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Abstract— Deception is pervasive in adversarial situations.
Here we present a formulation of deception using a two-player
game setting. One of the two players deploys a sensor network
to gather information on the opponent who in turn can employ
deception tactics. We solve the resulting general game using
linear programs. We pose an illustrative example and develop
closed form solutions for special cases. Finally, we show how
our solutions capture the well-known “Jones’ Lemma” from
the deception literature.

I. INTRODUCTION

Deception plays an important role in a large variety of

adversarial situations ranging from competition in nature [1]

to warfare [2], [3]. Importance of deception in autonomous

systems has been emphasized by McEneaney [4] where it is

stated that “Deception is a critical component of real-world

games in complex and imperfectly observed environments.

However, even the basic mathematical definitions of issues

in deception are not complete. This an important practical

problem, which is natural to humans, but presents deep

difficulties.” Game theoretic methods have been leveraged to

incorporate secrecy and deception into defensive strategies

in many studies of deception. In [5], Brown et al. present

a two-sided optimization model for planning the placement

of defensive missile interceptors and examine the beneficial

role secrecy and deception can play for either side. In a

similar scenario involving potential terrorist attacks, Zhuang

and Bier [6] explore whether the first mover in a two-step

game should disclose the allocation of defensive resources

or attempt to provide false information in the hopes of

misleading the attacker in the second stage of the game.

In [7], a general asymmetric zero-sum, two-player game is

analyzed, and deception is used by one player to trick the

second player into selecting a non-optimal action.

In most of the previous works, the player that falls

victim to the deception is assumed to be ignorant of the

possibility of deception. However, in many cases, it is

common knowledge that one’s opponent may be trying to

implement some form of deception. This does not mean

that all information should be ignored, but instead, the risk

that a particular piece of information may be compromised

needs to be balanced with the potential advantage that the

information provides. An example of such a scenario can
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be found in [8] where the authors examine a particular two-

player game in which one player utilizes cost-free, passive

deception through concealment or disclosure of defensive

resource allocations in order to neutralize the opponent’s

informational advantage. There have also been some results

on the detection of deception within repeated games [9].

In this paper, we pose a generic two-player, zero-sum

game in which a stochastic sensor network provides one

player, Player B, an informational advantage over its op-

ponent, Player A. Simultaneously, Player A possesses the

ability to corrupt the sensor network output, at a cost, in an

attempt to manipulate Player B’s actions. The possible use

of deception allows Player A to neutralize the informational

advantage of Player B and shift the game’s equilibrium value

closer to the solution of the game where the information

network is removed. It is assumed that Player B knows of the

possibility of deception, but if the risk of deception is small

enough, Player B will still utilize the information provided

by its sensor network. We propose a utility function for the

game which takes into account the effects that the deceptive

tactics have on the sensor network and its corresponding cost.

The solution to this game consists of the optimal strategies

for each of the players and the corresponding value of the

utility function. With respect to Player A, the optimal strategy

represents the best mix of actions along with the compli-

mentary deceptive tactic. The optimal strategy of Player

B represents the best stochastic control law based on the

measured sensor network output. Utilizing the relationship

between the minimax theorem and the strong duality theorem

of linear programing, we show that the solution of the zero-

sum game can be computed by solving a pair of dual linear

programming problems.

Using this framework, we examine an illustrative example,

which can be modified to represent a large range of scenarios.

In our example, Player A must select one of the two locations

in order to store or hide a high value item. There are a

number of information channels that provide Player B a

noisy estimate of the location of the item, which it can

then use to determine which location to attack or search.

It is common knowledge that Player A can corrupt this

information network, but the corruption is not cost free and

the cost of corruption is incorporated into the value function.

We then analytically develop closed form solutions to

two special cases of this game. The resulting equilibrium

player strategies and utility values very nicely capture a well-

known, qualitative principle in the deception field known as

the “Jones’ Lemma”. This maxim is attributed to R. V. Jones

who is considered to be the “father of scientific intelligence”.

It states, “Deception becomes more difficult as the number
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of channels available to the target increases. Nevertheless,

within limits, the greater the number of channels that are

controlled by the deceiver, the greater the likelihood that the

deception will be believed.”[3] We further explore Jone’s

Lemma for a range of parameter values by numerically

solving the general linear program solution.

II. GAME FORMULATION

In this section, we develop a zero-sum game with two

players, Player A and Player B, attempting to minimaximize

a von Neumann-Morgenstern utility function.

A. Player Actions and Deception Tactics

Within the game, each player must select a single action

from their respective sets of possible actions. Player A selects

an action a ∈ A, where A := {a1, a2, . . . , al} is the set of

its possible actions. Similarly, Player B selects action b ∈ B,

where B := {b1, b2, . . . , bm} is its own set possible actions.

Player A must also select a deception tactic, d from the set

of possible deception tactics D := {d1, d2, . . . , dp}. Player

A’s selected action and deception tactic along with Player

B’s selected action are passed into the games value function

V (a, d, b), which generates the value that both players strive

to minimaximize.

B. Sensor Network

Player A’s action and deception tactic are passed into a

stochastic sensor network. The stochastic sensor network

produces a sensor value s ∈ S, where S := {s1, s2, . . . , sN}
is the set of N possible sensor values. The sensor values

within S can represent object classifications, strategy pre-

dictions, or raw sensor measurements. The probability that

the sensor network will produce a particular sensor value

s given that Player A has played action a and deception

tactic d is determined by the conditional probability distribu-

tion PS|A,D(s|a, d). The conditional probability distribution

fully defines the sensor network characteristics and is com-

mon knowledge within the game, i.e., both players know

PS|A,D(s|a, d).

C. Player Strategies

In this game, a player’s strategy is defined as the proba-

bility distribution representing the likelihood of selecting a

particular action from its action set. Because Player A must

select an action and a deceptive tactic, Player A’s strategy

is defined as the joint probability distribution PA,D(a, d).
Player B is allowed to measure the output of the sensor

network before selecting its action. Due to the possible

dependence of the measured sensor value, Player B’s strat-

egy is represented by conditional probability mass function

PB|S(b|s).

D. Utility Function

Using the player strategies and value function, we can

define the von Neumann-Morgenstern utility function [10]:

U(PA,D(a, d), PB(b)) :=
∑

A,D,S,B

PA,D(a, d)PS|A,D(s|a, d)PB|S(b|s)V (a, d, b)(1)

The utility function represents the expected value when

each player implements their respective strategies. The op-

posing goals of the players lead to the following zero-sum

game in which Player A strives to minimize the utility func-

tion while Player B simultaneously attempts to maximize.

U∗ := min
PA,D(a,d)

max
PB|S(b|s)

U(PA,D(a, d), PB(b)) (2)

Although, the game possesses a sequential structure, Player

B only has information generated by the sensor network

and does not posses direct knowledge of Player A’s selected

action. Therefore, the selection of Player B’s optimal strategy

in terms of s, can be generated at the same time Player A

develops its optimal strategy.

III. GENERAL GAME SOLUTION

We begin developing the solution by parameterizing Player

A and Player B’s strategies using matrices α = [αij ]
and β = [βij ] respectively, where αij = PA,D(ai, dj)
and βij = PB|S(bi|sj). The value function V (a, d, b) is

parameterized in matrix form using V = [Vl(j−1)+i,k], where

Vl(j−1)+i,k = V (ai, dj , bk). The conditional probability

functions that describe the sensor network are placed in ma-

trix σ = [σl(j−1)+i,k] such that σl(j−1)+i,k = p(sk|ai, dj).
Using these matrix parameterizations, we can rewrite the

utility function (1) in matrix form:

W (α,β) := vec(α)TVsvec(β) (3)

= U(PA,D(a, d), PB(b)) (4)

where the symbol vec(A) represents a column vector formed

by stacking the columns of matrix A below one another. The

matrix Vs is defined as the row-wise Kronecker product of

σ and V:

Vs :=













σ1∗ ⊗V1∗

σ2∗ ⊗V2∗

...

σlp∗ ⊗Vlp∗













(5)

where σi∗ and Vi∗ represent the ith row of σ and V respec-

tively and the symbol ⊗ indicates the Kronecker product.

From (4), the original game (2) can be rewritten:

W (α,β)∗ := min
α

max
β

vec(α)
T
Vsvec(β)

= min
PA,D(a,d)

max
PB|S(b|s)

U(PA,D(a, d), PB(b))

= U∗ (6)

with the constraints

αij ≥ 0 and
∑

i,j

αij = 1 (7)
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βij ≥ 0 and
∑

i

βij = 1 ∀j = 1, 2, . . . , n (8)

The constraints (7) and (8) ensure that the parameterizations

α and β represent valid probability mass functions.

The solution to this game is the pair of equilibrium

strategies α∗ and β∗ and the corresponding equilibrium

utility U∗ that satisfy the following condition

W (α∗,β) ≤ W (α∗,β∗) = U∗ ≤ W (α,β∗) (9)

Using the strong duality theorem of linear programming,

the solution can be found by solving a set of dual linear

programming problems [10], [11]. We will denote by e and 0

column vectors containing all ones and all zeros respectively.

Vector inequalities are evaluated element-wise.

Theorem 1: Consider the game defined in (6):

U∗ = min
α

max
β

vec(α)TVsvec(β). (10)

The equilibrium strategies, α∗ and β∗, and the resulting

equilibrium value, U∗, are given by the solutions of the

following dual linear programming problems:

Solving for α∗ and u
∗

α∗,u∗ = argmin
α,u

[

0
T eT

]

[

vec(α)

u

]

(11)

s.t.
V

T
s vec(α)− (u⊗ e) ≤ 0

vec(α) ≥ 0 and
∑

i,j αi,j = 1
(12)

Solving for β∗ and v∗

β∗, v∗ = argmax
β,v

[

0
T 1

]

[

vec(β)

v

]

(13)

s.t.
ve−Vsvecβ ≤ 0

β ≥ 0 and
∑

i βij = 1 ∀j = 1, 2, . . . , n+ 1
(14)

Equilibrium Value U∗

U∗ = eTu∗ = v∗ (15)

IV. TWO-ACTION GAME WITH IDENTICAL INFORMATION

CHANNELS

A. Motivating Scenario

Consider a scenario in which Player A represents the

leader of an illegal drug distribution network. He knows

that there is an impending raid on one of two possible

locations where the drugs are hidden, and he knows that

it has not yet been decided which site will be targeted by

the law enforcement organization whose leader is represented

by Player B. The first location is a local community center

and the other location is Player A’s warehouse. It is relatively

easy to hide the drugs at his warehouse, but if they are found

there, it will be difficult to deny involvement and Player A

will most likely be convicted. This is considered the best

possible outcome from the law enforcement’s perspective.
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Fig. 2. Information Network for Two-Action Game

Hiding the drugs at the community center will be initially

more costly; however, if the community center is raided

while the drugs are present, there will be less evidence

linking Player A to the drugs, and it will be easier to avoid

prosecution. On the other hand, if the community center is

raided and the drugs are not there, there will be significant

community outcry against Player B, which will hinder future

operations against Player A. From Player A’s perspective, this

is the best possible outcome.

It is also common knowledge that there are several in-

formants within the community that are willing to provide

information to the law enforcement about the location of the

drugs. These informants are not always accurate though and

can only correctly identify the location with a probability

of pid. It is common knowledge, that Player A is able to

persuade these informants to provide false information if he

is willing to pay a particular price, cd. Player A does not

directly pick which informants to pay off, but tells a lower

level agent the total number of informants to pay off. It is

assumed that any resources used to pay these informants are

resources not used to produce more drugs, which is beneficial

from the law enforcement’s view.

The drug network leader must decide on the location to

hide the drugs and how many informants should be paid

off in an attempt to mislead Player B. On the other hand,

Player B must determine which location to raid based on the

information provided by the informants while taking into

account that these informants could possibly be corrupt.

B. Game Model and Description

Both Player A and Player B have two possible actions to

choose from: A := {a1, a2} and B := {b1, b2}. Actions a1
and a2 represent Player A’s choices to hide the drugs at the

community center or his warehouse, respectively. Actions b1
and b2 represent Player B’s choices to raid the community

center or the leader’s home, respectively.

The sensor network consists of n identical informants and

is depicted graphically in Figure 2. Each informant produces

a scalar value ŝ. When an informant is not corrupted, it

correctly identifies Player A’s action with a likelihood of pid
by outputting a zero for a1 and a one for a2. The informant

may be corrupted by the deception signal d̂i, where d̂i = 1
forces the informant to zero; d̂i = 2 does not corrupt the

channel; and d̂i = 3 forces the informant to one.
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Although each informant can be manipulated through its

corresponding deception signal d̂, Player A is only allowed

to select the total number of informants to corrupt through its

deception strategy d. It is assumed that Player A must force

all corrupted informants to the same value. For example,

Player A may choose to set five informants to zero, but Player

A is not allowed to simultaneously set two informants to

zero and three other informants to one. Therefore, Player

A has the option of forcing up to n informants to zero,

forcing up to n informants to one, or not manipulating

any informants for a total of 2n + 1 different deception

tactics. A particular deception tactic dj ∈ D, where D :=
{d1, . . . , d2n+1}, defines the number of corrupted informants

and their corresponding value according to the following

rule.

Force ((n+ 1)− j) channels to zero j < n+ 1

No Corruption j = n+ 1

Force (j − (n+ 1)) channels to one j > n+ 1

(16)

The outputs of the individual informants are added to-

gether, and the sum is used as the sensor network output

s ∈ S := {s1, . . . , sn+1}, where si = i − 1. The value

function V (ai, dj , bk) = Vik + cd|n+1− j|, where cd is the

cost to corrupt a single informant. It is assumed that

V21 ≤ V12 ≤ V11 ≤ V22. (17)

C. Game Parameterization

In this section, we parameterize the game in order to

solve it using the method described in Theorem 1. The

player strategies are parameterized the same as in Section

III, where we represent Player A and Player B’s strategies

using α = [αi,j ] and β = [βi,j ], respectively.

The elements of the sensor network characteristic matrix

σ are calculated as

σ2(j−1)+i,k =


















B(j, p(ai), k) k ≤ j, j ≤ N

0 k > j, j < N

0 k < j −N, j > N

B(2N − j, p(ai), k − j +N) k ≥ j −N, j > N

(18)

where

B(n, p, k) =

(

n

k

)

pk(1− p)n−k (19)

and

p(a) =

{

(1− pid) a = a1

pid a = a2
(20)

The elements of value matrix V are

V2(j−1)+i,k = V (ai, dj , bk) = V (ai, bk) + cd|n− j|. (21)

D. Standard Game with No Deception and No Sensor Net-

work

If there are no informants, the sensor network has only

one possible value s1 representing “no data”. Player B’s

dependency on s is trivial, and β is simply a column

vector representing the probability of playing each action

b. Since there are no informants to corrupt, Player A only

has one deception strategy d1, which is the degenerative “no

deception” tactic. Therefore Player A’s strategy matrix α

also reduces to a column vector representing the probability

of each action. This situation results in a scalar sensor

characteristic matrix σ = 1. Therefore, the games value

function matrix is defined as Vs = V. These simplifications

convert this game into a standard two-action zero-sum game

whose solution follows easily from standard results [10].

Theorem 2: Assuming that n = 0 and the value function

V (a, d, b) possesses the structure defined by (17) and (21),

the equilibrium strategies and resulting equilibrium value are

given as follows.

Equilibrium Strategies

α∗ =
(

V22−V21

V11−V12−V21+V22

V11−V12

V11−V12−V21+V22

)T

(22)

β∗ =
(

V22−V12

V11−V12−V21+V22

V11−V21

V11−V12−V21+V22

)T

(23)

Equilibrium Utility

U∗ = W (α∗,β∗) = Vs :=
V11V22−V21V12

V11−V12−V21+V22

(24)

This equilibrium represents the baseline value for Player

A. As more informants are added to the game, Player B

gains more information about Player A’s selected action, and

the value of the game increases. Player A can attempt to

corrupt the informants in order to reduce the information

content of the sensor network output and thereby hold the

equilibrium value closer to the standard game equilibrium.

Player A cannot reduce the equilibrium value below the basic

game equilibrium by corrupting the sensors because Player

B can always guarantee at least this value by playing the

standard game mixed equilibrium strategy for each sensor

value.

E. The Case of Perfect Informants pid = 1

In the case where the informants can perfectly identify the

drug location, pid = 1, the sensor values are deterministically

dependent on Player A’s action and deception tactic. In

other words, each combination of action and deception tactic

can result in only one sensor value. However, the resulting

sensor values are not necessarily unique. For instance, the

combinations (a1, d2) and (a2, dn+2) both result in the same

sensor value sn−1. Therefore, Player A now has control

over which sensor value Player B receives, but Player B

cannot uniquely determine Player A’s implemented action or

deception tactic from the measured sensor value. This special

case can be represented as a sequential game with imperfect

information from Player B’s perspective. The resulting closed

form solution to this game is described in Theorem 3.
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Theorem 3: Suppose that n > 0, pid = 1, and the value

function V (a, d, b) possesses the structure defined by (17)

and (21). Let Vs be as in (24) and define the Jones’ Cost Jc
and the Jones’ Ratio γ respectively as

Jc :=
(V11−V12)ncd

V11−V21−V12+V22

and γ := V11−V21

ncd
. (25)

Then, the equilibrium strategies and resulting equilibrium

value are given as follows.

Equilibrium Strategies

α∗
ij = P ∗

A,D(ai, dj) =











α̂ i = 1, j = n+ 1

1− α̂ i = 2, j = 1

0 otherwise

(26)

β∗
ij = P ∗

B|S(bi, sj) =

{

β̂ i = 1

1− β̂ i = 2
(27)

where

α̂ =

{

V22−V21

V11−V21−V12+V22

γ ≥ 1

1 γ < 1
(28)

β̂ =

{

V22−V12+ncd
V11−V21−V12+V22

γ ≥ 1

1 γ < 1
(29)

Equilibrium Utility

U∗ = U(α∗,β∗) =

{

Vs + Jc γ ≥ 1

V11 γ < 1
(30)

In this special case, the equilibrium value for the game

(30) is split into two terms. The value Jc, which we will

refer to as the Jones’ Cost (see Section V for connection

to Jones’ Lemma), represents the additional cost to Player

A for mixing in the deceptive tactic d1. The Jones Cost is

critically dependent on the the number of informants and

the cost of corruption. As either the number of information

channels or the cost of corruption increases, the expected

utility increases as well. Once the number of informants or

the cost of corruption have increased such that γ < 1, the

cost of the deceptive tactic d1 outweighs any benefit the

Player A would receive. Therefore, Player A falls back to

a non-deceptive safety strategy (a1, dn+1). We will refer

to γ as the Jones’ Ratio. The value of the Jones’ Ratio

indicates whether or not to engage in deceptive tactics. This

thresholding behavior leads us to the next section where we

examine the effects of the number of informants and their

corresponding corruption costs for all values of pid.
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Fig. 4. Results for cd = 2

V. JONES’ LEMMA AND THE NUMBER OF INFORMANTS

The total number of informants is a very influential pa-

rameter in the determination of optimal strategies. Theorem

3 showed that there is a limit to Player A’s willingness to

pay the large cost of corruption for several informants. When

the Jones’ Ratio exceeds one, deception is an effective tactic

for Player A, but when the Jones’ Ratio is less then one,

the costs of deception outweigh any benefit received. The

impact of the number of information channels and the cost of

corruption on the success of deception is captured in a maxim

from the intelligence literature known as Jones’ Lemma [12]:

Deception becomes more difficult as the number of chan-

nels available to the target increases. Nevertheless, within

limits, the greater the number of channels that are controlled

by the deceiver, the greater the likelihood that the deception

will be believed [3].

In this game, Player A must corrupt a portion of the

available informants in order to conceal his action from

Player B. If there is a large number of informants, even

a small corruption cost for each informant can prohibit

effective concealment. On the other hand, if the corruption

cost is low enough, Player A can quickly compromise a large

segment of the information network causing it to become

unreliable.

Theorem 3 provides a closed form solution which ana-

lytically formalized the Jones’ Lemma in the special case

pid = 1. We use numerical solutions using Theorem 1 for

the general case where 0 ≤ pid ≤ 1, n > 0, and cd > 0.

In the following simulations, the values of Vij are V11 = 4,

V12 = 3, V21 = 1, and V22 = 5. Using these values, the

standard equilibrium value Vs equals 3.4.

Figure 3 shows four curves depicting the equilibrium

utility as pid sweeps from .5 to 1 for the game where Player

A is denied the opportunity to corrupt any informants. As pid
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Fig. 5. Results for cd = .2

increases, all situations eventually force Player A to choose

his safety strategy resulting in the safety value of 4. It can

be seen that as the number of informants increases, the game

reaches the safety value for smaller values of pid.

Introducing the ability to corrupt the informants has little

effect if the costs are too high for large numbers of infor-

mants as seen in Fig. 4a. Figure 4b shows the probability of

Player A implementing some form of deception. Attempting

deception is a waste of resources for every case except n = 1.

Figure 5a shows that by lowering the cost of deception,

cd = .2, Player A can hold the value close to the original

Nash equilibrium for n = 1 and can slow the rate of increase

for n = 5 and n = 15, but a large number of informants

still results in the safety value. In Fig. 5b, it can be seen

that Player A starts using deception when the informants are

relatively inaccurate, but abandons deceptive tactics for large

numbers of informants as informant accuracy increases.

By allowing Player A to cheaply corrupt the informants, he

can slow the increase substantially and hold the equilibrium

value very close to the original Nash equilibrium value even

with many informants that are highly accurate, which can

be seen in Fig. 6a. The more informants there are in the

information network, the sooner deceptive tactics play a role

as the informants become more accurate as seen in Fig. 6b.

VI. CONCLUSIONS

In this paper, we have formulated a general two-player,

zero-sum game, that takes into account the possibility that

Player A may implement deception to neutralize Player B’s

information. It was shown that the solution of this game

can be found by solving a pair of dual linear programming

problems. An illustrative example was posed, and the closed

form solutions were developed for special cases of this game.

The resulting equilibrium strategies were qualitatively similar

to general strategic guidelines described within the deception
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Fig. 6. Results for cd = .01

community. We also showed how our results capture the

principle enunciated in the Jones’ Lemma. In the future,

we plan to extend these formulations to the setting of

autonomous systems, dynamic games, and repeated games.
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