
Robust stability criteria for uncertain systems with delay and its

derivative varying within intervals

Luis Felipe da Cruz Figueredo, João Yoshiyuki Ishihara, Geovany Araújo Borges and Adolfo Bauchspiess

Abstract— In this paper, stability criteria are proposed for
linear systems liable to model uncertainties and with the delay
and its derivative varying within intervals. The results are
an improvement over previous ones due to the development
of a new Lyapunov-Krasovskii functional (LKF). The analysis
incorporates recent advances such as convex optimization tech-
nique and piecewise analysis method with new delay-interval-
depedent LKFs terms and a novel auxiliary delayed state.
Stability conditions are provided for the cases when the delay
derivative is upper and lower bounded, when the lower bound is
unknown, and when no restrictions are cast upon the derivative.
The analysis is enriched with numerical examples that illustrate
the effectiveness of our criteria which outperform previous
criteria in the literature for nominal and uncertain delayed
systems.

I. INTRODUCTION

T
HE phenomena of time delays are often encountered in

various practical systems, such as chemical engineering

systems, biological systems, aircraft stabilization, networked

control systems, etc [1]. Nonetheless, since time delays can

degrade a system’s performance and even cause system

instability, considerable attention has been devoted to the

subject of stability analysis and design of systems with time-

varying delays (see, e.g., [1]–[9]).

During the last decade, the problem of time-delayed

systems’ stability analysis have been deeply investigated

under delay-dependent criteria, for the exposure of the de-

lay information leads to less conservative results. Various

methods have been taken for deriving stability conditions

using different Lyapunov–Krasovskii functionals (LKFs) [6].

Particularly, the employment of Jensen’s inequality instead of

the cross-terms bounding [10] is a well-established approach

that leads to less conservative results. However, this still is a

conservative analysis, for the time-varying delay is bounded

when considering terms in the LKF derivative containing not

only the delay bounds, but also the delay itself. Instead of

bounding the time-varying delay, the convex optimization

technique incorporated with the Jensen’s inequality proved

to be effective in [3]. Further impovements were obtained

using similar technique with different LKFs (see, e.g., [5]–

[9]). Recently, new Lyapunov functional candidates inspired

on [2] have enriched the stability analysis by extending the

piecewise analysis method from [2] to systems with time-

varying delays, see, e.g., [7]–[9]. Particularly, [7], [9] also

explore the information about the delay derivative’s lower
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bound through the employment of delay-interval-dependent

terms in the Lyapunov functional.

Nevertheless, in practice, it is very difficult to obtain an ex-

act mathematical model due to environmental noise or slowly

varying parameters. Systems with time-varying delays almost

inevitably present some uncertainties. However, most recent

advances in the analysis of systems with time-varying delays

aren’t fully exploited in most recent works concerning robust

stability of delayed systems (see, e.g., [11]–[17]). Therefore,

the results from these works are usually more conservative

than the results from criteria for delayed systems which do

not consider the possibility of model uncertainties (see, e.g.,

[7], [9]).

Therefore, in this paper, we present a novel robust stability

analysis for uncertain systems with delay and its derivative

varying within intervals. New delay-interval-dependent LKF

terms, that are ignored in previous works, are introduced to

exploit all possible information about the delay derivative’s

lower and upper bounds. Moreover, we introduce an auxiliary

delayed state in order to make further use of the delay’s

lower bound value. These methods considerably improve

the stability analysis even for systems with no uncertainties.

The resulting criteria can be applied for the case when the

delay derivative is upper and lower bounded, when the lower

bound is unknown, and when no restrictions are cast upon the

derivative characteristics. Numerical examples illustrate the

effectiveness of the proposed robust stability criteria which

outperform previous criteria in the literature for time-delayed

systems with and without uncertainties.

II. PRELIMINARIES

Consider the following continuous-time linear system with

time-varying delay:

ẋ(t)= Ax(t)+ Adx(t −d(t)), t > 0 (1)

x(t)= ρ(t), t ∈ [−τmax, 0],

where x(t)∈Rrx is the system’s state, ρ(t) is a given function

which describes the state’s initial condition, and the matrices

A and Ad are considered not exactly known, but belonging

to bounded sets: A ∈A ⊂Rrx×rx and Ad ∈Ad ⊂Rrx×rx . The

continuous function d(t) denotes the time-varying delay that

satisfies

τmin ≤ d(t) ≤ τmax, (2)

where 0 ≤ τmin ≤ τmax are constants.

The time-varying delay is assumed to be either fast varying

(with no restrictions cast upon the delay derivative) or
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differentiable with given bounds:

dmin ≤ ḋ(t) ≤ dmax, (3)

where dmin ≤ dmax are constants.

Considering the parameter uncertainties, equation (1) can

be rewritten as:

ẋ(t) = (A + ∆A)x(t)+ (Ad + ∆Ad)x(t −d(t)) (4)

The uncertainties ∆A e ∆Ad are time-varying matrices with

appropriate dimensions, which are defined as follows:
[
∆A ∆Ad

]
= DF(t)

[
EA EAd

]
(5)

where D, EA, and EAd are known real constant matrices

with appropriate dimensions and F(t) represents an unknown

time-varying matrix, which is Lebesque measurable in t and

satisfies F(t)T F(t) ≤ I.

Throughout this paper, the following results will be useful

to derive conditions for the establishment of new delay-

depedent stability criteria for the uncertain system with time-

varying delay (4).

Lemma 1 ([18]) For given scalars r1, r2 and matrix
M∈Rm×m such that (r2−r1)≥0 and M>0, and any vectorial
function x : [r1,r2]−→ Rm, we have:

(r2−r1)
∫ r2

r1

xT (s)Mx(s)ds≥

(∫ r2

r1

x(s)ds

)T

M

(∫ r2

r1

x(s)ds

)
.

Lemma 2 ([19]) Given matrices M = MT ∈ Rm×m,
B∈Rr×m, the following statement

xT Mx > 0 ⇔ M +FB+BT FT
>0,

holds for some F∈Rm×r and any x∈Rm\{0} such that Bx=0.

III. STABILITY ANALYSIS

This section presents the main results of this paper.

Firstly, we shall, similarly to [7]–[9], divide the delay

range [τmin,τmax]. Here we will consider two equally spaced

subintervals: [τ1,τ2] and [τ2,τ3], where τ1=τmin, τ3=τmax,

and τ2=
τmax + τmin

2
. Therefore, the linear uncertain delayed

system (4) can be rewritten as

ẋ(t) = (A+∆A)x(t)+ χ[τ1,τ2](d(t))(Ad + ∆Ad)x(t −d(t))

+
(
1− χ[τ1,τ2](d(t))

)
(Ad + ∆Ad)x(t −d(t)) (6)

where χ[τ1,τ2]:R→{0,1} is the characteristic function of

[τ1,τ2]:

χ[τ1,τ2](s) =

{
1, if s ∈ [τ1,τ2]
0, otherwise.

The proposed stability analysis for systems with time-

varying delay and model uncertainties is based on the

Lyapunov–Krasovskii functional candidate

V (t) = ∑
6

i=1
Vi(t), (7)

where

V1(t) = χ[τ1,τ2](d(t))xT (t)

[
d(t)−τ1

τ2−τ1
P1+

τ2−d(t)

τ2−τ1
P2

]
x(t)

+
(

1−χ[τ1,τ2](d(t))
)

xT (t)

[
d(t)−τ2

τ3−τ2
P3+

τ3−d(t)

τ3−τ2
P1

]
x(t),

V2(t)=

∫ t−τ1

t−d(t)
xT (s)Q1x(s)ds

V3(t)=

∫ t−τ1

t−τ2

[
x(s)

x(s−τ2+τ1)

]T [
N11 N12

NT
12 N22

][
x(s)

x(s−τ2+τ1)

]
ds,

V4(t)=
∫ t

t− 1
2

τ1

[
x(s)

x(s− τ1

2 )

]T [
M11 M12

MT
12 M22

][
x(s)

x(s− τ1

2 )

]
ds,

V5(t)=
τ1

2

∫ 0

− 1
2

τ1

∫ t

t+β
ẋT (s)Z1ẋ(s)dsdβ +

τ1

2

∫ − 1
2

τ1

−τ1

∫ t

t+β
ẋT (s)

×Z2ẋ(s)dsdβ +(τ2 − τ1)
∫ −τ1

−τ2

∫ t

t+β
ẋT (s)Z3ẋ(s)dsdβ

+(τ3 − τ2)
∫ −τ2

−τ3

∫ t

t+β
ẋT (s)Z4ẋ(s)dsdβ ,

V6(t)=χ[τ1,τ2](d(t))

[∫ −d(t)

−τ2

∫ t

t+β
ẋT (s)(R1 −R3) ẋ(s)dsdβ

]

+
(

1−χ[τ1,τ2](d(t))
)[∫ −τ2

−d(t)

∫ t

t+β
ẋT (s)(R3 −R1) ẋ(s)dsdβ

]

+
∫ 0

−d(t)

∫ t

t+β
ẋT (s)(R1+R2)ẋ(s)dsdβ

+

∫ −d(t)

−τ3

∫ t

t+β
ẋT (s)(R3+R4)ẋ(s)dsdβ .

One can note that the if the conditions

P1=
P3+P2

2
, P2>0, P3>0, Q1≥0, Z j>0, j∈{1,2,3,4},

((τ2−τ1)Z3+R1−R3)>0, ((τ3−τ2)Z4+R3−R1)>0, (R1+R2)>0,

(R3+R4)>0, N=

[
N11 N12

NT
12 N22

]
≥0, and M=

[
M11 M12

MT
12 M22

]
≥0, (8)

are satisfied, we guarantee the positiveness of (7). Also, it
can be seen that V (t) in (7) is continuous in t, since

lim
d(t)→τ2

V1(t) = xT (t)P1x(t),

lim
d(t)→τ2

V6(t) =
∫ 0

−τ2

∫ t

t+β
ẋT (s)(R1 +R2) ẋ(t)dsdβ

+
∫ −τ2

−τ3

∫ t

t+β
ẋT (s)(R3 +R4) ẋ(t)dsdβ .

In the following, we propose novel robust stability criteria

for linear systems with model uncertainties and delay and its

derivative varying within intervals.

Theorem 1 For given scalars τmin, τmax, dmin, and dmax

such that 0<τmin≤τmax and dmin<dmax, the system (4) with
time-varying delay d(t) satisfying (2)-(3), and uncertainties
described by (5) is robust asymptotically stable if there exist
scalars ε1>0 and ε2>0, and matrices Pi, i∈{1,2,3}, Q1, Z j,
R j, j∈{1,2,3,4}, N, and M, with appropriate dimensions,
satisfying (8) and

Z1+U1|ḋ(t)→dmax
>0, Z2+U1|ḋ(t)→dmax

>0, (9)

Z1+U1|ḋ(t)→dmin
>0, Z2+U1|ḋ(t)→dmin

>0, (10)

and free-weighting matrices H1 ∈R7rx×3rx and H2 ∈R7rx×3rx ,

such that the following LMIs hold:

Ω11|ḋ(t)→dmin
< 0; Ω11|ḋ(t)→dmax

< 0;

Ω12|ḋ(t)→dmin
< 0; Ω12|ḋ(t)→dmax

< 0;

Ω21|ḋ(t)→dmin
< 0; Ω21|ḋ(t)→dmax

< 0;

Ω22|ḋ(t)→dmin
< 0; Ω22|ḋ(t)→dmax

< 0,

(11)
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where

Ω1k=




(
Ψ(1)|d(t)→τk

+H1B1+(H1B1)
T
)

(τ2−τ1)H1Γk H1Γ3D ε1T T
E

∗ −(τ2−τ1)Λ1k 0 0
∗ ∗ −ε1I 0
∗ ∗ ∗ −ε1I




Ω2k=




(
Ψ(2)|d(t)→τ(k+1)

+H2B2+(H2B2)
T
)

(τ3−τ2)H2Γk H2Γ3D ε2T T
E

∗ −(τ3−τ2)Λ2k 0 0
∗ ∗ −ε2I 0
∗ ∗ ∗ −ε2I




with k ∈ {1,2}, and

Γ1=
[
0 I 0

]T
, Γ2=

[
I 0 0

]T
, Γ3=

[
0 0 I

]T
,

Λ11=((τ2−τ1)Z3+R1+R4), Λ12=
(
(τ2−τ1)Z3+R1+

(
1−ḋ(t)

)
R2+ḋ(t)R4

)
,

Λ21=((τ3−τ2)Z4+R3+R4), Λ22=
(
(τ3−τ2)Z4+R3+

(
1−ḋ(t)

)
R2+ḋ(t)R4

)
,

B1=




0 I 0 0 −I 0 0
0 −I 0 0 0 I 0
A Ad −I 0 0 0 0



, B2=




0 I 0 0 0 −I 0
0 −I 0 0 0 0 I

A Ad −I 0 0 0 0



,

TE=
[
EA EAd

0 0 0 0 0
]
,

Ψ(1)=




Ψ11 0
d(t)−τ1
τ2−τ1

P1+
τ2−d(t)
τ2−τ1

P2 Ψ14 0 0 0

∗ Ψ22 0 0 0 0 0

∗ ∗ Ψ
(1)
33 (d(t))+Ψ33 0 0 0 0

∗ ∗ ∗ Ψ44 Ψ45 0 0

∗ ∗ ∗ 0 Ψ55 N12 0

∗ ∗ ∗ 0 ∗ N22−N11−U2 U2−N12

∗ ∗ ∗ 0 ∗ ∗ −U2−N12




,

Ψ(2)=




Ψ11 0
d(t)−τ2
τ3−τ2

P3+
τ3−d(t)
τ3−τ2

P1 Ψ14 0 0 0

∗ Ψ22 0 0 0 0 0

∗ ∗ Ψ
(2)
33 (d(t))+Ψ33 0 0 0 0

∗ ∗ ∗ Ψ44 Ψ45 0 0

∗ ∗ ∗ ∗ Ψ55−U3 N12+U3 0

∗ ∗ ∗ ∗ ∗ N22−N11−U3 −N12

∗ ∗ ∗ ∗ ∗ ∗ −N22




,

with

U1 =
2

τ1

(
R1+

(
1−ḋ(t)

)
R2+ḋ(t)R4

)
,

U2 =
1

τ3−τ2
((τ3−τ2)Z4+R3+R4),

U3 =
1

τ2−τ1

(
(τ2−τ1)Z3+R1+

(
1−ḋ(t)

)
R2+ḋ(t)R4

)
,

Ψ11 =
ḋ(t)

τ2−τ1
(P1−P2)+M11−Z1−U1,

Ψ22 = −
(
1−ḋ(t)

)
Q1,

Ψ33 =
( τ1

2

)2

(Z1+Z2)+(τ2−τ1)
2
Z3+(τ3−τ2)

2
Z4+τ2R1 +(τ3−τ2)R3,

Ψ
(1)
33 (d(t))=(τ3−τ2)R4 +(τ2−d(t))R4 + τ2

(d(t)−τ1)

τ2−τ1
R2 + τ1

(τ2−d(t))

τ2−τ1
R2,

Ψ
(2)
33 (d(t))=(τ3−d(t))R4 + τ3

(d(t)−τ2)

τ3−τ2
R2 + τ2

(τ3−d(t))

τ3−τ2
R2,

Ψ44 = M22 −M11 −Z1 −Z2 −2U1,

Ψ55 = Q1 +N11 −M22 −Z2 −U1,

Ψ14 = Z1+M12+U1,

Ψ45 = Z2−M12+U1. (12)

�

It is also interesting to consider two special cases of the
previous result. The case when the lower bound of the time-
varying delay derivative is unknown and the case when no
restrictions are cast upon delay derivative. For the first case,
by fullfilling the restrictions

P3 > P2 and R2 > R4, (13)

the following corollary arises directly from Theorem 1.

Corollary 1 For given scalars τmin, τmax, and dmax such that
0<τmin≤τmax, the system (4) with the delay d(t) satisfying (2)

and ḋ(t)≤dmax, and uncertainties described by (5) is robust
asymptotically stable if there exist scalars ε1>0, ε2>0, and
matrices Pi, i∈{1,2,3}, Q1, Z j, R j, j∈{1,2,3,4}, N, and M,
with appropriate dimensions, satisfying (8), (9), and (13),
and free-weighting matrices H1∈R7rx×3rx and H2∈R7rx×3rx

such that the following LMIs, with notations given in (12),
hold:

Ω11|ḋ(t)→dmax
< 0; Ω12|ḋ(t)→dmax

< 0;

Ω21|ḋ(t)→dmax
< 0; Ω22|ḋ(t)→dmax

< 0.

�

We shall now consider the second case, i.e. fast-varying
delays. In this case, as we have no information about the
delay derivative, by assuming

P1=P2=P3, Q1=0, and R2=R4, (14)

we can eliminate the terms with ḋ(t) from (12). Then it is

straightforward to obtain the following corollary.

Corollary 2 For given scalars τmin and τmax such that
0<τmin≤τmax, the system (4) with time-varying delay d(t)
satisfying (2), and uncertainties described by (5) is robust
asymptotically stable if there exist scalars ε1>0 and ε2>0,
and matrices Pi, i∈{1,2,3}, Q1, Z j, R j, j∈{1,2,3,4}, N,
and M, with appropriate dimensions, satisfying (8) and (14),
and free-weighting matrices H1∈R7rx×3rx and H2∈R7rx×3rx

such that the following LMIs, with notations given in (12),
hold:

Ω11 < 0; Ω12 < 0; Ω21 < 0; Ω22 < 0.

�

Remark 1 Because of the term U1, the results are valid only

for minimum delay strictly greater than zero. However it

is straightforward to extend these results to the case where

τmin=0 by considering U1=0.

Theorem 1, Corollaries 1 and 2 provide stability condi-

tions for linear systems liable to model uncertainties and

time-varying delays, and are the main results of the paper.

Compared with previous criteria, the conservativeness of the

stability analysis is considerably reduced. To improve the

results, we have introduced a new auxiliary delayed state

x
(
t− τ1

2

)
in the Lyapunov functional, which allows further

exploitation of the delay’s lower bound value. Moreover, fur-

ther improvements were obtained through the introduction of

new delay-interval-dependent terms in (7). The employment

of these terms yields different expression in the derivative of

the Lyapunov functional when d(t)<τ2 and when τ2<d(t).
The examples in the next section illustrate the effective-

ness of our criteria. It is important to emphasize that the

stability results are less conservative than previous published

criteria not only for systems with uncertainties, but also for

nominal time-delayed systems.

IV. NUMERICAL EXAMPLES

Example 1 Consider the system (4) with no uncertainties
and

A=

[
−2 0
0 −0.9

]
, Ad=

[
−1 0
−1 −1

]
, ∆A=0, ∆Ad=0.
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TABLE I

ALLOWABLE τmax VALUE FOR dmax=0.1 AND dmin=−0.1 (EX. 1)

Method �τmin 0 1 2 3 4 5

He et al. [4] 3.605 − − 3.612 4.064 −
Sun et al. [20] 3.918 − − 3.918 4.178 5.038

Fridman et al.
[7]

{
thm 1
thm 2

4.260 4.571 4.622 4.216 4.090 −
3.663 4.203 4.456 4.425 4.429 5.097

Theorem 1 4.363 4.604 4.711 4.698 4.577 5.098

TABLE II

ADMISSIBLE τmax VALUE FOR τmin=1 AND GIVEN dmin AND dmax (EX. 2)

unknown dmin, dmin = −0.1,
Method

(dmax=0.3) (unkn dmax) (dmax=0.3) (dmax=1)
He et al. [4] 2.2125 1.5187 – –

Shao [6] 2.247 1.617 – –

Orihuela et al. [8] 2.353 1.792 – –

Thm 2 2.41 1.76 2.57 1.77
Fridman et al. [7]

{
Thm 1 2.42 1.79 2.60 1.85

Theorem 1 2.454 1.797 2.770 1.895

Assuming slow-varying delays (−0.1 ≤ ḋ(t) ≤ 0.1), the

maximum values of τmax which maintain the system’s asymp-

totical stability for various τmin are listed in Table I. It is clear

that the obtained results are less conservative than those in

[4], [7], [20]

Example 2 Consider the following delayed system de-
scribed by

A=

[
0 1
−1 −2

]
, Ad=

[
0 0
−1 1

]
, ∆A=0, ∆Ad=0.

For τmin=1, and various dmin and dmax, the results from

various criteria in the literature are listed in Table II. For

unknown dmin and for fast-varying delays the results are

obtained using Corollaries 1 and 2, respectively. From the

table, it can be seen that our criteria present superior results

when compared to previous methods. Moreover, one can note

that τmax grows for dmin→0 and for dmax→0.

Example 3 Consider now the uncertain system (4) with

A=

[
−2 0
0 −1

]
, Ad=

[
−1 0
−1 −1

]
,

D=

[
1 0
0 1

]
, EA=

[
1.6 0
0 0.05

]
, EAd

=

[
0.1 0
0 0.3

]
.

From Corollary 2, we find that the uncertain delayed

system is stable for τmin=0 and various values for dmax with

admissible τmax given in Table III. The obtained result rep-

resents an important improvement over those from previous

robust criteria.

Example 4 Consider the following uncertain system (4)
with

A=

[
−0.5 −2

1 −1

]
, Ad=

[
−0.5 −1

0 0.6

]
, D=I, EA=EAd

=

[
0.2 0
0 0.2

]
.

In Table IV, we compare the results from Corollaries

1 and 2 with those in [11], [12], [15], [17] for τmin=0,

unknown dmin, and various dmax. From the table, it is clear

TABLE III

ALLOWABLE UPPER BOUND VALUE OF τmax FOR τmin=0, UNKNOWN dmin

AND VARIOUS dmax (EX. 3)

Methods �dmax 0.2 0.4 0.6 0.8

Wu et al. [11] 1.063 0.973 0.873 0.760
Lien [13] 1.063 0.973 0.873 0.760
Yue & Han [21] 1.063 0.973 0.873 0.760
Qian et al. [17] 1.083 1.023 0.986 0.964
Park & Ko [3] 1.099 1.077 1.070 1.068
Corollary 1 1.219 1.104 1.089 1.089

TABLE IV

MAX. τmax VALUE FOR τmin=0 AND UNKNOWN dmin (EX. 4)

Methods �dmax 0,5 0,9 Unknown

Wu et al. [11] 0.243 0.242 0.242
Jing et al. [12] 0.243 0.242 0.242
He et al. [15] 0.342 0.338 0.336
Qian et al. [17] 0.379 0.379 0.379
Corollary 1 0.4471 0.4461 −
Corollary 2 − − 0.4461

that our results are considerably less conservative than those

in previous criteria in the literature.

V. CONCLUSIONS

This work’s main result concern the establishment of new

stability criteria for time-delayed systems liable to model

uncertainties and with delay and its derivative varying within

bounded intervals. The case when the derivative’s lower

bound is unknown is also considered, as the case when no

restrictions are cast upon the delay derivative. The conser-

vativeness of the stability analysis is considerably reduced

with the introduction of new delay-interval-dependent terms

and a new auxiliary delayed state in the LKF. Although

this paper deals mainly with uncertain delayed systems, our

criteria, when applied to nominal systems, also yields less

conservative results than previous criteria in the literature.

These analyses are ratified with numerical examples that

illustrate the effectiveness of the proposed criteria.

APPENDIX

PROOF OF THEOREM 1

Firstly, we shall consider the case where d(t) < τ2. Taking
the time derivative of the Lyapunov functional candidate (7)
with χ = 1 yields

V̇1(t)|d(t)<τ2
=ḋ(t)xT (t)

P1−P2

τ2−τ1
x(t)+2ẋT (t)

[
d(t)−τ1

τ2−τ1
P1+

τ2−d(t)

τ2−τ1
P2

]
x(t)

V̇2(t) = xT (t−τ1)Q1x(t−τ1)−
(
1− ḋ(t)

)
xT (t−d(t))Q1x(t−d(t)),

V̇3(t)=

[
x(t−τ1)
x(t−τ2)

]T[
N11 N12

NT
12 N22

][
x(t−τ1)
x(t−τ2)

]
−

[
x(t−τ2)
x(t−τ3)

]T[
N11 N12

NT
12 N22

][
x(t−τ2)
x(t−τ3)

]
,

V̇4(t)=

[
x(t)

x(t− τ1
2

)

]T[
M11 M12

MT
12 M22

][
x(t)

x(t− τ1
2

)

]
−

[
x(t− τ1

2
)

x(t−τ1)

]T[
M11 M12

MT
12 M22

][
x(t− τ1

2
)

x(t−τ1)

]
,

V̇5(t)=ẋT (t)

[( τ1

2

)2

(Z1+Z2)+(τ2 − τ1)
2
Z3 +(τ3 − τ2)

2
Z4

]
ẋ(t)−

τ1

2

×
∫ t

t− 1
2

τ1

ẋT (s)Z1ẋ(s)ds−
τ1

2

∫ t− 1
2

τ1

t−τ1

ẋT (s)Z2ẋ(s)ds− (τ2 − τ1)

×
∫ t−τ1

t−τ2

ẋT (s)Z3ẋ(s)ds− (τ3 − τ2)
∫ t−τ2

t−τ3

ẋT (s)Z4ẋ(s)ds,

V̇6(t)|d(t)<τ2
=ẋT(t)[(τ2−d(t))(R1−R3)+d(t)(R1+R2)+(τ3−d(t)) (R3+R4)]ẋ(t)
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−
∫ t

t−d(t)
ẋT (s)

(
R1+

(
1−ḋ(t)

)
R2+ḋ(t)R4

)
ẋ(s)ds

−
∫ t−d(t)

t−τ2

ẋT (s)(R1−R3)ẋ(s)ds−
∫ t−d(t)

t−τ3

ẋT (s)(R3+R4)ẋ(s)ds. (15)

Suppose now we take V̇5(t) and V̇6(t)|d(t)<τ2
in (15) and

expand the integral terms using the fact that τ1 ≤ d(t) ≤ τ2.
Then, defining

γ1d :=
1

d(t)−τ1

∫ t−τ1

t−d(t)
ẋ(s)ds and γd2:=

1

τ2−d(t)

∫ t−d(t)

t−τ2

ẋ(s)ds,

where limd(t)→τ1
γ1d=ẋ(t−τ1), and limd(t)→τ2

γd2=ẋ(t−τ2),
and applying Jensen’s inequality (Lemma 1), we have the
following inequalities

V̇5(t)+V̇6(t)|d(t)<τ2
≤ ẋT (t)

[(τ1

2

)
2(Z1+Z2)+(τ2−τ1)

2Z3+(τ3−τ2)
2Z4+τ2R1

+(τ3−τ2)R3+(τ3−τ2)R4+(τ2−d(t))R4+τ2
d(t)−τ1

τ2−τ1
R2+τ1

τ2−d(t)

τ2−τ1
R2

]
ẋ(t)

−
[
x(t)−x

(
t−

τ1

2

)]T
(

Z1+
2

τ1

(
R1+

(
1−ḋ(t)

)
R2+ḋ(t)R4

))[
x(t)−x

(
t−

τ1

2

)]

−
[
x
(
t−

τ1

2

)
−x(t−τ1)

]T
(

Z2+
2

τ1

(
R1+

(
1−ḋ(t)

)
R2+ḋ(t)R4

))[
x
(
t−

τ1

2

)
−x(t−τ1)

]

−[x(t−τ2)−x(t−τ3)]
T

(
Z4+

1

τ3−τ2
(R3 +R4)

)
[x(t−τ2)−x(t−τ3)]

−γT
1d

(
(d(t)−τ1)

(
(τ2−τ1)Z3+R1+

(
1−ḋ(t)

)
R2+ḋ(t)R4

))
γ1d

−γT
d2((τ2−d(t))((τ2−τ1)Z3 +R1 +R4))γd2. (16)

Then, from (15) and (16), after some manipulation, one
can conclude that

V̇ (t)|d(t)<τ2
≤ ζ T

1 (t)
(

Ω|d(t)<τ2

)
ζ1(t), (17)

where

Ω|d(t)<τ2
=

[
Ψ(1) 0

∗ −Λ(1)

]
, Λ(1)=

[
(d(t)−τ1)Λ12 0

0 (τ2−d(t))Λ11

]
,

and Ψ(1), Λ11, and Λ12 are defined in (12). Also, we have
defined ζ T

1 (t):=
[
ζ T

x γT
1d γT

d2

]
∈ R9rx , where

ζ T
x (t) :=

[
xT (t) xT (t−d(t)) ẋT (t) xT (t− τ1

2
)

xT (t−τ1) xT (t−τ2) xT (t−τ3)
]
, (18)

Suppose now we introduce B̃1=
[
B̃11 B̃12

]
∈R3rx ×9rx and

H̃1=
[
HT

1 0
]T
∈R9rx×3rx , where H1 is a 7r × 3r free-

weighting matrix, and

B̃11=




0 I 0 0 −I 0 0
0 −I 0 0 0 I 0

(A+∆A) (Ad+∆Ad) −I 0 0 0 0



, B̃12=




(d(t)−τ1)I 0

0 (τ2−d(t))I
0 0



.

It is interesting to note that B̃1ζ1(t) = 0. Then a straight-
forward consequence of applying Finsler’s lemma (Lemma
2) is that the right side of (17) is negative definite if Ξ1 < 0
holds, where

Ξ1 = Ω|d(t)<τ2
+H̃1B̃1+B̃T

1 H̃T
1 =

[(
Ψ(1)+H1B̃11+B̃T

11HT
1

)
H1B̃12

∗ −Λ(1)

]
.

Here we shall consider the terms Ξ11 and Ξ12 that arise
from Ξ1 when d(t) → τ1 and d(t) → τ2, respectively

Ξ1k=

[(
Ψ(1)|d(t)→τk

+H1B̃11+B̃T
11HT

1

)
(τ2 − τ1)H1Γk

∗ −(τ2 − τ1)Λ1k

]
(19)

where Γ1 and Γ2 are defined in (12), and k ∈ {1,2}.
Note that we have deleted the zero row and column from

Ξ11 and Ξ12. Now, it can be seen that

ζ T
1 (t)Ξ1ζ1(t)=

τ2−d(t)

τ2−τ1
ζ T

11(t)Ξ11ζ11(t)+
d(t)−τ1

τ2−τ1
ζ T

12(t)Ξ12ζ12(t),

where ζ T
11(t):=

[
ζ T

x γT
d2

]
, ζ T

12(t):=
[
ζ T

x γT
1d

]
, and ζx is

defined in (18). Thus, ζ T
1 (t)Ξ1ζ1(t) is convex in d(t) and

is negative definite only if the vertices (Ξ11 and Ξ12) are.

Furthermore, to eliminate the time-varying matrix F(t)
from (19), we use the definition of ∆A and ∆Ad from (5)
and rewrite B̃11 as

B̃11 = B1 +Γ3

[
∆A ∆Ad 0 0 0 0 0

]
= B1 +Γ3DF(t)TE , (20)

where B1, Γ3, and TE are defined in (12). Then, according
to (20), Ξ1k in (19) is rewritten as

Ξ1k=

[(
Ψ(1)|d(t)→τk

+H1B1+BT
1 HT

1

)
(τ2−τ1)H1Γk

∗ −(τ2−τ1)Λ1k

]
+αF(t)β+β T F(t)T αT

,

where α=
[
(H1Γ3D)T

0
]T

and β=
[
TE 0

]
.

Then it follows from applying Lemma 3 in [22] that Ξ1k <
0 holds if and only if there exists a scalar ε1 > 0 such that

[(
Ψ(1)|d(t)→τk

+H1B1+BT
1 HT

1

)
(τ2−τ1)H1Γk

∗ −(τ2−τ1)Λ1k

]
+

1

ε1
ααT + ε1β T β<0

holds for k∈{1,2}. Moreover, taking the Schur’s comple-

ment, we have Ω1k as described in (12). Therefore, Ξ1 is

negative definite if and only if Ω11 and Ω12 are.

Furthermore, given (3), the following expressions hold

Ω11 =
dmax−ḋ(t)

dmax−dmin
Ω11|ḋ(t)→dmin

+
ḋ(t)−dmin

dmax−dmin
Ω11|ḋ(t)→dmax

,

Ω12 =
dmax−ḋ(t)

dmax−dmin
Ω12|ḋ(t)→dmin

+
ḋ(t)−dmin

dmax−dmin
Ω12|ḋ(t)→dmax

.

Therefore, Ω11 and Ω12 are convex in ḋ(t) ∈ [dmin,dmax].

We will now consider the case where τ2 < d(t) ≤ τ3.
We shall prove that analogous results can be derived using
exactly the same arguments of the former case. Taking the
time derivative of the Lyapunov functional candidate (7) with
χ = 0 yields

V̇1(t)|d(t)>τ2
= xT (t)ḋ(t)

P3−P1

τ3−τ2
x(t)+2ẋT (t)

[
d(t)−τ2

τ3−τ2
P3 +

τ3−d(t)

τ3−τ2
P1

]
x(t),

V̇6(t)|d(t)>τ2
= ẋT(t)[(d(t)−τ2)(R3−R1)+d(t)(R1+R2)+(τ3−d(t))(R3+R4)]ẋ(t)

−
∫ t

t−d(t)
ẋT (s)

(
R1+

(
1−ḋ(t)

)
R2+ḋ(t)R4

)
ẋ(s)ds

−
∫ t−τ2

t−d(t)
ẋT (s)(R3−R1)ẋ(s)ds−

∫ t−d(t)

t−τ3

ẋT (s)(R3+R4)ẋ(s)ds. (21)

and V̇2(t) to V̇5(t) are defined in (15). Then, similarly to
(16), we apply Jensen’s inequality (Lemma 1) to V̇5(t) and
V̇6(t)|d(t)>τ2

:

V̇5(t)+ V̇6(t)|d(t)<τ2
≤ ẋT (t)

[( τ1

2

)2

(Z1+Z2)+(τ2−τ1)
2Z3+(τ3−τ2)

2Z4

+τ2R1 +(τ3−τ2)R3 +(τ3−d(t))R4 + τ3
(d(t)−τ2)

τ3−τ2
R2 + τ2

(τ3−d(t))

τ3−τ2
R2

]
ẋ(t)

−
[
x(t)−x

(
t−

τ1

2

)]T
(

Z1+
2

τ1

(
R1+

(
1−ḋ(t)

)
R2+ḋ(t)R4

))[
x(t)−x

(
t−

τ1

2

)]

−
[
x
(
t−

τ1

2

)
−x(t−τ1)

]T
(

Z2+
2

τ1

(
R1+

(
1−ḋ(t)

)
R2+ḋ(t)R4

))[
x
(
t−

τ1

2

)
−x(t−τ1)

]

−[x(t−τ1)−x(t−τ2)]
T

(
Z3+

1

τ2−τ1

(
R1+

(
1−ḋ(t)

)
R2+ḋ(t)R4

))
[x(t−τ1)−x(t−τ2)]

−γT
2d(d(t)−τ2)

(
(τ3−τ2)Z4 +

(
1−ḋ(t)

)
R2+R3+ḋ(t)R4

)
γ2d

−γT
d3(τ3−d(t))((τ3−τ2)Z4 +R3 +R4)γd3, (22)

where γ2d and γd3 are defined by

γ2d :=
1

d(t)−τ2

∫ t−τ2

t−d(t)
ẋ(s)ds and γd3:=

1

τ3−d(t)

∫ t−d(t)

t−τ3

ẋ(s)ds,

with limd(t)→τ2
γ2d=ẋ(t−τ2) and limd(t)→τ3

γd3=ẋ(t−τ3).

We denote ζ T
2 (t):=

[
ζ T

x γT
2d γT

d3

]
∈ R9rx where ζx is

defined in (18). Then taking V̇2(t), V̇3(t) and V̇4(t) from (15),
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V̇1(t)|d(t)>τ2
(21), and (22) one concludes that

V̇ (t)|d(t)>τ2
≤ ζ T

2 (t)
(

Ω|d(t)>τ2

)
ζ2(t), (23)

where

Ω|d(t)>τ2
=

[
Ψ(2) 0

∗ −Λ(2)

]
, Λ(2)=

[
(d(t)−τ2)Λ22 0

0 (τ3−d(t))Λ21

]
,

and Ψ(2), Λ21, and Λ22 are defined in (12).

Suppose now that analogously to the case where χ=1, we

define a matrix B̃2=
([

B2 B̃22

]
+

[
Γ3DF(t)TE 0

])
such

that B̃2ζ2(t) = 0, where B2 is defined in (12), and B̃22 is

defined in an analogous fashion to B̃12.
Then the condition that arises from applying Finsler’s

lemma (Lemma 2) to the right side of (23) is that
ζ T

2 (t)
(
Ω|d(t)>τ2

)
ζ2(t) is negative definite if there exists a

matrix H̃2=
[
HT

2 0
]T
∈R9rx×3rx such that Ξ2 < 0 holds,

where H2∈R7rx×3rx is a free-weighting matrix and

Ξ2=Ω|d(t)>τ2
+H̃2B̃2+B̃T

2 H̃T
2 . (24)

Similarly to (19), we consider the terms Ξ21 and Ξ22 that
arise from Ξ2 when d(t) → τ2 and d(t) → τ3, respectively,
After some manipulation, it can be seen that

ζ T
2 (t)Ξ2ζ2(t)=

τ3−d(t)

τ3−τ2
ζ T

21(t)Ξ21ζ21(t)+
d(t)−τ2

τ3−τ2
ζ T

22(t)Ξ22ζ22(t),

where ζ T
21(t):=

[
ζ T

x γT
d3

]
, ζ T

22(t):=
[
ζ T

x γT
2d

]
, and ζx is

defined in (18). Then, from the convexity of ζ T
2 (t)Ξ2ζ2(t),

it is sufficient to verify the feasibility for Ξ21 and for Ξ22.
Then it follows from applying Lemma 3 in [22] that Ξ1k <

0 holds if and only if there exists a scalar ε2 > 0 such that
[(

Ψ(2)|d(t)→τk+1
+H2B2+BT

2 HT
2

)
(τ3−τ2)H2Γk

∗ −(τ3−τ2)Λ2k

]
+

1

ε2
ααT + ε2β T β<0

holds for k∈{1,2}. Moreover, taking the Schur’s comple-

ment, we have Ω2k as described in (12). Therefore, Ξ1 is

negative definite if and only if Ω21 and Ω22 are.
Moreover, given (3), the expressions

Ω21 =
dmax−ḋ(t)

dmax−dmin
Ω21|ḋ(t)→dmin

+
ḋ(t)−dmin

dmax−dmin
Ω21|ḋ(t)→dmax

,

Ω22 =
dmax−ḋ(t)

dmax−dmin
Ω22|ḋ(t)→dmin

+
ḋ(t)−dmin

dmax−dmin
Ω22|ḋ(t)→dmax

hold. Thus, Ω21 and Ω22 are convex in ḋ(t) ∈ [dmin,dmax].
We are now ready to complete the proof by establishing

conditions that guarantee the negativeness of the Lyapunov
functional’s derivative. For the first case where d(t) 6= τ2, it
is easy to check that

V̇(t)|d(t)6=τ2
≤χ[τ1 ,τ2](d(t))ζ T

1 (t)Ω1ζ1(t)+
(
1− χ[τ1 ,τ2](d(t))

)
ζ T

2 (t)Ω2ζ2(t).

For the second case where d(t) = τ2, using exactly the same
arguments of [7] and [9], we conclude that

V̇ (t)|d(t)=τ2
≤ max{ζ T

1 (t)Ω1ζ1(t), ζ T
2 (t)Ω2ζ2(t)}.

Therefore, it is straightforward to conclude that if the

conditions in (11) are fullfilled, then we guarantee that

V̇ (t)<0, which concludes the proof.
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