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Abstract— In this paper, the problem of feedback stabiliza-
tion of stochastic differential delay systems is considered. The
systems under study are nonlinear and nonaffine. By using a
LaSalle-type theorem for stochastic systems, general conditions
for stabilizing the closed-loop system with delays are obtained.
In addition, stabilizing state feedback control laws are proposed.

I. INTRODUCTION

During the last decades, the problems of stabilization and
controller design for linear systems with delays has been ex-
tensively studied and is still under investigation (see [6], [8],
[11], [18], [20], [23]). In practice, many control processes
involve delays (often due to transmission or transportation
phenomenons). Delays may significantly affect the closed-
loop performances or even be a source of instability.

In the case of nonlinear systems with delays, the problem
of stabilization is more complex. This is mainly due to the
infinite dimensionality of the system state combined with the
nonlinear structure of the differential equations.

In ([1]-[4]) we investigated the problem of stabilization
of nonlinear, nonaffine systems involving delays in both
continuous and discrete-time cases.

However, the presence of delays and nonlinearities are not
the only sources of complexity. Indeed, various disturbances
that are not measurable may arise which, in turn, limit
the application of classical control systems design. This
motivates the study of the stabilizability and the control
design in a stochastic framework, where the state equation
is described by an Itô differential delay equation driven by
Wiener noise.

The stability analysis of the equilibrium positions of
stochastic differential equations with delays has been exten-
sively studied (see for instance [12],[15],[19]). In the case
of linear stochastic systems with delays, some results on
stabilization have been proposed (in [7], [22], for instance).
However, the stabilization of nonlinear stochastic systems
with delays still remains an open problem.

In this paper, the state feedback stabilizability problem of
equilibrium positions of stochastic nonlinear systems with
delays is considered. The class of systems under study is
nonaffine in control. Moreover, the system without drift - in
other words, the related autonomous system - also involves
delays. By combining a suitable mathematical formalism and
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a LaSalle-type theorem dedicated to stochastic systems ([16],
[17]), sufficient conditions guaranteeing the stability of the
closed-loop system are developed and feedback controllers
for these systems are proposed. The approach adopted in this
paper allows considering a rather large class of nonlinear
stochastic systems. Moreover, the autonomous system (u =
0) as well as the controlled part are affected by a noise.

The organization of the paper is as follows. In Section 2
the class of systems considered is presented and some basic
notions are recalled . In Section 3, the main results are given
and proved. Finally, Section 4 gives conclusions.

II. PROBLEM FORMULATION AND
PRELIMINARIES

Consider the following class of systems:

{
dx(t) = f(x(t), x(t− τ), u)dt+ g(x(t), x(t− τ), u)dξ(t)

x(t) = φ(t), t ∈ [−τ, 0]
(1)

where f and g are smooth vector field such that f(0, 0, 0) =
g(0, 0, 0) = 0. In the following, x(t) ∈ IRn is the state
vector and u ∈ IR is the input vector. τ is a positive scalar
that represents the delay.

The function φ(t) ∈ C = C([−τ, 0], IRn) represents
the initial condition. C([−τ, 0], IRn) is the banach space of
continuous function mapping [−τ, 0] into IRn, with the norm
‖φ‖ = sup

t∈[−τ,0]
|φ(t)| where |φ(t)| stands for the Euclidean

norm of φ(t) ∈ IRn.
{ξ(t), t ≥ 0} is a standard Wiener process defined on the
usual complete probability space (Ω,F , (Ft)t≥0, P ) with
(Ft)t≥0 being the complete right-continuous filtration gen-
erated by ξ and F0 contains all P -null sets.
Let CbF0

([−τ, 0], IRn) be the set of all F0-measurable
bounded C([−τ, 0], IRn)-valued random variables φ.

We now recall some basic notions of stability that will
be used latter. In order to set the ideas, let us consider the
differential stochastic system of the general form{

dx(t) = F (t, xt)dt+G(t, xt)dξ(t)

x(t) = φ(t), t ∈ [−τ, 0]
(2)

where F,G : [0,∞) × C([−τ, 0], IRn) 7→ IRn is continuous
with respect to the first argument, locally Lipschitz with
respect to the second and satisfy F (t, 0) = G(t, 0) = 0
for all t ≥ 0.
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For t ≥ σ− τ , we denote by x(σ, φ)(t) its solution at time t
with initial data φ, specified at time σ, i.e., x(σ, φ)(σ+θ) =
φ(θ), ∀θ ∈ [−τ, 0]. For θ ∈ [−τ, 0],

xt(θ) = x(t+ θ)

and represents the state of the delay system.

Under the previous assumptions on F and G, it is known (see
e.g. [15], [19], [21]) that equation (2) has a unique solution
x(σ, φ)(t) for t ≥ σ − τ.

Let us introduce δ, the delay operator defined for any
function a(.) by :

δa(t) = a(t− τ). (3)

For further simplification, we will use, for any function h :
IRn× IRn → IRn, the following type of notation indexed by
δ,

hδ(x(t)) = h(x(t), δx(t)) = h(x(t), x(t− τ)). (4)

Consider system (2) in the particular case where it contains
discrete delays, i.e. the system is of the form :{
dx(t) = F (t, x(t), x(t− τ))dt+G(t, x(t), x(t− τ))dξ(t)

x(t) = φ(t), t ∈ [−τ, 0]
(5)

The infinitesimal generator associated to (5), obtain by
differentiating V in the sense of Itô, is given by

LδV (t, x) =
∂V (t, x)

∂t
+ < F (t, x, δx),∇V (t, x) >

+
1

2
Tr
(

[G(t, x, δx)GT (t, x, δx)]∇2V (t, x)
) (6)

where ∇ denotes the gradient and 〈., .〉 designates the scalar

product. The matrix ∇V (t, x) =
∂2V (t, x)

∂x2
is the Hessian

matrix of the second order partial derivatives.
The notation Tr(.) designates the trace of a matrix. In the
following, we will also use Ker(.) to designate the Kernel
of a matrix or a function and d(x,D) will represents the
Haussdorf semi-distance between a point x ∈ IRn and a set
D (i.e. d(x,D) = inf

y∈D
|x− y|.) For any matrix M , MT

denotes its transpose.

We shall now recall some notions of stability of equilibrium
solution of stochastic differential delay equations that gener-
alize the notions initially dedicated to stochastic differential
systems (cf. [5], [10], [13]).

DEFINITION 1:
The equilibrium solution, x ≡ 0 of the stochastic differential
delay equation (2) is said to be

1) stable in probability, if for any σ ∈ IR, ε > 0,
there is a β = β(ε, σ) such that ‖φ‖ < β implies
P
(

sup
t≥σ
‖xt(σ, φ)‖ > ε

)
= 0.

2) uniformly stable in probability, if the number β is
independent of σ.

For all β > 0, let us denote by B(0, β), the ball

B(0, β) = {φ ∈ C([−τ, 0], IRn) : ‖φ‖ < β}.

DEFINITION 2:
The equilibrium solution, x ≡ 0 of the stochastic differential
delay equation (2) is said to be asymptotically stable in prob-
ability, if it is stable and there exists b0 = b0(σ) > 0 such
that φ ∈ B(0, b0) implies P

(
lim

t→+∞
‖xt(σ, φ)‖ = 0

)
= 1.

In practice, we can use the following LaSalle-type Theorem
for stochastic differential delay system (cf. [16], [17]). This
is a stochastic version of the well-known LaSalle Theorem
(cf. [9], [14]).

THEOREM 1:
Assume that there are functions V ∈ C1,2([0,∞) ×

IRn, [0,∞)) , γ ∈ L1([0,∞), [0,∞)) and w1, w2 ∈
C(IRn, [0,∞)) such that

LV (t, x, y) ≤ γ(t)− w1(x) + w2(y), x, y ∈ IRn, t ≥ 0

w1(x) ≥ w2(x) x ∈ IRn

and lim
|x|→∞

inf
0≤t<∞

V (x, t) =∞
(7)

Then, Ker(w1 − w2) 6= ∅ and

lim
t→∞

d(x(t, φ),Ker(w1 − w2)) = 0 a.s (almost surely)

for every φ ∈ CbF0
([−τ, 0], IRn).

REMARK 1: The infinitesimal generator associated to sys-
tem (5) is defined, in this theorem, by

LV (t, x, y) =
∂V (t, x)

∂t
+ < F (t, x, y),∇V (t, x) >

+
1

2
Tr
(

[G(t, x, y)GT (t, x, y)]∇2V (t, x)
)

and L1([0,∞), [0,∞)) are the functions γ : [0,∞) →
[0,∞), firstly integrable i.e. such that

∫ ∞
0

γ(t)dt <∞.
Note that the notation LδV (t, x) which will be used through-
out the paper and defined by (6), corresponds to LV (t, x, δx)
in Theorem 1.

We shall now state and prove our main results.

III. MAIN RESULTS
We consider system (1) where we assume that f can be

developed in the form :

f(x(t), x(t− τ), u) = f0(x(t), x(t− τ))

+u f1(x(t), x(t− τ)) + u2 f2(x(t), x(t− τ), u).
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and

g(x(t), x(t− τ), u) = g0(x(t), x(t− τ))

+u g1(x(t), x(t− τ)) + u2 g2(x(t), x(t− τ), u).

f0 and g0 are functions defined by :

f0(x(t), x(t− τ)) = f(x(t), x(t− τ), 0)

and
g0(x(t), x(t− τ)) = g(x(t), x(t− τ), 0).

fi and gi (i = 1, 2) are suitable smooth functions.

Note that since f and g are smooth, such expansion are
possible where

f1(x(t), x(t− τ)) =
∂f

∂u
(x(t), x(t− τ), 0)

and f2(x(t), x(t− τ), u) correspond to the rest of the Taylor
expansion. A similar remark stands for g as well.

Let us denote by L0,δ and L1,δ the second order differential
operators defined for all Ξ ∈ C2 (IRn) by :

L0,δΞ(x(t)) = < f0,δ(x(t)),∇Ξ(x(t)) >

+
1

2
Tr
(
g0,δ(x(t)) gT0,δ(x(t))∇2Ξ(x(t))

)
and

L1,δΞ(x(t)) = < f1,δ(x(t)),∇Ξ(x(t)) >

+
1

2
Tr
(
[g0,δ(x(t)) gT1,δ(x(t))

+g1,δ(x(t)) gT0,δ(x(t))]∇2Ξ(x(t))
)
.

Moreover, we introduce H(x(t), x(t− τ), u) defined by

H(x(t), x(t− τ), u) =

< f2,δ(x(t), u),∇Ξ(x(t) >

+
1

2
Tr
(
{[g0,δ(x(t)) gT2,δ(x(t), u) + g2,δ(x(t), u) gT0,δ(x(t))]

+u[g1,δ(x(t)) gT2,δ(x(t), u) + g2,δ(x(t), u) gT1,δ(x(t))]

+g1,δ(x(t)) gT1,δ(x(t))

+u2g2,δ(x(t), u) gT2,δ(x(t), u)}∇2Ξ(x(t)
)
.

(8)
where we use the notation (4) and set

f2,δ(x(t), u) = f2(x(t), x(t− τ), u)

and

g2,δ(x(t), u) = g2(x(t), x(t− τ), u),

in order to get more compact expressions.

We suppose that there exists a Lyapunov function V ∈
C2 (IRn, [0,∞)) and functions α and αd ∈ C(IRn, [0,∞))
such that

L0,δV (x(t)) ≤ −α(x(t)) + αd(x(t− τ)) (9)

where

αd(x) ≤ α(x) ∀x ∈ IRn.

Let us denote by M the set :

M = Ker(α− αd) ∩Ker(L1,δV ) (10)

We then have the following result :

THEOREM 2: Let

u(x(t), x(t− τ)) = −ψ(x(t), x(t− τ))L1,δV (x(t)) (11)

where ψ ∈ C∞(Rn ×Rn; ]0,∞)) is a function satisfying :

ψ(x(t), x(t− τ))≤ 1

sup
|u|≤1
|Hδ(x(t), u)|2+|L1,δV (x(t))|2+2

(12)
and Hδ(x(t), uδ(x(t))) = H

(
x(t), x(t− τ), uδ(x(t))

)
with uδ(x(t)) = u(x(t), x(t− τ)).

If the set M defined by (10) is reduced to the origin,
then the trivial solution of the system (1) with (11) is almost
surely asymptotically stable.

Proof :
With the control law (11), the closed-loop system is of the

form :

dx(t) = f0(x(t), x(t− τ)) dt

+u(x(t), x(t− τ)) f1(x(t), x(t− τ)) dt

+u2(x(t), x(t− τ)).

f2
(
x(t), x(t− τ), u(x(t), x(t− τ))

)
dt

+g0(x(t), x(t− τ)) dξ(t)

+u(x(t), x(t− τ)) g1(x(t), x(t− τ))) dξ(t)

+u2(x(t), x(t− τ)).

g2
(
x(t), x(t− τ), u(x(t), x(t− τ)

)
dξ(t).

(13)

The infinitesimal generator associated to this system (13) is
given by :
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LδV (x(t)) =< f0,δ(x(t)),∇V (x(t)) >

+uδ(x(t)) < f1,δ(x(t)),∇V (x(t)) >

+u2δ(x(t)) < f2
(
x(t), δx(t), uδ(x(t))

)
,∇V (x(t)) >

+
1

2
Tr
(

[g0,δ(x(t)) + uδ(x(t)) g1,δ(x(t))

+u2δ(x(t)) g2
(
x(t), δx(t), uδ(x(t))

)
].

[g0,δ(x(t)) + uδ(x(t)) g1,δ(x(t))

+u2δ(x(t)) g2
(
x(t), δx(t), uδ(x(t))

)
]T ∇2V (x(t))

)
(14)

Using (11)(12) and the definition of H given by (8), we get

LδV (x(t)) = L0,δV (x(t)) + uδ(x(t)) L1,δV (x(t))

+u2δ(x(t)) H
(
x(t), x(t− τ), uδ(x(t))

)
(15)

It is easy to check that u satisfies the following inequalities

u(x(t), x(t− τ))L1,δV (x(t)) ≤ 0,

|u(x(t), x(t− τ))| ≤ 1

2

and |ψ(x(t), x(t− τ)) Hδ(x(t), uδ(x(t)))| ≤ 1

2
,

with uδ(x(t)) = u(x(t), x(t− τ)).

(16)

Then

LδV (x(t))=L0,δV (x(t))− ψ(x(t), x(t− τ))(L1,δV (x(t)))2

+ψ2(x(t), x(t− τ))(L1,δV (x(t)))2.

Hδ

(
x(t),−ψ(x(t), x(t− τ))(L1,δV (x(t)))

)
(17)

By definition of ψ with (12) and (16),

[
1− ψ(x(t)), x(t− τ))Hδ(x(t), uδ(x(t))

]
≥ 1

2
> 0

and

LδV (x(t))=L0,δV (x(t))− ψ(x(t), x(t− τ))
(
L1,δV (x(t))

)2
.
[

1− ψ(x(t)), x(t− τ))Hδ(x(t), uδ(x(t))
]

≤L0,δV (x(t))−Ψ(x(t), x(t− τ))

2

(
L1,δV (x(t))

)2
≤ 0.

(18)

Therefore, we can deduce that the system (1)(11) is stable
in probability.

By applying the stochastic version of LaSalle Theorem (cf.
[16], [17]), we can deduce that the solution x(t) tend to the
set asymptotically N = {x ∈ ker(LδV )} with probability
one.
If x is an element of N then with (18), and the fact that[

1− ψ(x(t)), x(t− τ))Hδ(x(t), uδ(x(t))
]
> 0

we can deduce that

L0,δV (x) = 0 and L1,δV (x) = 0.

From the condition (9) on L0,δV (x), it follows that :

α(x)− αd(x) = 0 and L1,δV (x) = 0.

Therefore, x is an element ofM. SinceM = {0}, the almost
sure attractivity of the origin is proved. Consequently, the
closed-loop system is almost surely asymptotically stable.
This completes the proof of Theorem 2.

REMARK 2: For sake of simplicity our main result is
given for u ∈ IR. A similar result for u ∈ IRp (p > 1)
can be analogously established.

REMARK 3: When the system is affine in control, i.e., of
the form :

dx(t) = [f0(x(t), x(t− τ)) + u f1(x(t), x(t− τ)) ]dt

+[g0(x(t), x(t− τ)) + u g1(x(t), x(t− τ)))] dw(t)
(19)

we have the following result :

COROLLARY 1: Suppose there exists a Lyapunov func-
tion V ∈ C2 (IRn, [0,∞)) and functions α and αd ∈
C(IRn, [0,∞)) such that condition (9) is satisfied.
If the set

M = Ker(α− αd) ∩Ker(L1,δV )

is reduced to {0}, then the system (19) is almost surely
stabilizable by means of the feedback law

u(x(t), x(t− τ)) = −κL1,δV (x(t)) (20)

with κ > 0.

Example 1

Let us consider the following simple example, described by a
one-dimensional stochastic differential system with a single
delay

{
dx(t) = −2x3(t)dt+ ux(t)dt+ 2x2(t− τ)dξ(t)

x(t) = φ(t), t ∈ [−τ, 0]
(21)

Let us consider the Lyapunov function V (x) = x2. This
function satisfy the condition lim

|x|→∞
V (x) =∞.
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The infinitesimal generator associated to this system is given
by

LδV (x(t)) = −4x4(t)+4x4(t−τ)+2u(x(t), x(t−τ))x2(t)
(22)

Here Hδ(x(t), uδ(x(t)) = 0 and L1,δV (x(t)) = 2x2(t).

The operator L0,δV (x(t)) is given by

L0,δV (x(t)) = −4x4(t) + 4x4(t− τ).

We can notice that condition (9) is satisfied with

α(x(t)) = 4x4(t) and αd(x(t− τ)) = 4x4(t− τ).

By Theorem 2, if we choose a control

u(x(t), x(t− τ)) = −Θ(x(t), x(t− τ))L1,δV (x(t))

= −2Θ(x(t), x(t− τ))x2(t).

then

LδV (x(t)) = −4x4(t)+4x4(t−τ)−4Θ(x(t), x(t−τ))x4(t).
(23)

with Θ(x(t), x(t − τ) ≥ 0. It suffices to take Θ equal to a
positive constant.
We can remark that M = 0. Thus, according to Theorem 2,
the solution of the closed-loop system verify

lim
t→∞

x(t) = 0 a.s (almost surely).

We can also remark that ker(α − αd) is not reduced to
zero. Thus, concerning the open-loop system, we can only
conclude that it is stable in probability but not asymptotically
stable in probability.

Example 2

Consider the following example

{
dx(t)=[−2x3(t) + xµ(t)u]dt+ [2x2(t− τ) + x(t)u]dξ(t)

x(t)=φ(t), t ∈ [−τ, 0]
(24)

where µ ∈ IN, µ ≥ 1.
We consider again the Lyapunov function V (x) = x2.
Differentiating V in the sense of Itô, leads to

LδV (x(t)) =
(
− 4x4(t) + 4x4(t− τ)

)
+u
(
2xµ+1(t) + 2x(t)x2(t− τ)

)
+ u2H

(
x(t), x(t− τ), u

)
(25)

Here

L0,δV (x(t)) = −4x4(t) + 4x4(t− τ)

L1,δV (x(t)) = 2xµ+1(t) + 2x(t)x2(t− τ).

and

H
(
x(t), x(t− τ), u

)
= x2(t).

Note that the infinitesimal generator LδV (x(t)) involve the
control term u in a square form.
By Theorem 2, the equilibrium position x ≡ 0 of the closed-
loop system (24) to which we apply the control law of the
form

u(x(t), x(t− τ)) = −Θ̃(x(t), x(t− τ))L1,δV (x(t))

= −2Θ̃(x(t), x(t− τ))(xµ+1(t) + x(t)x2(t− τ)).
(26)

is almost surely asymptotically stable if the set M = {0}.
The function Θ̃ is chosen so that the condition

Θ̃(x(t), x(t− τ))≤ 1

x4(t) +4(xµ+1(t) + x(t)x2(t− τ))2+2
(27)

is satisfied.
If we determinate

M = Ker(α− αd) ∩Ker(L1,δV )

we can remark that Ker(α−αd) = IRn and that Ker(L1,δV )
depend on the value of µ. Indeed, if x(t) ∈ Ker(L1,δV ) then

x(t) = 0 or xµ(t) = −x2(t− τ).

If µ is odd then we cannot deduce directly the attractivity of
the origin.
If µ ≥ 2 and µ is even, then M = {0} and we can
deduce that the closed-loop system (24)(26) is almost surely
asymptotically stable.

IV. CONCLUSIONS

In this paper, we have considered the problem of feedback
stabilization of a class of nonlinear stochastic time-delayed
systems. We considered the case where the systems have
discrete time delay. We have used the Stochastic version of
the Invariance Principle of LaSalle for stochastic differential
delayed systems in order to tackle this problem. In addition,
we have obtained sufficient conditions for guaranteeing the
asymptotic stability of the closed-loop system and derived
stabilizing state feedback control laws. The case of systems
with multiple delays is currently under investigation.
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