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Abstract— The problem of state estimation of nonlinear
stochastic dynamic systems with nonlinear inequality con-
straints is treated. The paper focuses on a particle filtering
approach, which provides an estimate of the state in the
form of a probability density function. A new computationally
efficient particle filter for the constrained estimation problem
is proposed. The importance function of the particle filter is
generated by the unscented Kalman filter that is supplemented
with a designed truncation technique to accommodate the
constraint. The proposed filter is illustrated in a numerical
example.

I. INTRODUCTION

State estimation of dynamic stochastic systems is of ex-

treme importance in fields such as automatic control [1],

system identification, signal processing [2], navigation, po-

sition tracking [3], fault diagnosis, communication systems,

bioengineering, geophysics and econometrics.

Its goal is to find an estimate of a state, using a set of

measurements. The dynamics of the state and the relation

between the state and measurement are described by a

discrete time state-space model.

Due to stochastic nature of the system, the estimate

is given in the form of a conditional probability density

function (pdf) of the state conditioned by the measurement.

Calculation of the conditional pdf [4] for nonlinear or non-

Gaussian systems is an intricate functional problem. Usually

a simpler concept approximating the system and providing

only point estimates of the state is preferred. The methods

implicit in this concept are called local as the state estimate,

which they provide, is valid only within a relatively small

vicinity of a point. The methods providing the conditional

pdf of the state are called global as the estimate is valid in

almost whole state space.

In general, the state estimation problem can be solved us-

ing the Bayesian recursive relations (BRR’s). Unfortunately,

their closed-form solution can be obtained in a few special

cases such as a linear Gaussian system where the solution

corresponds to the famous Kalman filter (KF). In other cases

an approximate solution must be searched.

A natural way to obtain an approximate solution is to

simplify the system to achieve analytical solvability of the

BRR’s. Traditionally, the approximation of a nonlinear sys-

tem is performed by the Taylor series expansion of nonlinear

functions in the system description and considering only
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the first few terms. This linearization approach leads to the

extended Kalman filter (EKF) or iterated EKF [5].

Lately, a great deal of effort has been dedicated to using

stochastic and polynomial linearization instead. The idea

of the stochastic linearization is to approximate a random

variable by a set of points which are transformed through

nonlinear mappings (i.e. mappings in the system description)

[6], [7]. The idea of the polynomial linearization is to approx-

imate a nonlinear mapping by a polynomial interpolation [7].

The methods are called σ -point or derivative-free methods

and their main advantage over the traditional methods is that

they do not require computation of the Jacobi matrix of the

nonlinear functions in the state and measurement equations

of the system [8]. The unscented Kalman filter (UKF) and

the divided difference filter are the main representatives of

these methods.

The above mentioned filtering methods provide for non-

linear and/or non-Gaussian systems local estimates only.

To enlarge the estimate validity area and provide a global

estimate, the Gaussian mixture filter has been proposed [9],

which is based on the approximation of all random pdf’s of

interest by weighted mixtures of Gaussian pdf’s and using

multiple local estimators of the Kalman filtering framework.

In the 1960’s solving the integrals appearing in the fil-

tering problem by means of stochastic Monte Carlo (MC)

integration has appeared [10]. But it was not until the 1990’s

when the paper of [11] has been published proposing the

bootstrap filter as an efficient solution to the filtering problem

in very general settings. Popularity of the filter, belonging to

a group later called particle filters (PF’s), was caused by

cheap and formidable computational power which is vital

for application of a PF. The idea of the PF [12]–[14] is

to compute the conditional pdf of the state in the form

of an empirical pdf consisting of a finite set of random

samples (also called particles) and corresponding weights.

The samples and weights define the shape of the conditional

pdf of the state. The central part of the PF’s is the importance

sampling technique which uses an importance function (IF)

for drawing samples. The respective weights are computed

so that the samples and weights together correspond to the

conditional pdf of the state.

Design of the IF is a critical part of the PF. The IF

determines quality of the samples that are generated and,

consequently, efficiency of the PF. Two different approaches

to the IF design can be found. The former, which can be

called direct, focuses on developing the original concepts of

the IF design and proposes enhancements of a prior IF [15],

[16]. The latter, which can be called the composite, comes

out of utilization of another filtering technique to obtain a
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filtering pdf approximation which subsequently used as the

IF, e.g. [17].

Majority of the above mentioned filtering methods largely

have been developed under a condition that system is de-

scribed by the state and measurement equations and pdf’s

of the uncertainties only. But in some cases, an additional

information about the state is known. This information

appears as a constraint for the state variable which often

describes a physical quantity present within the system.

The constraints arise due to physical laws, technological

limitations, kinematic constraints or geometric considerations

of the system [18], [19]. Mathematically, the constraints are

given by a set of linear or nonlinear equalities or inequalities.

In the last decade, several approaches to solve the con-

strained estimation problem have been proposed. Among

others, the following can be mentioned: reparametrizing

and pseudo-measurement approaches [20], [21], optimization

approaches [22], and projection and truncation approaches

[5], [23]–[25]. Most frequently, local filtering methods are

utilized within these approaches. A nice survey of the

approaches was published in [26].

If a global solution to a filtering problem with an inequal-

ity constraint is considered, an ensemble KF based solution

[27] and few PF based techniques have been proposed so far,

mainly based on the optimization [28] or truncation approach

[29]. The truncation approach is more promising for such a

constrained filtering problem due to its lower computational

demands as opposed to the optimization approach [28].

For nonlinear inequality constraints only a simple tech-

nique has been proposed based on drawing samples until a

pre-specified number of samples meet the constraint [29].

This may be inefficient, especially if the probability that a

sample drawn from the IF meets the constraint is very low.

Thus, the goal of the paper is to propose an IF for efficient

sampling for the filtering problem with generally nonlinear

inequality constraint. The aim of the IF design is to follow

the composite approach and use the UKF to provide an

unconstrained IF. Consequently, the unconstrained IF should

be truncated to comply with the constraint.

The paper is organized as follows: Specification of the

constrained state estimation problem is presented in Sec-

tion II. In Section III, the UKF will be introduced and

the truncation technique will be proposed. The truncated

unscented PF will be designed in Section IV. In Section V,

a numerical illustration of the new filter will be given and

concluding remarks are drawn in Section VI.

II. STATE ESTIMATION WITH INEQUALITY CONSTRAINTS

Suppose the system is given by the following state and

measurement equations

xk+1 = fk(xk,uk)+wk, (1)

zk = hk(xk)+vk, (2)

where xk ∈ Rnx , uk ∈ Rnu and zk ∈ Rnz are the state, input and

measurement, respectively at time instant k, fk : Rnx ×Rnu →

Rnx and hk : Rnx → Rnz are known mappings, wk and vk

are state and measurement white noises, described by known

pdf’s p(wk) and p(vk), respectively. The noises are mutually

independent and independent of the initial condition of the

state x0 given by a known p(x0).

Filtering aims at finding the state xk based on measure-

ments up to the time instant k, which will be denoted as

zk = [zT
0 ,zT

1 , . . .zT
k ]T. Due to the stochastic nature of the

system, the state estimate is a random variable described

by the conditional pdf p(xk |z
k).

As was mentioned above, in some cases besides the system

description, given by (1) and (2) and distributions of the

noises and initial condition, also an additional information

about the state is at disposal. As an important feature of

the state-space description is that the state often corresponds

to some physical quantities, a validity region of the state

enforced by the physical representation may be an important

supplementary information for the filter designer.

In this paper the information will be considered in the

form of a generally nonlinear inequality constraint

ak ≤ Ck(xk) ≤ bk, (3)

where Ck : Rnx → Rnc , ak,bk ∈ Rnc , and the inequality ≤

holds for all elements of the vectors and ak 6= bk, ∀k.

The aim of the constrained filtering problem is to find

the conditional pdf p(xk |z
k) considering (1) and (2) and

respecting (3). For convenience, let Ck be a set of all states

satisfying the inequality constraint (3):

Ck = {xk : xk ∈ Rnx ,ak ≤ Ck(xk) ≤ bk}. (4)

Then, the aim of constrained state estimation is to find the

pdf pC (xk |z
k) given by

pC (xk |z
k) ∝

{

p(xk |z
k), if xk ∈ Ck,

0, otherwise.
(5)

III. UKF FOR CONSTRAINED STATE ESTIMATION

PROBLEM

As has been mentioned in the introduction, in this paper

the IF of the PF will be generated by a truncated UKF.

First, the UKF will be introduced for an unconstrained

filtering problem and consequently truncation of the filtering

estimate to comply with the constraint will be proposed. This

truncated UKF will later be used in Section IV as an IF

generator.

The UKF is rooted in the unscented transformation (UT)

which computes the first two moments of a random variable

transformed through a nonlinear mapping using a set of

deterministically chosen points (called σ -points). For the

sake of presentation clarity, the procedure to obtain the σ -

points, {Xi } with corresponding weights {Wi } based on the

first two moments x̂ and Px of a random variable will be

denoted as

[{Xi }, {Wi }] = UTpoints(x̂,Px ,κ), (6)
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and represents the following relations

X0 = x̂,W0 =
κ

nx +κ
, (7)

Xi = x̂+
(

√

(nx +κ)Px

)

i
,Wi =

1

2(nx +κ)
, (8)

Xnx +i = x̂−
(

√

(nx +κ)Px

)

i
,Wnx +i = Wi , (9)

with i = 1,2, . . . ,nx ,where the notation (A)i denotes the i-th

column of the matrix A, the parameter κ is usually selected

in accord with the recommendation given in the case of the

UT. One time-step of the UKF algorithm, which will later be

used for generation of the IF, can be summarized as follows:

Step 1: Suppose, the filtering pdf p(xk−1|z
k−1) is given by

its first two moments, i.e. mean x̂k−1|k−1 = E[xk−1|z
k−1] and

covariance matrix Pk−1|k−1 = cov[xk−1|z
k−1].

Step 2: Then, the predictive statistics are given by

x̂k|k−1 = E[xk |z
k−1] = E[fk−1(xk−1,uk−1)|z

k−1]

≈

2nx
∑

i=0

WiXi,k|k−1, (10)

Pk|k−1 = E[(xk − x̂k|k−1)(xk − x̂k|k−1)
T |zk−1] (11)

≈

2nx
∑

i=0

Wi (Xi,k|k−1 − x̂k|k−1)(Xi,k|k−1 − x̂k|k−1)
T +Qk−1,

Xi,k|k−1 = fk(Xi,k−1|k−1,uk−1),∀i, (12)

where [{Xi,k−1|k−1}, {Wi }] = UTpoints(x̂k−1|k−1,Pk−1|k−1,κ).

Step 3: The state predictive estimate is updated with respect

to the last measurement zk according to

x̂k|k = x̂k|k−1 +Kk|k(zk − ẑk|k−1), (13)

Pk|k = Pk|k−1 −Kk|kPz,k|k−1KT
k|k, (14)

where Kk|k = Pxz,k|k−1(Pz,k|k−1)
−1 is the filter gain and

ẑk|k−1 = E[zk |z
k−1] = E[hk(xk)|z

k−1] ≈

2nx
∑

i=0

WiZi,k|k−1,

(15)

Pz,k|k−1 = E[(zk − ẑk|k−1)(zk − ẑk|k−1)
T |zk−1] = (16)

= E[(hk(xk)− ẑk|k−1)(hk(xk)− ẑk|k−1)
T |zk−1]+Rk

≈

2nx
∑

i=0

Wi (Zi,k|k−1 − ẑk|k−1)(Zi,k|k−1 − ẑk|k−1)
T +Rk,

Pxz,k|k−1 = E[(xk − x̂k|k−1)(zk − ẑk|k−1)
T |zk−1]

≈

2nx
∑

i=0

Wi (Xi,k|k−1 − x̂k|k−1)(Zi,k|k−1 − ẑk|k−1)
T , (17)

Zi,k|k−1 = hk(Xi,k|k−1),∀i, (18)

and [{Xi,k|k−1}, {Wi }] = UTpoints(x̂k|k−1,Pk|k−1,κ).

Again, for presentation clarity, the prediction and filtering

steps of the UKF algorithm will be denoted as

[x̂k|k−1,Pk|k−1] = UKFpred(x̂k−1|k−1,Pk−1|k−1). (19)

for the prediction part and

[x̂k|k,Pk|k] = UKFfilt(x̂k|k−1,Pk|k−1,zk). (20)

A. Truncation of a pdf

Now, suppose, the unconstrained filtering pdf provided by

the UKF is given by the first two moments x̂k|k and Pk|k .

The truncated pdf pC (xk |z
k) can be expressed as

pC (xk |z
k) =

{

ξ−1
k p(xk |z

k), if xk ∈ Ck,

0, otherwise,
(21)

where ξk is a normalizing constant

ξk = Prob{xk ∈ Ck |z
k} =

∫

Ck

p(xk |z
k)dxk . (22)

Relation (21) represents a closed-form description of the

random variable xk with respect to the constraint Ck (3) in

the form of a pdf. To use this truncated pdf (21) as the IF, an

efficient way of sampling from the pdf is required. However,

due to nonlinearity of the mapping Ck , a representation of

the constrained pdf, which can be simply sampled from, is

hard to find. Therefore, its first two moments x̂c
k|k and Pc

k|k
will be calculated and the truncated pdf will be approximated

by a Gaussian pdf with the same first two moments.

pC (xk |z
k) ≈ N {xk; x̂c

k|k,Pc
k|k}. (23)

The moments in (23) are given by

x̂c
k|k =

∫

xk pC (xk |z
k)dxk, (24)

Pc
k|k =

∫

(xk − x̂c
k|k)(xk − x̂c

k|k)
T pC (xk |z

k)dxk . (25)

Analytical calculation of the mean and covariance matrix

is impossible except for a few special cases (e.g. linear

inequality constraints where the computation is based on

evaluation of the error function [5], [30]), and usually an

approximate values have to be found. In this paper, the

values of the integrals (24) and (25) will be approximated

using MC techniques, more specifically the perfect MC

technique and importance sampling (IS). The merit of the

usage of the MC techniques lies in their relative ease of

implementation and acceptable computational demands not

significantly depending on the dimension of the state [31].

1) Perfect Monte Carlo: To approximate the integrals in

(24) and (25), first suppose S samples x
(i)
k , i = 1,2, . . . , S

are drawn from p(xk |z
k). The samples are divided into two

groups; the samples satisfying the constraint Ck denoted

x
c,( j)
k , j = 1,2, . . . , Sc, Sc ≤ S and the samples lying outside

the constraint. Then, the approximate mean and covariance

matrix of the truncated distribution (21) are given by the

1827



following relations

x̂c
k|k ≈

1

Sc

Sc
∑

j=1

x
c,( j)
k , (26)

Pc
k|k ≈

1

Sc

Sc
∑

j=1

(x
c,( j)
k − x̂c

k|k)(x
c,( j)
k − x̂c

k|k)
T . (27)

For the sake of presentation clarity, this truncation will be

denoted as

[x̂c
k|k,Pc

k|k] = TRUNCMC(x̂k|k,Pk|k,Ck). (28)

The perfect MC technique suffers from one major difficulty

appearing in the situation when only a small volume of

p(xk |z
k) lies above the constraint area, or S is chosen small.

Then, Sc can be zero and the moments x̂c
k|k and Pc

k|k are

undefined. To overcome this difficulty, the IS technique

provides an interesting alternative.

2) Importance Sampling: The IS technique considers the

samples to be drawn from an importance function (IF) q(xk)

which may differ from p(xk |z
k). The IF is subject to only

one condition which is q(xk) 6= 0 for any xk ∈ Rnx for which

p(xk |z
k) 6= 0. To achieve high efficiency, the volume of the

IF within the constrained region should be close to one.

Let S samples x
(i)
k , i = 1,2, . . . , S be drawn from the IF

q(xk). Then, Sc samples x
c,( j)
k , j = 1,2, . . . , Sc, lying within

the region Ck are selected and the approximate mean and

covariance matrix of the truncated pdf are given by

x̂c
k|k ≈

1
∑Sc

j=1 w
( j)
k

Sc
∑

j=1

x
c,( j)
k w

( j)
k , (29)

Pc
k|k ≈

1
∑Sc

j=1 w
( j)
k

Sc
∑

j=1

(x
c,( j)
k − x̂c

k|k)(x
c( j)
k − x̂c

k|k)
T w

( j)
k ,

(30)

where w
( j)
k = p(x

c,( j)
k )/q(x

c,( j)
k ), ∀ j . The IS based truncation

will further be denoted as

[x̂c
k|k,Pc

k|k] = TRUNCIS(x̂k|k,Pk|k,Ck). (31)

The techniques (28) and (31) produce the mean x̂c
k|k and

covariance matrix Pc
k|k of a truncated pdf which will be

approximated by a Gaussian pdf with the same moments

and later used for drawing samples of the PF.

IV. TRUNCATED UNSCENTED PARTICLE FILTER

In this section an algorithm of the Truncated Unscented

PF (TUPF) is proposed consisting of the PF with the IF

generated by the UKF with its consecutive truncating by the

techniques proposed in the previous section.

The PF approximates the filtering pdf p(xk |z
k) by an

empirical pdf rN (xk |z
k) =

∑N
i=1 w

(i)
k δ(xk −x

(i)
k ), where δ(·)

is the Dirac function defined as δ(x) = 0 for x 6= 0 and
∫

δ(x)dx = 1. The algorithm of the TUPF is itemized below.

Suppose, the empirical pdf rN (xk−1|z
k−1) is given by the

samples {x
(i)
k−1}

N
i=1 and weights {w

(i)
k−1}

N
i=1.

Algorithm 1: Truncated Unscented Particle Filter (TUPF)

Step 1: (Gaussian approximation) Calculate mean x̂k−1|k−1

and covariance matrix Pk−1|k−1 of the empirical pdf

rN (xk−1|z
k−1) as

x̂k−1|k−1 =
1

N

N
∑

i=1

w
(i)
k−1x

(i)
k−1, (32)

Pk−1|k−1 =

N
∑

i=1

[

x
(i)
k−1 − x̂k−1|k−1

][

x
(i)
k−1 − x̂k−1|k−1

]T

w
(i)
k−1,

(33)

Step 2: (UKF) Calculate the first two moments of the un-

constrained IF by means of the UKF as

[x̂IF
k|k−1,PIF

k|k−1] = UKFpred(x̂k−1,k−1,Pk−1,k−1), (34)

[x̂IF
k|k,PIF

k|k] = UKFfilt(x̂
IF
k,k−1,PIF

k,k−1,zk). (35)

Step 3: (Constraining) From the mean x̂IF
k|k and covariance

matrix PIF
k|k compute constrained mean x̂

IF,c
k|k and covariance

matrix P
IF,c
k|k of the truncated pdf using either the perfect MC

technique

[x̂
IF,c
k|k ,P

IF,c
k|k ] = TRUNCMC(x̂IF

k|k,PIF
k|k,Ck) (36)

or the IS technique

[x̂
IF,c
k|k ,P

IF,c
k|k ] = TRUNCIS(x̂IF

k|k,PIF
k|k,Ck). (37)

The mean x̂
IF,c
k|k and the covariance matrix P

IF,c
k|k are the first

two moments of the IF used for drawing samples.

Step 4: (Drawing samples) Draw samples from the IF

π(xk |z
k,uk−1) = N {xk; x̂

IF,c
k|k ,P

IF,c
k|k } (38)

until for N samples {x
(i)
k }N

i=1 the condition xk ∈ Ck holds.

Step 5: (Computing weights) The weights corresponding to

the drawn samples are given by

w
(i)
k =

p(zk |x
(i)
k )N {x

(i)
k ; x̂IF

k|k−1,PIF
k|k−1}

N {x
(i)
k ; x̂

IF,c
k|k ,P

IF,c
k|k }

, i = 1,2, . . . , N .

(39)

The weights {w
(i)
k }N

i=1 are then normalized to unity, i.e.
∑N

i=1 w
(i)
k = 1.

The samples {x
(i)
k }N

i=1 and weights {w
(i)
k }N

i=1 then constitute

the empirical filtering pdf rN (xk |z
k)

Increase k and continue with step 1.

Note that the measurement pdf p(zk |xk) in (39) is given by

p(zk |xk) = pvk (zk −hk(xk)). The algorithm starts from the

predictive pdf p(x0|z
−1) = p(x0) and therefore in the first

time step, only the filtering part of the UKF algorithm given

by (37) is utilized.
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Fig. 1: Outline of the road and example of a trajectory for

the tracking example.

V. NUMERICAL ILLUSTRATION

For illustration of the proposed TUPF, a problem of

tracking of a moving vehicle on a circular road is considered.

The road is defined by the two arcs with the radii r1 = 100

and r2 = 96 meters [m] with the center at the origin of the

Cartesian coordinate system. The vehicle is supposed to keep

angular velocity ω within ω ∈ [2.85,5.7] degrees per second

[deg/sec]. The equivalent vehicle speed is thus maximally

10 [m/sec]. This situation is depicted in Figure 1 with a

sample trajectory. The vehicle starts from the point (initial

position of the vehicle) [98, 0]T determining the position

in the x and y directions. For the estimation purposes, the

vehicle is supposed to follow the continuous white noise

acceleration motion model. The state of the vehicle is defined

as xk = [x1,k, x2,k, x3,k, x4,k]
T = [xk, ẋk, yk, ẏk]

T (i.e.

it consists of the positions and velocities in the x and y

directions) which evolves according to

xk+1 =









1 T 0 0

0 1 0 0

0 0 1 T

0 0 0 1









xk +









0.5T 2 0

T 0

0 0.5T 2

0 T









wk,

(40)

where T = 1 [sec] is the sampling period and wk is the

Gaussian zero-mean state noise with covariance matrix Q =

I2. The vehicle is supposed to travel for k = 0,1, . . . , K , K =

20.

The vehicle is tracked by a sensor with the sampling

interval T measuring the range and the bearings, i.e. the

measurement equation is

zk =





√

x2
1,k + x2

3,k

tan−1
(

x3,k

x1,k

)



+vk, (41)

where vk is a Gaussian zero-mean measurement noise with

the covariance matrix R = diag([8,10−3]). The function

diag(x) represents a diagonal matrix with elements of the

vector x on its diagonal.

The initial condition is

p(x0) = N















x0 :









98

0

0

10

















10 0 0 0

0 1 0 0

0 0 10 0

0 0 0 1























. (42)

TABLE I: Estimation performance of filters for

the tracking example.

PF UPF RPF TUPF

MSE 5.7160 5.5458 4.4249 3.3119

V 13.8265 14.0802 66.88440 9.3582

time [sec] 0.85 0.97 6.92 4.73

The constraint is defined, with respect to (3), as r2 ≤
√

x2
1,k + x2

3,k ≤ r1. In the example the performance of two

unconstrained PF’s

• generic PF with prior IF (PF),

• unscented PF (UPF),

and two constrained PF’s

• the PF rejecting the samples lying outside the con-

strained area [29] (RPF),

• the newly proposed TUPF

was analyzed.

The scaling parameter for the UKF within the TUPF and

UPF was set to κ = 0. Within the TUPF, the truncation using

the IS-based method (31) was preferred. Sample size is set

for all the PF’s to N = 103.

The PF’s performance was measured using two criteria

based on M = 103 MC simulations; the mean-square error

(MSE)

MSE =

∑M
m=1

∑K
k=0

∑nx

i=1(x
(m)
i,k − x̂

(m)
i,k|k)

2

M(K +1)nx

, (43)

and the criterion characterizing the average filtering covari-

ance matrix [24] given by

V =

∑M
m=1

∑K
k=0 trace(P

(m)
k|k )

M(K +1)
, (44)

where x
(m)
i,k is the i-th component of the true state in the m-th

MC simulation at time k, x̂
(m)
i,k|k is its filtering estimate, and

trace(P
(m)
k|k ) is the trace of the filtering covariance matrix in

the m-th MC simulation. The average computational costs

for one MC simulation are measured as well.

An example of the true trajectory and its estimates by

means of the PF’s is depicted on Figure 2. The results are

summarized in Table I where the MSE (43) and criterion V

(44) consider only position of the object.

The results indicate superior performance of the proposed

TUPF which provides the highest estimation quality with

reduction of the computational costs in relation to the RPF.

This is caused by the fact the IF produced by the truncated

UKF accommodates the constrained region much better than

the prior IF used in the RPF.

The PF and UPF provide low quality of estimates as they

ignore the information about the state given by the constraint.

VI. CONCLUSION

The paper dealt with the state estimation of nonlinear

non-Gaussian systems with the state subject to a nonlinear
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Fig. 2: An example of the true trajectory and its estimates

by the PF, UPF, RPF and TUPF.

inequality constraint. The truncated unscented particle filter

has been proposed, which utilizes a modified unscented

Kalman filter as a generator of the importance function. The

modification of the UKF consists in an additional truncation

step that accommodates the resultant pdf of the UKF to

the constraint. This leads to an efficient IF which exploits

the current measurement and simultaneously respects the

nonlinear inequality constraint. The proposed TUPF was

shown in the numerical example to be superior to the

acceptance/rejection based PF in both computational and

quality aspects.
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