Robust stability criteria for uncertain systems with delay and its derivative varying within intervals

Luis Felipe da Cruz Figueredo, João Yoshiyuki Ishihara, Geovany Araújo Borges and Adolfo Bauchspiess

Abstract

In this paper, stability criteria are proposed for linear systems liable to model uncertainties and with the delay and its derivative varying within intervals. The results are an improvement over previous ones due to the development of a new Lyapunov-Krasovskii functional (LKF). The analysis incorporates recent advances such as convex optimization technique and piecewise analysis method with new delay-intervaldepedent LKFs terms and a novel auxiliary delayed state. Stability conditions are provided for the cases when the delay derivative is upper and lower bounded, when the lower bound is unknown, and when no restrictions are cast upon the derivative. The analysis is enriched with numerical examples that illustrate the effectiveness of our criteria which outperform previous criteria in the literature for nominal and uncertain delayed systems.

I. INTRODUCTION

THE phenomena of time delays are often encountered in various practical systems, such as chemical engineering systems, biological systems, aircraft stabilization, networked control systems, etc [1]. Nonetheless, since time delays can degrade a system's performance and even cause system instability, considerable attention has been devoted to the subject of stability analysis and design of systems with timevarying delays (see, e.g., [1]-[9]).

During the last decade, the problem of time-delayed systems' stability analysis have been deeply investigated under delay-dependent criteria, for the exposure of the delay information leads to less conservative results. Various methods have been taken for deriving stability conditions using different Lyapunov-Krasovskii functionals (LKFs) [6]. Particularly, the employment of Jensen's inequality instead of the cross-terms bounding [10] is a well-established approach that leads to less conservative results. However, this still is a conservative analysis, for the time-varying delay is bounded when considering terms in the LKF derivative containing not only the delay bounds, but also the delay itself. Instead of bounding the time-varying delay, the convex optimization technique incorporated with the Jensen's inequality proved to be effective in [3]. Further impovements were obtained using similar technique with different LKFs (see, e.g., [5][9]). Recently, new Lyapunov functional candidates inspired on [2] have enriched the stability analysis by extending the piecewise analysis method from [2] to systems with timevarying delays, see, e.g., [7]-[9]. Particularly, [7], [9] also explore the information about the delay derivative's lower

[^0]bound through the employment of delay-interval-dependent terms in the Lyapunov functional.

Nevertheless, in practice, it is very difficult to obtain an exact mathematical model due to environmental noise or slowly varying parameters. Systems with time-varying delays almost inevitably present some uncertainties. However, most recent advances in the analysis of systems with time-varying delays aren't fully exploited in most recent works concerning robust stability of delayed systems (see, e.g., [11]-[17]). Therefore, the results from these works are usually more conservative than the results from criteria for delayed systems which do not consider the possibility of model uncertainties (see, e.g., [7], [9]).

Therefore, in this paper, we present a novel robust stability analysis for uncertain systems with delay and its derivative varying within intervals. New delay-interval-dependent LKF terms, that are ignored in previous works, are introduced to exploit all possible information about the delay derivative's lower and upper bounds. Moreover, we introduce an auxiliary delayed state in order to make further use of the delay's lower bound value. These methods considerably improve the stability analysis even for systems with no uncertainties. The resulting criteria can be applied for the case when the delay derivative is upper and lower bounded, when the lower bound is unknown, and when no restrictions are cast upon the derivative characteristics. Numerical examples illustrate the effectiveness of the proposed robust stability criteria which outperform previous criteria in the literature for time-delayed systems with and without uncertainties.

II. Preliminaries

Consider the following continuous-time linear system with time-varying delay:

$$
\begin{array}{ll}
\dot{x}(t)=A x(t)+A_{d} x(t-d(t)), & \tag{1}\\
x>0 \\
x(t)=\rho(t), & t \in\left[-\tau_{\max }, 0\right]
\end{array}
$$

where $x(t) \in \mathbb{R}^{r_{x}}$ is the system's state, $\rho(t)$ is a given function which describes the state's initial condition, and the matrices A and A_{d} are considered not exactly known, but belonging to bounded sets: $A \in \mathscr{A} \subset \mathbb{R}^{r_{x} \times r_{x}}$ and $A_{d} \in \mathscr{A}_{d} \subset \mathbb{R}^{r_{x} \times r_{x}}$. The continuous function $d(t)$ denotes the time-varying delay that satisfies

$$
\begin{equation*}
\tau_{\min } \leq d(t) \leq \tau_{\max } \tag{2}
\end{equation*}
$$

where $0 \leq \tau_{\min } \leq \tau_{\max }$ are constants.
The time-varying delay is assumed to be either fast varying (with no restrictions cast upon the delay derivative) or
differentiable with given bounds:

$$
\begin{equation*}
d_{\min } \leq \dot{d}(t) \leq d_{\max } \tag{3}
\end{equation*}
$$

where $d_{\text {min }} \leq d_{\text {max }}$ are constants.
Considering the parameter uncertainties, equation (1) can be rewritten as:

$$
\begin{equation*}
\dot{x}(t)=(A+\Delta A) x(t)+\left(A_{d}+\Delta A_{d}\right) x(t-d(t)) \tag{4}
\end{equation*}
$$

The uncertainties ΔA e ΔA_{d} are time-varying matrices with appropriate dimensions, which are defined as follows:

$$
\left[\begin{array}{ll}
\Delta A & \Delta A_{d}
\end{array}\right]=D F(t)\left[\begin{array}{ll}
E_{A} & E_{A d} \tag{5}
\end{array}\right]
$$

where D, E_{A}, and $E_{A d}$ are known real constant matrices with appropriate dimensions and $F(t)$ represents an unknown time-varying matrix, which is Lebesque measurable in t and satisfies $F(t)^{T} F(t) \leq I$.

Throughout this paper, the following results will be useful to derive conditions for the establishment of new delaydepedent stability criteria for the uncertain system with timevarying delay (4).

Lemma 1 ([18]) For given scalars r_{1}, r_{2} and matrix $M \in \mathbb{R}^{m \times m}$ such that $\left(r_{2}-r_{1}\right) \geq 0$ and $M>0$, and any vectorial function $x:\left[r_{1}, r_{2}\right] \longrightarrow \mathbb{R}^{m}$, we have:

$$
\left(r_{2}-r_{1}\right) \int_{r_{1}}^{r_{2}} x^{T}(s) M x(s) d s \geq\left(\int_{r_{1}}^{r_{2}} x(s) d s\right)^{T} M\left(\int_{r_{1}}^{r_{2}} x(s) d s\right)
$$

Lemma 2 ([19]) Given matrices $M=M^{T} \in \mathbb{R}^{m \times m}$, $B \in \mathbb{R}^{r \times m}$, the following statement

$$
x^{T} M x>0 \Leftrightarrow M+F B+B^{T} F^{T}>0
$$

holds for some $F \in \mathbb{R}^{m \times r}$ and any $x \in \mathbb{R}^{m} \backslash\{0\}$ such that $B x=0$.

III. STABILITY ANALYSIS

This section presents the main results of this paper. Firstly, we shall, similarly to [7]-[9], divide the delay range $\left[\tau_{m i n}, \tau_{m a x}\right]$. Here we will consider two equally spaced subintervals: $\left[\tau_{1}, \tau_{2}\right]$ and $\left[\tau_{2}, \tau_{3}\right]$, where $\tau_{1}=\tau_{\text {min }}, \tau_{3}=\tau_{\max }$, and $\tau_{2}=\frac{\tau_{\max }+\tau_{\min }}{2}$. Therefore, the linear uncertain delayed system (4) can be rewritten as

$$
\begin{align*}
\dot{x}(t)= & (A+\Delta A) x(t)+\chi_{\left[\tau_{1}, \tau_{2}\right]}(d(t))\left(A_{d}+\Delta A_{d}\right) x(t-d(t)) \\
& +\left(1-\chi_{\left[\tau_{1}, \tau_{2}\right]}(d(t))\right)\left(A_{d}+\Delta A_{d}\right) x(t-d(t)) \tag{6}
\end{align*}
$$

where $\chi_{\left[\tau_{1}, \tau_{2}\right]}: \mathbb{R} \rightarrow\{0,1\}$ is the characteristic function of $\left[\tau_{1}, \tau_{2}\right]:$

$$
\chi_{\left[\tau_{1}, \tau_{2}\right]}(s)=\left\{\begin{array}{lc}
1, & \text { if } s \in\left[\tau_{1}, \tau_{2}\right] \\
0, & \text { otherwise. }
\end{array}\right.
$$

The proposed stability analysis for systems with timevarying delay and model uncertainties is based on the Lyapunov-Krasovskii functional candidate

$$
\begin{equation*}
V(t)=\sum_{i=1}^{6} V_{i}(t) \tag{7}
\end{equation*}
$$

where

$$
\begin{aligned}
& V_{1}(t)=\chi_{\left[\tau_{1}, \tau_{2}\right]}(d(t)) x^{T}(t)\left[\frac{d(t)-\tau_{1}}{\tau_{2}-\tau_{1}} P_{1}+\frac{\tau_{2}-d(t)}{\tau_{2}-\tau_{1}} P_{2}\right] x(t) \\
& \quad+\left(1-\chi_{\left[\tau_{1}, \tau_{2}\right]}(d(t))\right) x^{T}(t)\left[\frac{d(t)-\tau_{2}}{\tau_{3}-\tau_{2}} P_{3}+\frac{\tau_{3}-d(t)}{\tau_{3}-\tau_{2}} P_{1}\right] x(t)
\end{aligned}
$$

$$
\begin{aligned}
& V_{2}(t)=\int_{t-d(t)}^{t-\tau_{1}} x^{T}(s) Q_{1} x(s) d s \\
& V_{3}(t)=\int_{t-\tau_{2}}^{t-\tau_{1}}\left[\begin{array}{c}
x(s) \\
x\left(s-\tau_{2}+\tau_{1}\right)
\end{array}\right]^{T}\left[\begin{array}{ll}
N_{11} & N_{12} \\
N_{12}^{T} & N_{22}
\end{array}\right]\left[\begin{array}{c}
x(s) \\
x\left(s-\tau_{2}+\tau_{1}\right)
\end{array}\right] d s, \\
& V_{4}(t)=\int_{t-\frac{1}{2} \tau_{1}}^{t}\left[\begin{array}{c}
x(s) \\
x\left(s-\frac{\tau_{1}}{2}\right)
\end{array}\right]^{T}\left[\begin{array}{ll}
M_{11} & M_{12} \\
M_{12}^{T} & M_{22}
\end{array}\right]\left[\begin{array}{c}
x(s) \\
x\left(s-\frac{\tau_{1}}{2}\right)
\end{array}\right] d s, \\
& V_{5}(t)=\frac{\tau_{1}}{2} \int_{-\frac{1}{2} \tau_{1}}^{0} \int_{t+\beta}^{t} \dot{x}^{T}(s) Z_{1} \dot{x}(s) d s d \beta+\frac{\tau_{1}}{2} \int_{-\tau_{1}}^{-\frac{1}{2} \tau_{1}} \int_{t+\beta}^{t} \dot{x}^{T}(s) \\
& \quad \times Z_{2} \dot{x}(s) d s d \beta+\left(\tau_{2}-\tau_{1}\right) \int_{-\tau_{2}}^{-\tau_{1}} \int_{t+\beta}^{t} \dot{x}^{T}(s) Z_{3} \dot{x}(s) d s d \beta \\
& \quad+\left(\tau_{3}-\tau_{2}\right) \int_{-\tau_{3}}^{-\tau_{2}} \int_{t+\beta}^{t} \dot{x}^{T}(s) Z_{4} \dot{x}(s) d s d \beta, \\
& V_{6}(t)=\chi_{\left[\tau_{1}, \tau_{2}\right]}(d(t))\left[\int_{-\tau_{2}}^{-d(t)} \int_{t+\beta}^{t} \dot{x}^{T}(s)\left(R_{1}-R_{3}\right) \dot{x}(s) d s d \beta\right] \\
& \quad+\left(1-\chi_{\left[\tau_{1}, \tau_{2}\right]}(d(t))\right)\left[\int_{-d(t)}^{-\tau_{2}} \int_{t+\beta}^{t} \dot{x}^{T}(s)\left(R_{3}-R_{1}\right) \dot{x}(s) d s d \beta\right] \\
& \quad+\int_{-d(t)}^{0} \int_{t+\beta}^{t} \dot{x}^{T}(s)\left(R_{1}+R_{2}\right) \dot{x}(s) d s d \beta \\
& \quad+\int_{-\tau_{3}}^{-d(t)} \int_{t+\beta}^{t} \dot{x}^{T}(s)\left(R_{3}+R_{4}\right) \dot{x}(s) d s d \beta .
\end{aligned}
$$

One can note that the if the conditions

$$
\begin{align*}
& P_{1}=\frac{P_{3}+P_{2}}{2}, \quad P_{2}>0, \quad P_{3}>0, \quad Q_{1} \geq 0, \quad Z_{j}>0, j \in\{1,2,3,4\} \\
& \left(\left(\tau_{2}-\tau_{1}\right) Z_{3}+R_{1}-R_{3}\right)>0, \quad\left(\left(\tau_{3}-\tau_{2}\right) Z_{4}+R_{3}-R_{1}\right)>0, \quad\left(R_{1}+R_{2}\right)>0, \\
& \left(R_{3}+R_{4}\right)>0, \quad N=\left[\begin{array}{ll}
N_{11} & N_{12} \\
N_{12}^{T} & N_{22}
\end{array}\right] \geq 0, \text { and } \quad M=\left[\begin{array}{ll}
M_{11} & M_{12} \\
M_{12}^{T} & M_{22}
\end{array}\right] \geq 0, \tag{8}
\end{align*}
$$

are satisfied, we guarantee the positiveness of (7). Also, it can be seen that $V(t)$ in (7) is continuous in t, since

$$
\begin{aligned}
\lim _{d(t) \rightarrow \tau_{2}} V_{1}(t) & =x^{T}(t) P_{1} x(t) \\
\lim _{d(t) \rightarrow \tau_{2}} V_{6}(t) & =\int_{-\tau_{2}}^{0} \int_{t+\beta}^{t} \dot{x}^{T}(s)\left(R_{1}+R_{2}\right) \dot{x}(t) d s d \beta \\
& +\int_{-\tau_{3}}^{-\tau_{2}} \int_{t+\beta}^{t} \dot{x}^{T}(s)\left(R_{3}+R_{4}\right) \dot{x}(t) d s d \beta
\end{aligned}
$$

In the following, we propose novel robust stability criteria for linear systems with model uncertainties and delay and its derivative varying within intervals.

Theorem 1 For given scalars $\tau_{\min }, \tau_{\max }, d_{\min }$, and $d_{\max }$ such that $0<\tau_{\min } \leq \tau_{\max }$ and $d_{\min }<d_{\max }$, the system (4) with time-varying delay $d(t)$ satisfying (2)-(3), and uncertainties described by (5) is robust asymptotically stable if there exist scalars $\varepsilon_{1}>0$ and $\varepsilon_{2}>0$, and matrices $P_{i}, i \in\{1,2,3\}, Q_{1}, Z_{j}$, $R_{j}, j \in\{1,2,3,4\}, N$, and M, with appropriate dimensions, satisfying (8) and

$$
\begin{array}{ll}
Z_{1}+\left.U_{1}\right|_{d(t) \rightarrow d_{\max }}>0, & Z_{2}+\left.U_{1}\right|_{d(t) \rightarrow d_{\max }}>0, \\
Z_{1}+\left.U_{1}\right|_{\dot{d}(t) \rightarrow d_{\text {min }}}>0, & Z_{2}+\left.U_{1}\right|_{\dot{d}(t) \rightarrow d_{\text {min }}}>0, \tag{10}
\end{array}
$$

and free-weighting matrices $H_{1} \in \mathbb{R}^{7 r_{x} \times 3 r_{x}}$ and $H_{2} \in \mathbb{R}^{7 r_{x} \times 3 r_{x}}$, such that the following LMIs hold:

$$
\begin{array}{ll}
\left.\Omega_{11}\right|_{\dot{d}(t) \rightarrow d_{\text {min }}}<0 ; & \left.\Omega_{11}\right|_{\dot{d}(t) \rightarrow d_{\text {max }}}<0 ; \\
\left.\Omega_{12}\right|_{\dot{d}(t) \rightarrow d_{\text {min }}}<0 ; & \left.\Omega_{12}\right|_{\dot{d}(t) \rightarrow d_{\text {max }}}<0 ; \tag{11}\\
\left.\Omega_{21}\right|_{\dot{d}(t) \rightarrow d_{\text {min }}}<0 ; & \left.\Omega_{21}\right|_{\dot{d}(t) \rightarrow d_{\max }}<0 ; \\
\left.\Omega_{22}\right|_{\dot{d}(t) \rightarrow d_{\text {min }}}<0 ; & \left.\Omega_{22}\right|_{\dot{d}(t) \rightarrow d_{\text {max }}}<0,
\end{array}
$$

where
$\Omega_{1 k}=\left[\begin{array}{cccc}\left(\left.\Psi^{(1)}\right|_{d(t) \rightarrow \tau_{k}}+H_{1} B_{1}+\left(H_{1} B_{1}\right)^{T}\right) & \left(\tau_{2}-\tau_{1}\right) H_{1} \Gamma_{k} & H_{1} \Gamma_{3} D & \varepsilon_{1} T_{E}^{T} \\ * & -\left(\tau_{2}-\tau_{1}\right) \Lambda_{1 k} & 0 & 0 \\ * & * & -\varepsilon_{1} I & 0 \\ * & * & * & -\varepsilon_{1} I\end{array}\right]$
$\Omega_{2 k}=\left[\begin{array}{cccc}\left(\left.\Psi^{(2)}\right|_{\left.d(t) \rightarrow \tau_{(k+1)}+H_{2} B_{2}+\left(H_{2} B_{2}\right)^{T}\right)}\right. & \left(\tau_{3}-\tau_{2}\right) H_{2} \Gamma_{k} & H_{2} \Gamma_{3} D & \varepsilon_{2} T_{E}^{T} \\ * & -\left(\tau_{3}-\tau_{2}\right) \Lambda_{2 k} & 0 & 0 \\ * & * & -\varepsilon_{2} I & 0 \\ * & * & * & -\varepsilon_{2} I\end{array}\right]$
with $k \in\{1,2\}$, and
$\Gamma_{1}=\left[\begin{array}{lll}0 & I & 0\end{array}\right]^{T}, \quad \Gamma_{2}=\left[\begin{array}{lll}I & 0 & 0\end{array}\right]^{T}, \quad \Gamma_{3}=\left[\begin{array}{ccc}0 & 0 & I\end{array}\right]^{T}$,
$\Lambda_{11}=\left(\left(\tau_{2}-\tau_{1}\right) Z_{3}+R_{1}+R_{4}\right), \quad \Lambda_{12}=\left(\left(\tau_{2}-\tau_{1}\right) Z_{3}+R_{1}+(1-\dot{d}(t)) R_{2}+\dot{d}(t) R_{4}\right)$,
$\Lambda_{21}=\left(\left(\tau_{3}-\tau_{2}\right) Z_{4}+R_{3}+R_{4}\right), \quad \Lambda_{22}=\left(\left(\tau_{3}-\tau_{2}\right) Z_{4}+R_{3}+(1-\dot{d}(t)) R_{2}+\dot{d}(t) R_{4}\right)$,
$B_{1}=\left[\begin{array}{ccccccc}0 & I & 0 & 0 & -I & 0 & 0 \\ 0 & -I & 0 & 0 & 0 & I & 0 \\ A & A_{d} & -I & 0 & 0 & 0 & 0\end{array}\right], \quad B_{2}=\left[\begin{array}{ccccccc}0 & I & 0 & 0 & 0 & -I & 0 \\ 0 & -I & 0 & 0 & 0 & 0 & I \\ A & A_{d} & -I & 0 & 0 & 0 & 0\end{array}\right]$,
$T_{E}=\left[\begin{array}{lllllll}E_{A} & E_{A_{d}} & 0 & 0 & 0 & 0 & 0\end{array}\right]$,
$\Psi^{(1)}=\left[\begin{array}{ccccccc}\Psi_{11} & 0 & \frac{d(t)-\tau_{1}}{\tau_{2}-\tau_{1}} P_{1}+\frac{\tau_{2}-d(t)}{\tau_{2}-\tau_{1}} P_{2} & \Psi_{14} & 0 & 0 & 0 \\ * & \Psi_{22} & 0 & 0 & 0 & 0 \\ * & * & \Psi_{33}^{(1)}(d(t))+\Psi_{33} & 0 & 0 & 0 & 0 \\ * & * & * & \Psi_{44} & \Psi_{45} & 0 & 0 \\ * & * & * & 0 & \Psi_{55} & N_{12} & 0 \\ * & * & * & 0 & * & N_{22}-N_{11}-U_{2} & U_{2}-N_{12} \\ * & * & * & 0 & * & * & -U_{2}-N_{12}\end{array}\right]$,
$\Psi^{(2)}=\left[\begin{array}{ccccccc}\Psi_{11} & 0 & \frac{d(t)-\tau_{2}}{\tau_{3}-\tau_{2}} P_{3}+\frac{\tau_{3}-d(t)}{\tau_{3}-\tau_{2}} P_{1} & \Psi_{14} & 0 & 0 & 0 \\ * & \Psi_{22} & 0 & 0 & 0 & 0 \\ * & * & \Psi_{33}^{(2)}(d(t))+\Psi_{33} & 0 & 0 & 0 & 0 \\ * & * & * & \Psi_{44} & \Psi_{45} & 0 & 0 \\ * & * & * & * & \Psi_{55}-U_{3} & N_{12}+U_{3} & 0 \\ * & * & * & * & * & N_{22}-N_{11}-U_{3} & -N_{12} \\ * & * & * & * & * & * & -N_{22}\end{array}\right]$,
with
$U_{1}=\frac{2}{\tau_{1}}\left(R_{1}+(1-\dot{d}(t)) R_{2}+\dot{d}(t) R_{4}\right)$,
$U_{2}=\frac{1}{\tau_{3}-\tau_{2}}\left(\left(\tau_{3}-\tau_{2}\right) Z_{4}+R_{3}+R_{4}\right)$,
$U_{3}=\frac{1}{\tau_{2}-\tau_{1}}\left(\left(\tau_{2}-\tau_{1}\right) Z_{3}+R_{1}+(1-\dot{d}(t)) R_{2}+\dot{d}(t) R_{4}\right)$,
$\Psi_{11}=\frac{\dot{d}(t)}{\tau_{2}-\tau_{1}}\left(P_{1}-P_{2}\right)+M_{11}-Z_{1}-U_{1}$,
$\Psi_{22}=-(1-\dot{d}(t)) Q_{1}$,
$\Psi_{33}=\left(\frac{\tau_{1}}{2}\right)^{2}\left(Z_{1}+Z_{2}\right)+\left(\tau_{2}-\tau_{1}\right)^{2} Z_{3}+\left(\tau_{3}-\tau_{2}\right)^{2} Z_{4}+\tau_{2} R_{1}+\left(\tau_{3}-\tau_{2}\right) R_{3}$,
$\Psi_{33}^{(1)}(d(t))=\left(\tau_{3}-\tau_{2}\right) R_{4}+\left(\tau_{2}-d(t)\right) R_{4}+\tau_{2} \frac{\left(d(t)-\tau_{1}\right)}{\tau_{2}-\tau_{1}} R_{2}+\tau_{1} \frac{\left(\tau_{2}-d(t)\right)}{\tau_{2}-\tau_{1}} R_{2}$,
$\Psi_{33}^{(2)}(d(t))=\left(\tau_{3}-d(t)\right) R_{4}+\tau_{3} \frac{\left(d(t)-\tau_{2}\right)}{\tau_{3}-\tau_{2}} R_{2}+\tau_{2} \frac{\left(\tau_{3}-d(t)\right)}{\tau_{3}-\tau_{2}} R_{2}$,
$\Psi_{44}=M_{22}-M_{11}-Z_{1}-Z_{2}-2 U_{1}$,
$\Psi_{55}=Q_{1}+N_{11}-M_{22}-Z_{2}-U_{1}$,
$\Psi_{14}=Z_{1}+M_{12}+U_{1}$,
$\Psi_{45}=Z_{2}-M_{12}+U_{1}$.

It is also interesting to consider two special cases of the previous result. The case when the lower bound of the timevarying delay derivative is unknown and the case when no restrictions are cast upon delay derivative. For the first case, by fullfilling the restrictions

$$
\begin{equation*}
P_{3}>P_{2} \text { and } R_{2}>R_{4}, \tag{13}
\end{equation*}
$$

the following corollary arises directly from Theorem 1.
Corollary 1 For given scalars $\tau_{\min }, \tau_{\max }$, and $d_{\text {max }}$ such that $0<\tau_{\min } \leq \tau_{\max }$, the system (4) with the delay d(t) satisfying (2) and $\dot{d}(t) \leq d_{\text {max }}$, and uncertainties described by (5) is robust asymptotically stable if there exist scalars $\varepsilon_{1}>0, \varepsilon_{2}>0$, and matrices $P_{i}, i \in\{1,2,3\}, Q_{1}, Z_{j}, R_{j}, j \in\{1,2,3,4\}, N$, and M, with appropriate dimensions, satisfying (8), (9), and (13), and free-weighting matrices $H_{1} \in \mathbb{R}^{7 r_{x} \times 3 r_{x}}$ and $H_{2} \in \mathbb{R}^{7 r_{x} \times 3 r_{x}}$ such that the following LMIs, with notations given in (12), hold:

$$
\begin{array}{ll}
\left.\Omega_{11}\right|_{\dot{d}(t) \rightarrow d_{\max }}<0 ; & \left.\Omega_{12}\right|_{\dot{d}(t) \rightarrow d_{\max }}<0 ; \\
\left.\Omega_{21}\right|_{\dot{d}(t) \rightarrow d_{\max }}<0 ; & \left.\Omega_{22}\right|_{\dot{d}(t) \rightarrow d_{\max }}<0 .
\end{array}
$$

We shall now consider the second case, i.e. fast-varying delays. In this case, as we have no information about the delay derivative, by assuming

$$
\begin{equation*}
P_{1}=P_{2}=P_{3}, \quad Q_{1}=0, \quad \text { and } \quad R_{2}=R_{4} \tag{14}
\end{equation*}
$$

we can eliminate the terms with $\dot{d}(t)$ from (12). Then it is straightforward to obtain the following corollary.

Corollary 2 For given scalars $\tau_{\min }$ and $\tau_{\max }$ such that $0<\tau_{\min } \leq \tau_{\max }$, the system (4) with time-varying delay $d(t)$ satisfying (2), and uncertainties described by (5) is robust asymptotically stable if there exist scalars $\varepsilon_{1}>0$ and $\varepsilon_{2}>0$, and matrices $P_{i}, i \in\{1,2,3\}, Q_{1}, Z_{j}, R_{j}, j \in\{1,2,3,4\}, N$, and M, with appropriate dimensions, satisfying (8) and (14), and free-weighting matrices $H_{1} \in \mathbb{R}^{7 r_{x} \times 3 r_{x}}$ and $H_{2} \in \mathbb{R}^{7 r_{x} \times 3 r_{x}}$ such that the following LMIs, with notations given in (12), hold:

$$
\Omega_{11}<0 ; \quad \Omega_{12}<0 ; \quad \Omega_{21}<0 ; \quad \Omega_{22}<0
$$

Remark 1 Because of the term U_{1}, the results are valid only for minimum delay strictly greater than zero. However it is straightforward to extend these results to the case where $\tau_{\text {min }}=0$ by considering $U_{1}=0$.

Theorem 1, Corollaries 1 and 2 provide stability conditions for linear systems liable to model uncertainties and time-varying delays, and are the main results of the paper. Compared with previous criteria, the conservativeness of the stability analysis is considerably reduced. To improve the results, we have introduced a new auxiliary delayed state $x\left(t-\frac{\tau_{1}}{2}\right)$ in the Lyapunov functional, which allows further exploitation of the delay's lower bound value. Moreover, further improvements were obtained through the introduction of new delay-interval-dependent terms in (7). The employment of these terms yields different expression in the derivative of the Lyapunov functional when $d(t)<\tau_{2}$ and when $\tau_{2}<d(t)$.

The examples in the next section illustrate the effectiveness of our criteria. It is important to emphasize that the stability results are less conservative than previous published criteria not only for systems with uncertainties, but also for nominal time-delayed systems.

IV. NUMERICAL EXAMPLES

Example 1 Consider the system (4) with no uncertainties and

$$
A=\left[\begin{array}{cc}
-2 & 0 \\
0 & -0.9
\end{array}\right], \quad A_{d}=\left[\begin{array}{cc}
-1 & 0 \\
-1 & -1
\end{array}\right], \quad \Delta A=0, \quad \Delta A_{d}=0
$$

TABLE I
ALLOWABLE $\tau_{\max }$ VALUE FOR $d_{\max }=0.1$ AND $d_{\min }=-0.1$ (EX. 1)

Method $\backslash \tau_{\text {min }}$	0	1	2	3	4	5
He et al. [4]	3.605	-	-	3.612	4.064	-
Sun et al. [20]	3.918	-	-	3.918	4.178	5.038
Fridman et al. $\{$ thm 1	4.260	4.571	4.622	4.216	4.090	-
[7] \quad thm 2	3.663	4.203	4.456	4.425	4.429	5.097
Theorem 1	4.363	4.604	4.711	4.698	4.577	5.098

TABLE II
ADMISSIBLE $\tau_{\max }$ VALUE FOR $\tau_{\min }=1$ AND GIVEN $d_{\min }$ AND $d_{\max }$ (EX. 2)

Method	unknown $d_{\text {min }}$,		$\begin{gathered} d_{\min }=-0.1, \\ \left(d_{\max }=0.3\right) \quad\left(d_{\max }=1\right) \end{gathered}$	
	$\left(d_{\max }=0.3\right)$	(unkn $d_{\text {max }}$)		
He et al. [4]	2.2125	1.5187	-	-
Shao [6]	2.247	1.617	-	-
Orihuela et al. [8]	2.353	1.792	-	-
Fridman et al [7] $\{$ Thm 2	2.41	1.76	2.57	1.77
Fridman et al. ${ }^{\text {[7] }}$ S Thm 1	2.42	1.79	2.60	1.85
Theorem 1	2.454	1.797	2.770	1.895

Assuming slow-varying delays $(-0.1 \leq \dot{d}(t) \leq 0.1)$, the maximum values of $\tau_{\max }$ which maintain the system's asymptotical stability for various $\tau_{\min }$ are listed in Table I. It is clear that the obtained results are less conservative than those in [4], [7], [20]

Example 2 Consider the following delayed system described by

$$
A=\left[\begin{array}{cc}
0 & 1 \\
-1 & -2
\end{array}\right], \quad A_{d}=\left[\begin{array}{cc}
0 & 0 \\
-1 & 1
\end{array}\right], \quad \Delta A=0, \quad \Delta A_{d}=0 .
$$

For $\tau_{\min }=1$, and various $d_{\min }$ and $d_{\max }$, the results from various criteria in the literature are listed in Table II. For unknown $d_{\text {min }}$ and for fast-varying delays the results are obtained using Corollaries 1 and 2, respectively. From the table, it can be seen that our criteria present superior results when compared to previous methods. Moreover, one can note that $\tau_{\max }$ grows for $d_{\min } \rightarrow 0$ and for $d_{\max } \rightarrow 0$.

Example 3 Consider now the uncertain system (4) with

$$
\begin{gathered}
A=\left[\begin{array}{cc}
-2 & 0 \\
0 & -1
\end{array}\right], \quad A_{d}=\left[\begin{array}{cc}
-1 & 0 \\
-1 & -1
\end{array}\right], \\
D=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], \quad E_{A}=\left[\begin{array}{cc}
1.6 & 0 \\
0 & 0.05
\end{array}\right], \quad E_{A_{d}}=\left[\begin{array}{cc}
0.1 & 0 \\
0 & 0.3
\end{array}\right] .
\end{gathered}
$$

From Corollary 2, we find that the uncertain delayed system is stable for $\tau_{\min }=0$ and various values for $d_{\max }$ with admissible $\tau_{\max }$ given in Table III. The obtained result represents an important improvement over those from previous robust criteria.

Example 4 Consider the following uncertain system (4) with

$$
A=\left[\begin{array}{cc}
-0.5 & -2 \\
1 & -1
\end{array}\right], A_{d}=\left[\begin{array}{cc}
-0.5 & -1 \\
0 & 0.6
\end{array}\right], \quad D=I, \quad E_{A}=E_{A_{d}}=\left[\begin{array}{cc}
0.2 & 0 \\
0 & 0.2
\end{array}\right] .
$$

In Table IV, we compare the results from Corollaries 1 and 2 with those in [11], [12], [15], [17] for $\tau_{\min }=0$, unknown $d_{\text {min }}$, and various $d_{\max }$. From the table, it is clear

TABLE III
ALLOWABLE UPPER BOUND VALUE OF $\tau_{\max }$ FOR $\tau_{\min }=0$, UNKNOWN $d_{\text {min }}$ AND VARIOUS $d_{\max }$ (EX. 3)

Methods	$\backslash d_{\max }$	0.2	0.4	0.6	0.8
Wu et al. [11]	1.063	0.973	0.873	0.760	
Lien [13]	1.063	0.973	0.873	0.760	
Yue \& Han [21]	1.063	0.973	0.873	0.760	
Qian et al. [17]	1.083	1.023	0.986	0.964	
Park \& Ko [3]	1.099	1.077	1.070	1.068	
Corollary 1	$\mathbf{1 . 2 1 9}$	$\mathbf{1 . 1 0 4}$	$\mathbf{1 . 0 8 9}$	$\mathbf{1 . 0 8 9}$	

TABLE IV
MAX. $\tau_{\max }$ VALUE FOR $\tau_{\min }=0$ AND UNKNOWN $d_{\min }$ (EX. 4)

Methods	$\backslash d_{\max }$	0,5	0,9	Unknown
Wu et al. [11]	0.243	0.242	0.242	
Jing et al. [12]	0.243	0.242	0.242	
He et al. [15]	0.342	0.338	0.336	
Qian et al. [17]	0.379	0.379	0.379	
Corollary 1	$\mathbf{0 . 4 4 7 1}$	$\mathbf{0 . 4 4 6 1}$	-	
Corollary 2	-	-	$\mathbf{0 . 4 4 6 1}$	

that our results are considerably less conservative than those in previous criteria in the literature.

V. CONCLUSIONS

This work's main result concern the establishment of new stability criteria for time-delayed systems liable to model uncertainties and with delay and its derivative varying within bounded intervals. The case when the derivative's lower bound is unknown is also considered, as the case when no restrictions are cast upon the delay derivative. The conservativeness of the stability analysis is considerably reduced with the introduction of new delay-interval-dependent terms and a new auxiliary delayed state in the LKF. Although this paper deals mainly with uncertain delayed systems, our criteria, when applied to nominal systems, also yields less conservative results than previous criteria in the literature. These analyses are ratified with numerical examples that illustrate the effectiveness of the proposed criteria.

Appendix

Proof of Theorem 1

Firstly, we shall consider the case where $d(t)<\tau_{2}$. Taking the time derivative of the Lyapunov functional candidate (7) with $\chi=1$ yields
$\left.\dot{V}_{1}(t)\right|_{d(t)<\tau_{2}}=\dot{d}(t) x^{T}(t) \frac{P_{1}-P_{2}}{\tau_{2}-\tau_{1}} x(t)+2 \dot{x}^{T}(t)\left[\frac{d(t)-\tau_{1}}{\tau_{2}-\tau_{1}} P_{1}+\frac{\tau_{2}-d(t)}{\tau_{2}-\tau_{1}} P_{2}\right] x(t)$
$\dot{V}_{2}(t)=x^{T}\left(t-\tau_{1}\right) Q_{1} x\left(t-\tau_{1}\right)-(1-\dot{d}(t)) x^{T}(t-d(t)) Q_{1} x(t-d(t))$,
$\dot{V}_{3}(t)=\left[\begin{array}{l}x\left(t-\tau_{1}\right) \\ x\left(t-\tau_{2}\right)\end{array}\right]^{T}\left[\begin{array}{ll}N_{11} & N_{12} \\ N_{12}^{T} & N_{22}\end{array}\right]\left[\begin{array}{l}x\left(t-\tau_{1}\right) \\ x\left(t-\tau_{2}\right)\end{array}\right]-\left[\begin{array}{l}x\left(t-\tau_{2}\right) \\ x\left(t-\tau_{3}\right)\end{array}\right]^{T}\left[\begin{array}{ll}N_{11} & N_{12} \\ N_{12}^{T} & N_{22}\end{array}\right]\left[\begin{array}{l}x\left(t-\tau_{2}\right) \\ x\left(t-\tau_{3}\right)\end{array}\right]$,
$\dot{V}_{4}(t)=\left[\begin{array}{c}x(t) \\ x\left(t-\frac{\tau_{1}}{2}\right)\end{array}\right]^{T}\left[\begin{array}{cc}M_{11} & M_{12} \\ M_{12}^{T} & M_{22}\end{array}\right]\left[\begin{array}{c}x(t) \\ x\left(t-\frac{\tau_{1}}{2}\right)\end{array}\right]-\left[\begin{array}{c}x\left(t-\frac{\tau_{1}}{2}\right) \\ x\left(t-\tau_{1}\right)\end{array}\right]^{T}\left[\begin{array}{ll}M_{11} & M_{12} \\ M_{12}^{T} & M_{22}\end{array}\right]\left[\begin{array}{c}x\left(t-\frac{\tau_{1}}{2}\right) \\ x\left(t-\tau_{1}\right)\end{array}\right]$,
$\dot{V}_{5}(t)=\dot{x}^{T}(t)\left[\left(\frac{\tau_{1}}{2}\right)^{2}\left(Z_{1}+Z_{2}\right)+\left(\tau_{2}-\tau_{1}\right)^{2} Z_{3}+\left(\tau_{3}-\tau_{2}\right)^{2} Z_{4}\right] \dot{x}(t)-\frac{\tau_{1}}{2}$
$\times \int_{t-\frac{1}{2} \tau_{1}}^{t} \dot{\tau}^{T}(s) Z_{1} \dot{x}(s) d s-\frac{\tau_{1}}{2} \int_{t-\tau_{1}}^{t-\frac{1}{2} \tau_{1}} \dot{x}^{T}(s) Z_{2} \dot{x}(s) d s-\left(\tau_{2}-\tau_{1}\right)$
$\times \int_{t-\tau_{2}}^{t-\tau_{1}} \dot{x}^{T}(s) Z_{3} \dot{x}(s) d s-\left(\tau_{3}-\tau_{2}\right) \int_{t-\tau_{3}}^{t-\tau_{2}} \dot{x}^{T}(s) Z_{4} \dot{x}(s) d s$,
$\left.\dot{V}_{6}(t)\right|_{d(t)<\tau_{2}}=\dot{x}^{T}(t)\left[\left(\tau_{2}-d(t)\right)\left(R_{1}-R_{3}\right)+d(t)\left(R_{1}+R_{2}\right)+\left(\tau_{3}-d(t)\right)\left(R_{3}+R_{4}\right)\right] \dot{x}(t)$

$$
\begin{align*}
& -\int_{t-d(t)}^{t} \dot{x}^{T}(s)\left(R_{1}+(1-\dot{d}(t)) R_{2}+\dot{d}(t) R_{4}\right) \dot{x}(s) d s \\
& -\int_{t-\tau_{2}}^{t-d(t)} \dot{x}^{T}(s)\left(R_{1}-R_{3}\right) \dot{x}(s) d s-\int_{t-\tau_{3}}^{t-d(t)} \dot{x}^{T}(s)\left(R_{3}+R_{4}\right) \dot{x}(s) d s . \tag{15}
\end{align*}
$$

Suppose now we take $\dot{V}_{5}(t)$ and $\left.\dot{V}_{6}(t)\right|_{d(t)<\tau_{2}}$ in (15) and expand the integral terms using the fact that $\tau_{1} \leq d(t) \leq \tau_{2}$. Then, defining

$$
\gamma_{1 d}:=\frac{1}{d(t)-\tau_{1}} \int_{t-d(t)}^{t-\tau_{1}} \dot{x}(s) d s \quad \text { and } \quad \gamma_{d 2}:=\frac{1}{\tau_{2}-d(t)} \int_{t-\tau_{2}}^{t-d(t)} \dot{x}(s) d s,
$$

where $\lim _{d(t) \rightarrow \tau_{1}} \gamma_{1 d}=\dot{x}\left(t-\tau_{1}\right)$, and $\lim _{d(t) \rightarrow \tau_{2}} \gamma_{d 2}=\dot{x}\left(t-\tau_{2}\right)$, and applying Jensen's inequality (Lemma 1), we have the following inequalities
$\dot{V}_{5}(t)+\left.\dot{V}_{6}(t)\right|_{d(t)<\tau_{2}} \leq \dot{x}^{T}(t)\left[\left(\frac{\tau_{1}}{2}\right)^{2}\left(Z_{1}+Z_{2}\right)+\left(\tau_{2}-\tau_{1}\right)^{2} Z_{3}+\left(\tau_{3}-\tau_{2}\right)^{2} Z_{4}+\tau_{2} R_{1}\right.$ $\left.+\left(\tau_{3}-\tau_{2}\right) R_{3}+\left(\tau_{3}-\tau_{2}\right) R_{4}+\left(\tau_{2}-d(t)\right) R_{4}+\tau_{2} \frac{d(t)-\tau_{1}}{\tau_{2}-\tau_{1}} R_{2}+\tau_{1} \frac{\tau_{2}-d(t)}{\tau_{2}-\tau_{1}} R_{2}\right] \dot{x}(t)$
$-\left[x(t)-x\left(t-\frac{\tau_{1}}{2}\right)\right]^{T}\left(Z_{1}+\frac{2}{\tau_{1}}\left(R_{1}+(1-\dot{d}(t)) R_{2}+\dot{d}(t) R_{4}\right)\right)\left[x(t)-x\left(t-\frac{\tau_{1}}{2}\right)\right]$
$-\left[x\left(t-\frac{\tau_{1}}{2}\right)-x\left(t-\tau_{1}\right)\right]^{T}\left(Z_{2}+\frac{2}{\tau_{1}}\left(R_{1}+(1-\dot{d}(t)) R_{2}+\dot{d}(t) R_{4}\right)\right)\left[x\left(t-\frac{\tau_{1}}{2}\right)-x\left(t-\tau_{1}\right)\right]$
$-\left[x\left(t-\tau_{2}\right)-x\left(t-\tau_{3}\right)\right]^{T}\left(Z_{4}+\frac{1}{\tau_{3}-\tau_{2}}\left(R_{3}+R_{4}\right)\right)\left[x\left(t-\tau_{2}\right)-x\left(t-\tau_{3}\right)\right]$
$-\gamma_{1 d}^{T}\left(\left(d(t)-\tau_{1}\right)\left(\left(\tau_{2}-\tau_{1}\right) Z_{3}+R_{1}+(1-\dot{d}(t)) R_{2}+\dot{d}(t) R_{4}\right)\right) \gamma_{1 d}$
$-\gamma_{d 2}^{T}\left(\left(\tau_{2}-d(t)\right)\left(\left(\tau_{2}-\tau_{1}\right) Z_{3}+R_{1}+R_{4}\right)\right) \gamma_{d 2}$.
Then, from (15) and (16), after some manipulation, one can conclude that

$$
\begin{equation*}
\left.\dot{V}(t)\right|_{d(t)<\tau_{2}} \leq \zeta_{1}^{T}(t)\left(\left.\Omega\right|_{d(t)<\tau_{2}}\right) \zeta_{1}(t) \tag{17}
\end{equation*}
$$

where
$\left.\Omega\right|_{d(t)<\tau_{2}}=\left[\begin{array}{cc}\Psi^{(1)} & 0 \\ * & -\Lambda^{(1)}\end{array}\right], \quad \Lambda^{(1)}=\left[\begin{array}{cc}\left(d(t)-\tau_{1}\right) \Lambda_{12} & 0 \\ 0 & \left(\tau_{2}-d(t)\right) \Lambda_{11}\end{array}\right]$,
and $\Psi^{(1)}, \Lambda_{11}$, and Λ_{12} are defined in (12). Also, we have defined $\quad \zeta_{1}^{T}(t):=\left[\begin{array}{lll}\zeta_{x}^{T} & \gamma_{1 d}^{T} & \gamma_{d 2}^{T}\end{array}\right] \in \mathbb{R}^{9 r_{x}}$, where

$$
\begin{align*}
\zeta_{x}^{T}(t):= & {\left[\begin{array}{llll}
x^{T}(t) & x^{T}(t-d(t)) & \dot{x}^{T}(t) & x^{T}\left(t-\frac{\tau_{1}}{2}\right) \\
& x^{T}\left(t-\tau_{1}\right) & x^{T}\left(t-\tau_{2}\right) & x^{T}\left(t-\tau_{3}\right)
\end{array}\right], }
\end{align*}
$$

Suppose now we introduce $\widetilde{B}_{1}=\left[\begin{array}{ll}\widetilde{B}_{11} & \widetilde{B}_{12}\end{array}\right] \in \mathbb{R}^{3 r_{x} \times 9 r_{x}}$ and $\widetilde{H}_{1}=\left[\begin{array}{ll}H_{1}^{T} & 0\end{array}\right]^{T} \in \mathbb{R}^{9 r_{x} \times 3 r_{x}}$, where H_{1} is a $7 r \times 3 r$ freeweighting matrix, and
$\widetilde{B}_{11}=\left[\begin{array}{ccccccc}0 & I & 0 & 0 & -I & 0 & 0 \\ 0 & -I & 0 & 0 & 0 & I & 0 \\ (A+\Delta A) & \left(A_{d}+\Delta A_{d}\right) & -I & 0 & 0 & 0 & 0\end{array}\right], \widetilde{B}_{12}=\left[\begin{array}{cc}\left(d(t)-\tau_{1}\right) I & 0 \\ 0 & \left(\tau_{2}-d(t)\right) I \\ 0 & 0\end{array}\right]$.
It is interesting to note that $\widetilde{B}_{1} \zeta_{1}(t)=0$. Then a straightforward consequence of applying Finsler's lemma (Lemma 2) is that the right side of (17) is negative definite if $\Xi_{1}<0$ holds, where

$$
\Xi_{1}=\left.\Omega\right|_{d(t)<\tau_{2}}+\widetilde{H}_{1} \widetilde{B}_{1}+\widetilde{B}_{1}^{T} \widetilde{H}_{1}^{T}=\left[\begin{array}{cc}
\left(\Psi^{(1)}+H_{1} \widetilde{B}_{11}+\widetilde{B}_{11}^{T} H_{1}^{T}\right) & H_{1} \widetilde{B}_{12} \\
* & -\Lambda^{(1)}
\end{array}\right]
$$

Here we shall consider the terms Ξ_{11} and Ξ_{12} that arise from Ξ_{1} when $d(t) \rightarrow \tau_{1}$ and $d(t) \rightarrow \tau_{2}$, respectively

$$
\Xi_{1 k}=\left[\begin{array}{cc}
\left(\left.\Psi^{(1)}\right|_{d(t) \rightarrow \tau_{k}}+H_{1} \widetilde{B}_{11}+\widetilde{B}_{11}^{T} H_{1}^{T}\right) & \left(\tau_{2}-\tau_{1}\right) H_{1} \Gamma_{k} \tag{19}\\
* & -\left(\tau_{2}-\tau_{1}\right) \Lambda_{1 k}
\end{array}\right]
$$

where Γ_{1} and Γ_{2} are defined in (12), and $k \in\{1,2\}$.
Note that we have deleted the zero row and column from Ξ_{11} and Ξ_{12}. Now, it can be seen that
$\zeta_{1}^{T}(t) \Xi_{1} \zeta_{1}(t)=\frac{\tau_{2}-d(t)}{\tau_{2}-\tau_{1}} \zeta_{11}^{T}(t) \Xi_{11} \zeta_{11}(t)+\frac{d(t)-\tau_{1}}{\tau_{2}-\tau_{1}} \zeta_{12}^{T}(t) \Xi_{12} \zeta_{12}(t)$, where $\zeta_{11}^{T}(t):=\left[\begin{array}{ll}\zeta_{x}^{T} & \gamma_{d 2}^{T}\end{array}\right], \zeta_{12}^{T}(t):=\left[\begin{array}{ll}\zeta_{x}^{T} & \gamma_{1 d}^{T}\end{array}\right]$, and ζ_{x} is defined in (18). Thus, $\zeta_{1}^{T}(t) \Xi_{1} \zeta_{1}(t)$ is convex in $d(t)$ and
is negative definite only if the vertices $\left(\Xi_{11}\right.$ and $\left.\Xi_{12}\right)$ are.
Furthermore, to eliminate the time-varying matrix $F(t)$ from (19), we use the definition of ΔA and ΔA_{d} from (5) and rewrite \widetilde{B}_{11} as
$\widetilde{B}_{11}=B_{1}+\Gamma_{3}\left[\begin{array}{lllllll}\Delta A & \Delta A_{d} & 0 & 0 & 0 & 0 & 0\end{array}\right]=B_{1}+\Gamma_{3} D F(t) T_{E}, \quad$ (20) where B_{1}, Γ_{3}, and T_{E} are defined in (12). Then, according to (20), $\Xi_{1 k}$ in (19) is rewritten as
$\Xi_{1 k}=\left[\begin{array}{cc}\left(\left.\Psi^{(1)}\right|_{d(t) \rightarrow \tau_{k}}+H_{1} B_{1}+B_{1}^{T} H_{1}^{T}\right) & \left(\tau_{2}-\tau_{1}\right) H_{1} \Gamma_{k} \\ * & -\left(\tau_{2}-\tau_{1}\right) \Lambda_{1 k}\end{array}\right]+\alpha F(t) \beta+\beta^{T} F(t)^{T} \alpha^{T}$, where $\alpha=\left[\begin{array}{ll}\left(H_{1} \Gamma_{3} D\right)^{T} & 0\end{array}\right]^{T}$ and $\beta=\left[\begin{array}{ll}T_{E} & 0\end{array}\right]$.

Then it follows from applying Lemma 3 in [22] that $\Xi_{1 k}<$ 0 holds if and only if there exists a scalar $\varepsilon_{1}>0$ such that

$$
\left[\begin{array}{cc}
\left(\left.\Psi^{(1)}\right|_{d(t) \rightarrow \tau_{k}}+H_{1} B_{1}+B_{1}^{T} H_{1}^{T}\right) & \left(\tau_{2}-\tau_{1}\right) H_{1} \Gamma_{k} \\
* & -\left(\tau_{2}-\tau_{1}\right) \Lambda_{1 k}
\end{array}\right]+\frac{1}{\varepsilon_{1}} \alpha \alpha^{T}+\varepsilon_{1} \beta^{T} \beta<0
$$

holds for $k \in\{1,2\}$. Moreover, taking the Schur's complement, we have $\Omega_{1 k}$ as described in (12). Therefore, Ξ_{1} is negative definite if and only if Ω_{11} and Ω_{12} are.

Furthermore, given (3), the following expressions hold

$$
\begin{aligned}
& \Omega_{11}=\left.\frac{d_{\max }-\dot{d}(t)}{d_{\max }-d_{\min }} \Omega_{11}\right|_{\dot{d}(t) \rightarrow d_{\text {min }}}+\left.\frac{\dot{d}(t)-d_{\min }}{d_{\max }-d_{\min }} \Omega_{11}\right|_{\dot{d}(t) \rightarrow d_{\max }}, \\
& \Omega_{12}=\left.\frac{d_{\max }-\dot{d}(t)}{d_{\max }-d_{\min }} \Omega_{12}\right|_{\dot{d}(t) \rightarrow d_{\text {min }}}+\left.\frac{\dot{d}(t)-d_{\min }}{d_{\max }-d_{\min }} \Omega_{12}\right|_{\dot{d}(t) \rightarrow d_{\max }}
\end{aligned}
$$

Therefore, Ω_{11} and Ω_{12} are convex in $\dot{d}(t) \in\left[d_{\min }, d_{\max }\right]$.
We will now consider the case where $\tau_{2}<d(t) \leq \tau_{3}$. We shall prove that analogous results can be derived using exactly the same arguments of the former case. Taking the time derivative of the Lyapunov functional candidate (7) with $\chi=0$ yields

$$
\begin{align*}
& \left.\dot{V}_{1}(t)\right|_{d(t)>\tau_{2}}=x^{T}(t) \dot{d}(t) \frac{P_{3}-P_{1}}{\tau_{3}-\tau_{2}} x(t)+2 \dot{x}^{T}(t)\left[\frac{d(t)-\tau_{2}}{\tau_{3}-\tau_{2}} P_{3}+\frac{\tau_{3}-d(t)}{\tau_{3}-\tau_{2}} P_{1}\right] x(t), \\
& \left.\dot{V}_{6}(t)\right|_{d(t)>\tau_{2}}=\dot{x}^{T}(t)\left[\left(d(t)-\tau_{2}\right)\left(R_{3}-R_{1}\right)+d(t)\left(R_{1}+R_{2}\right)+\left(\tau_{3}-d(t)\right)\left(R_{3}+R_{4}\right)\right] \dot{x}(t) \\
& \quad-\int_{t-d(t)}^{t} \dot{x}^{T}(s)\left(R_{1}+(1-\dot{d}(t)) R_{2}+\dot{d}(t) R_{4}\right) \dot{x}(s) d s \\
& \quad-\int_{t-d(t)}^{t-\tau_{2}} \dot{x}^{T}(s)\left(R_{3}-R_{1}\right) \dot{x}(s) d s-\int_{t-\tau_{3}}^{t-d(t)} \dot{x}^{T}(s)\left(R_{3}+R_{4}\right) \dot{x}(s) d s . \tag{21}
\end{align*}
$$

and $\dot{V}_{2}(t)$ to $\dot{V}_{5}(t)$ are defined in (15). Then, similarly to (16), we apply Jensen's inequality (Lemma 1) to $\dot{V}_{5}(t)$ and $\left.\dot{V}_{6}(t)\right|_{d(t)>\tau_{2}}$:
$\dot{V}_{5}(t)+\left.\dot{V}_{6}(t)\right|_{d(t)<\tau_{2}} \leq \dot{x}^{T}(t)\left[\left(\frac{\tau_{1}}{2}\right)^{2}\left(Z_{1}+Z_{2}\right)+\left(\tau_{2}-\tau_{1}\right)^{2} Z_{3}+\left(\tau_{3}-\tau_{2}\right)^{2} Z_{4}\right.$
$\left.+\tau_{2} R_{1}+\left(\tau_{3}-\tau_{2}\right) R_{3}+\left(\tau_{3}-d(t)\right) R_{4}+\tau_{3} \frac{\left(d(t)-\tau_{2}\right)}{\tau_{3}-\tau_{2}} R_{2}+\tau_{2} \frac{\left(\tau_{3}-d(t)\right)}{\tau_{3}-\tau_{2}} R_{2}\right] \dot{x}(t)$
$-\left[x(t)-x\left(t-\frac{\tau_{1}}{2}\right)\right]^{T}\left(Z_{1}+\frac{2}{\tau_{1}}\left(R_{1}+(1-\dot{d}(t)) R_{2}+\dot{d}(t) R_{4}\right)\right)\left[x(t)-x\left(t-\frac{\tau_{1}}{2}\right)\right]$
$-\left[x\left(t-\frac{\tau_{1}}{2}\right)-x\left(t-\tau_{1}\right)\right]^{T}\left(Z_{2}+\frac{2}{\tau_{1}}\left(R_{1}+(1-\dot{d}(t)) R_{2}+\dot{d}(t) R_{4}\right)\right)\left[x\left(t-\frac{\tau_{1}}{2}\right)-x\left(t-\tau_{1}\right)\right]$
$-\left[x\left(t-\tau_{1}\right)-x\left(t-\tau_{2}\right)\right]^{T}\left(Z_{3}+\frac{1}{\tau_{2}-\tau_{1}}\left(R_{1}+(1-\dot{d}(t)) R_{2}+\dot{d}(t) R_{4}\right)\right)\left[x\left(t-\tau_{1}\right)-x\left(t-\tau_{2}\right)\right]$
$-\gamma_{2 d}^{T}\left(d(t)-\tau_{2}\right)\left(\left(\tau_{3}-\tau_{2}\right) Z_{4}+(1-\dot{d}(t)) R_{2}+R_{3}+\dot{d}(t) R_{4}\right) \gamma_{2 d}$
$-\gamma_{d 3}^{T}\left(\tau_{3}-d(t)\right)\left(\left(\tau_{3}-\tau_{2}\right) Z_{4}+R_{3}+R_{4}\right) \gamma_{d 3}$,
where $\gamma_{2 d}$ and $\gamma_{d 3}$ are defined by

$$
\begin{equation*}
\gamma_{2 d}:=\frac{1}{d(t)-\tau_{2}} \int_{t-d(t)}^{t-\tau_{2}} \dot{x}(s) d s \quad \text { and } \quad \gamma_{d 3}:=\frac{1}{\tau_{3}-d(t)} \int_{t-\tau_{3}}^{t-d(t)} \dot{x}(s) d s, \tag{22}
\end{equation*}
$$

with $\lim _{d(t) \rightarrow \tau_{2}} \gamma_{2 d}=\dot{x}\left(t-\tau_{2}\right)$ and $\lim _{d(t) \rightarrow \tau_{3}} \gamma_{d 3}=\dot{x}\left(t-\tau_{3}\right)$.
We denote $\zeta_{2}^{T}(t):=\left[\begin{array}{lll}\zeta_{x}^{T} & \gamma_{2 d}^{T} & \gamma_{d 3}^{T}\end{array}\right] \in \mathbb{R}^{9 r_{x}}$ where ζ_{x} is defined in (18). Then taking $\dot{V}_{2}(t), \dot{V}_{3}(t)$ and $\dot{V}_{4}(t)$ from (15),
$\left.\dot{V}_{1}(t)\right|_{d(t)>\tau_{2}}$ (21), and (22) one concludes that

$$
\begin{equation*}
\left.\dot{V}(t)\right|_{d(t)>\tau_{2}} \leq \zeta_{2}^{T}(t)\left(\left.\Omega\right|_{d(t)>\tau_{2}}\right) \zeta_{2}(t) \tag{23}
\end{equation*}
$$

where

$$
\left.\Omega\right|_{d(t)>\tau_{2}}=\left[\begin{array}{cc}
\Psi^{(2)} & 0 \\
* & -\Lambda^{(2)}
\end{array}\right], \Lambda^{(2)}=\left[\begin{array}{cc}
\left(d(t)-\tau_{2}\right) \Lambda_{22} & 0 \\
0 & \left(\tau_{3}-d(t)\right) \Lambda_{21}
\end{array}\right],
$$

and $\Psi^{(2)}, \Lambda_{21}$, and Λ_{22} are defined in (12).
Suppose now that analogously to the case where $\chi=1$, we define a matrix $\widetilde{B}_{2}=\left(\left[\begin{array}{ll}B_{2} & \widetilde{B}_{22}\end{array}\right]+\left[\begin{array}{cc}\Gamma_{3} D F(t) T_{E} & 0\end{array}\right]\right)$ such that $\widetilde{B}_{2} \zeta_{2}(t)=0$, where B_{2} is defined in (12), and \widetilde{B}_{22} is defined in an analogous fashion to \widetilde{B}_{12}.

Then the condition that arises from applying Finsler's lemma (Lemma 2) to the right side of (23) is that $\zeta_{2}^{T}(t)\left(\left.\Omega\right|_{d(t)>\tau_{2}}\right) \zeta_{2}(t)$ is negative definite if there exists a matrix $\widetilde{H}_{2}=\left[\begin{array}{ll}H_{2}^{T} & 0\end{array}\right]^{T} \in \mathbb{R}^{9 r_{x} \times 3 r_{x}}$ such that $\Xi_{2}<0$ holds, where $H_{2} \in \mathbb{R}^{7 r_{x} \times 3 r_{x}}$ is a free-weighting matrix and

$$
\begin{equation*}
\Xi_{2}=\left.\Omega\right|_{d(t)>\tau_{2}}+\widetilde{H}_{2} \widetilde{B}_{2}+\widetilde{B}_{2}^{T} \widetilde{H}_{2}^{T} . \tag{24}
\end{equation*}
$$

Similarly to (19), we consider the terms Ξ_{21} and Ξ_{22} that arise from Ξ_{2} when $d(t) \rightarrow \tau_{2}$ and $d(t) \rightarrow \tau_{3}$, respectively, After some manipulation, it can be seen that
$\zeta_{2}^{T}(t) \Xi_{2} \zeta_{2}(t)=\frac{\tau_{3}-d(t)}{\tau_{3}-\tau_{2}} \zeta_{21}^{T}(t) \Xi_{21} \zeta_{21}(t)+\frac{d(t)-\tau_{2}}{\tau_{3}-\tau_{2}} \zeta_{22}^{T}(t) \Xi_{22} \zeta_{22}(t)$, where $\zeta_{21}^{T}(t):=\left[\begin{array}{ll}\zeta_{x}^{T} & \gamma_{d 3}^{T}\end{array}\right], \zeta_{22}^{T}(t):=\left[\begin{array}{ll}\zeta_{x}^{T} & \gamma_{2 d}^{T}\end{array}\right]$, and ζ_{x} is defined in (18). Then, from the convexity of $\zeta_{2}^{T}(t) \Xi_{2} \zeta_{2}(t)$, it is sufficient to verify the feasibility for Ξ_{21} and for Ξ_{22}.

Then it follows from applying Lemma 3 in [22] that $\Xi_{1 k}<$ 0 holds if and only if there exists a scalar $\varepsilon_{2}>0$ such that

$$
\left[\begin{array}{cc}
\left(\left.\Psi^{(2)}\right|_{d(t) \rightarrow \tau_{k+1}}+H_{2} B_{2}+B_{2}^{T} H_{2}^{T}\right) & \left(\tau_{3}-\tau_{2}\right) H_{2} \Gamma_{k} \\
* & -\left(\tau_{3}-\tau_{2}\right) \Lambda_{2 k}
\end{array}\right]+\frac{1}{\varepsilon_{2}} \alpha \alpha^{T}+\varepsilon_{2} \beta^{T} \beta<0
$$

holds for $k \in\{1,2\}$. Moreover, taking the Schur's complement, we have $\Omega_{2 k}$ as described in (12). Therefore, Ξ_{1} is negative definite if and only if Ω_{21} and Ω_{22} are.

Moreover, given (3), the expressions

$$
\begin{aligned}
& \Omega_{21}=\left.\frac{d_{\max }-\dot{d}(t)}{d_{\max }-d_{\min }} \Omega_{21}\right|_{\dot{d}(t) \rightarrow d_{\text {min }}}+\left.\frac{\dot{d}(t)-d_{\text {min }}}{d_{\text {max }}-d_{\text {min }}} \Omega_{21}\right|_{\dot{d}(t) \rightarrow d_{\text {max }}}, \\
& \Omega_{22}=\left.\frac{d_{\text {max }}-\dot{d}(t)}{d_{\text {max }}-d_{\text {min }}} \Omega_{22}\right|_{\dot{d}(t) \rightarrow d_{\text {min }}}+\left.\frac{\dot{d}(t)-d_{\text {min }}}{d_{\text {max }}-d_{\text {min }}} \Omega_{22}\right|_{\dot{d}(t) \rightarrow d_{\text {max }}}
\end{aligned}
$$

hold. Thus, Ω_{21} and Ω_{22} are convex in $\dot{d}(t) \in\left[d_{\text {min }}, d_{\text {max }}\right]$.
We are now ready to complete the proof by establishing conditions that guarantee the negativeness of the Lyapunov functional's derivative. For the first case where $d(t) \neq \tau_{2}$, it is easy to check that

$$
\left.\dot{V}(t)\right|_{d(t) \neq \tau_{2}} \leq \chi_{\left[\tau_{1}, \tau_{2}\right]}(d(t)) \zeta_{1}^{T}(t) \Omega_{1} \zeta_{1}(t)+\left(1-\chi_{\left[\tau_{1}, \tau_{2}\right]}(d(t))\right) \zeta_{2}^{T}(t) \Omega_{2} \zeta_{2}(t) .
$$

For the second case where $d(t)=\tau_{2}$, using exactly the same arguments of [7] and [9], we conclude that

$$
\left.\dot{V}(t)\right|_{d(t)=\tau_{2}} \leq \max \left\{\zeta_{1}^{T}(t) \Omega_{1} \zeta_{1}(t), \zeta_{2}^{T}(t) \Omega_{2} \zeta_{2}(t)\right\} .
$$

Therefore, it is straightforward to conclude that if the conditions in (11) are fullfilled, then we guarantee that $\dot{V}(t)<0$, which concludes the proof.

ACKNOWLEDGMENTS

The authors are supported by research grants funded by the National Council of Technological and Scientific Development - CNPq, Brazil. The authors would also like to thank the support of the Scientific and Technological Developments Foundation - FINATEC, Brazil, and the Dean of Research
and Graduate Studies - DPP, University of Brasilia - UnB, Brazil.

REFERENCES

[1] J.-P. Richard, "Time-delay systems: an overview of some recent advances and open problems," Automatica, vol. 39, no. 10, pp. 1667 - 1694, 2003.
[2] F. Gouaisbaut and D. Peaucelle, "Delay-dependent stability of time delay systems," in 5th IFAC Symp. Robust Control Design, Jul. 2006.
[3] P. Park and J. W. Ko, "Stability and robust stability for systems with a time-varying delay," Automatica, vol. 43, no. 10, pp. $1855-1858$, 2007.
[4] Y. He, Q.-G. Wang, C. Lin, and M. Wu, "Delay-range-dependent stability for systems with time-varying delay," Automatica, vol. 43, no. 2, pp. 371-376, 2007.
[5] X. Jiang and Q.-L. Han, "New stability criteria for linear systems with interval time-varying delay," Automatica, vol. 44, no. 10, pp. 26802685, 2008.
[6] H. Shao, "New delay-dependent stability criteria for systems with interval delay," Automatica, vol. 45, no. 3, pp. $744-749,2009$.
[7] E. Fridman, U. Shaked, and K. Liu, "New conditions for delay-derivative-dependent stability," Automatica, vol. 45, no. 11, pp. 2723 - 2727, 2009.
[8] L. Orihuela, P. Millan, C. Vivas, and F. R. Rubio, "Delay-dependent robust stability analysis for systems with interval delays," in American Control Conference, Baltimore, USA, Jun. 2010, pp. 4993-4998.
[9] L. F. C. Figueredo, J. Y. Ishihara, G. A. Borges, and A. Bauchspiess, "New delay-and-delay-derivative-dependent stability criteria for systems with time-varying delay," in Proc. of the 49th IEEE Conf. on Decision and Control, Atlanta, USA, Dec. 2010.
[10] Y. S. Moon, P. Park, W. H. Kwon, and Y. S. Lee, "Delay-dependent robust stabilization of uncertain state-delayed systems," International Journal of Control, vol. 74, no. 14, pp. 1447-1455, 2001.
[11] M. Wu, Y. He, J.-H. She, and G.-P. Liu, "Delay-dependent criteria for robust stability of time-varying delay systems," Automatica, vol. 40, no. 8, pp. 1435 - 1439, 2004.
[12] X. J. Jing, D. L. Tan, and Y. C. Wang, "An LMI approach to stability of systems with severe time-delay," IEEE Trans. Autom. Control, vol. 49, no. 7, July 2004.
[13] C. Lien, "Delay-dependent stability criteria for uncertain neutral systems with multiple time-varying delays via lmi approach," IEE Proceedings Control Theory and Applications, vol. 152, no. 6, pp. 707 - 714, 2005.
[14] X. Jiang and Q. Han, "Delay-dependent robust stability for uncertain linear systems with interval time-varying delay," Automatica, vol. 42, no. 6, pp. 1059-1065, 2006.
[15] Y. He, Q.-G. Wang, L. Xie, and C. Lin, "Further improvement of freeweighting matrices technique for systems with time-varying delay," IEEE Trans. on Automatic Control, vol. 52, no. 2, pp. 293-299, 2007.
[16] C. Peng and Y.-C. Tian, "Delay-dependent robust stability criteria for uncertain systems with interval time-varying delay," Journal of Comput. and Appl. Math., vol. 214, no. 2, pp. 480-494, 2008.
[17] W. Qian, S. Cong, Y. Sun, and S. Fei, "Novel robust stability criteria for uncertain systems with time-varying delay," Applied Mathematics and Computation, vol. 215, no. 2, pp. 866-872, Sept. 2009.
[18] K. Gu, V. Kharitonov, and J. Chen, Stability of Time-Delay Systems. Boston: Birkhauser, 2003.
[19] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory, ser. Studies in Applied Mathematics. Philadelphia, PA: SIAM, 1994, vol. 15.
[20] J. Sun, G. Liu, J. Chen, and D. Rees, "Improved stability criteria for linear systems with time-varying delay," IET Control Theory \& Applications, vol. 4, no. 4, p. 683, 2010.
[21] D. Yue, Q.-L. Han, and C. Peng, "State feedback controller design of networked control systems," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 51, no. 11, pp. 640-644, Nov. 2004.
[22] L. F. C. Figueredo, P. H. R. Q. A. Santana, E. S. Alves, J. Y. Ishihara, G. A. Borges, and A. Bauchspiess, "Robust stability of networked control systems," in Proc. Intl. Conf. on Control and Automation. Christchurch, New Zeland: IEEE, Dec. 2009, pp. 1535-1540.

[^0]: All the authors are with the Automation and Robotics Laboratory (LARA), Department of Electrical Engineering, University of Brasilia, Brasilia 70919970, Brazil. E-mails: \{figueredo, ishihara, gaborges, bauchspiess\}@lara.unb.br

