications Societies. Proceedings. IEEE, volume 3, pages 1449
–1461 vol.3, 29 1998.

[10] Karl Mårtensson and Anders Rantzer. Gradient methods for iterative
distributed control synthesis. In Proceedings of the 48th IEEE
Conference on Decision and Control, Shanghai, China, December
2009.

[11] Karl Mårtensson and Anders Rantzer. Sub-optimality bound on a
gradient method for iterative distributed control synthesis. In Proc.
19th International Symposium on Mathematical Theory of Networks
and Systems, Budapest, Hungary, July 2010.

[12] G. Notarstefano and F. Bullo. Network abstract linear programming
with application to cooperative target localization. In A. Chiuso,
L. Fortuna, M. Frasca, L. Schenato, and S. Zampieri, editors, Mod-
elling, Estimation and Control of Networked Complex Systems, Un-
derstanding Complex Systems, pages 177–190. 2009.

[13] L. Tassiulas and A. Ephremides. Stability properties of constrained
queueing systems and scheduling policies for maximum throughput in
multihop radio networks. Automatic Control, IEEE Transactions on,
37(12):1936 –1948, dec 1992.

3440

