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Abstract— In this paper, we investigate an optimal consensus
problem for multi-agent systems with directed interconnection
topologies. Based on a nonlinear distributed coordination rule
with switching directed communicating graphs, the considered
multi-agent system achieves not only a consensus, but also an
optimal one by agreeing within the global solution set of a
sum of objective functions corresponding to multiple agents.
The optimal solution set convergence and consensus analysis
are given respectively with the help of convex analysis and
nonsmooth analysis.

Index Terms— Multi-agent systems, consensus, distributed
optimization, directed graph

I. INTRODUCTION

Cooperative control of multi-agent systems becomes an
active research area from the beginning of this century,
and rapid developments of distributed control protocols via
interconnected communication have been made to achieve
the collective tasks (referring to [20], [17], [13], [23], [10],
[8], [9], [18]).

Consensus and formation are important problems of multi-
agent coordination, since in reality it is usually required that
all the agents (such as robots or vehicles) achieve the desired
relative position and the same velocity. Connectivity plays
a key role in the coordination of multi-agent network, and
various connectivity conditions to describe frequently switch-
ing topologies in different cases. The “joint connection” or
similar concepts are important in the analysis of stability
and convergence to guarantee multi-agent coordination. Uni-
formly jointly-connected conditions have been employed for
different problems ([20], [17], [21], [6]). On the other hand,
[t,∞)-joint connectedness is the most general form to secure
the global coordination, which is also proved to be necessary
in many situations ([23], [18]).

Moreover, multi-agent optimization has attracted much
attention in recent years(referring to [29], [30], [25]). In
[29], a distributed algorithm which solves a special class
of optimization problems by using only peer-to-peer com-
munication was proposed. In [30], a subgradient method in
combination with a consensus process was given for solving
coupled optimization problems in a distributed way with
fixed undirected graph. Then in [27], the authors showed
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the convergence bound for sub-gradient based multi-agent
optimization in various connectivity assumptions with time-
varying graphs. In [28], a constrained consensus problem
for multi-agent networks is considered when each agent is
restricted to lie in its own convex set. However, in most
existing works, the optimization model was assumed to
be a convex optimization problem, and convergence to the
optimal solution set was usually missing. Moreover, the
mostly considered multi-agent model in existing works were
with discrete-time dynamics.

The objective of this paper is to study the distributed
optimization of multi-agent systems with directed communi-
cation graphs. In other words, we aim to provide the optimal
consensus protocols of the multi-agent systems with switch-
ing communication topologies. Different from the existing
results, we obtain a global consensus and convergence to the
optimal solution set of the coupled objective function which
is a sum of objective functions corresponding to multiple
agents.

The paper is organized as follows. In Section 2, necessary
preliminaries and problem formulation are given. In Section
3, the main result is proposed on optimal consensus, and then
discuss the distance function estimation for further analysis.
Then, in Section 4, the optimal solution set convergence
analysis is carried out, based on which we give the proof
the main result of the paper. Finally, in Section 5 concluding
remarks are given.

II. PROBLEM FORMULATION

In this section, we formulate our problem and introduce
related preliminary knowledge.

Consider a multi-agent system with agent set V =
{1, 2, ⋅ ⋅ ⋅ , N}, for which the dynamics of each agent is the
following first-order integrator:

ẋi = ui, i = 1, ⋅ ⋅ ⋅ , N (1)

where xi ∈ Rm represents the state of agent i, and ui is the
control input. The agent can be viewed as a node in a graph.

The control objective is to reach a consensus for this group
of autonomous agents, and meanwhile to cooperatively solve
the following optimization problem

min
z∈Rm

F (z) =

N∑
i=1

fi(z) (2)

where fi : Rm → R represents the cost function of agent i,
observed by agent i only, and z is a decision vector.
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Denote the global optimal solution set (suppose it exists)
of function fi by Si, i.e.,

Si
.
= {y ∣fi(y) = min

z∈Rm
fi(z)}, i = 1, ⋅ ⋅ ⋅ , N.

A set K ⊂ Rd is said to be convex if (1 − �)x + �y ∈ K
whenever x ∈ K, y ∈ K and 0 ≤ � ≤ 1. An assumption for
each Si is stated in the following:

Assumption 1. Si is convex for i = 1, ⋅ ⋅ ⋅ , N , and
N∩
i=1

Si ∕=

∅.
Remark 2.1: Note that a function f : Rm → R is said to

be convex if it satisfies [24]

f(�v + (1− �)w) ≤ �f(v) + (1− �)f(w), (3)

for all v, w ∈ Rm and 0 ≤ � ≤ 1. Moreover, if the
cost function fi is a convex function for i = 1, ⋅ ⋅ ⋅ , N ,
optimization problem (2) is v, w ∈ Si a convex optimization
problem since F (x) is then convex in this case. However,
when fi is convex, we have that, for any v, w ∈ Si and
0 ≤ � ≤ 1,

min
z∈Rm

fi(z) ≤ fi(�v + (1− �)w)

≤ �fi(v) + (1− �)fi(w)

= min
z∈Rm

fi(z). (4)

This implies that �v + (1 − �)w ∈ Si, 0 ≤ � ≤ 1, which
leads to that Si is a convex set. On the other hand, there
are many cases that Si is a convex set while fi is not a
convex function. Therefore, in this sense to assume that Si
is a convex set is more generalized than that fi is a convex
function.

Denote the global optimal solution set of cost function
F (x) by S0, i.e., S0

.
= {y ∣F (y) = minz∈Rm F (z)}. Then

with Assumption 1, it is obvious to see S0 =
N∩
i=1

Si.

A. Communication Network Model

In this subsection, let us describe the communication
rule, i.e., the information exchange model for the considered
multi-agent network.

First we will introduce some concepts in graph theory
(referring to [3] for details). A directed graph (digraph)
G = (V, ℰ) consists of a finite set V of nodes and an arc
set ℰ , in which an arc is an ordered pair of distinct nodes of
V . (i, j) ∈ ℰ describes an arc which leaves i and enters
j. A walk in digraph G is an alternating sequence W :
i1e1i2e2 ⋅ ⋅ ⋅ em−1im of nodes i� and arcs e� = (i�, i�+1) ∈
ℰ for � = 1, 2, ⋅ ⋅ ⋅ ,m − 1. A walk is called a path if the
nodes of this walk are distinct, and a path from i to j is
denoted as (̂i, j). G is said to be strongly connected if it
contains path (̂i, j) and (̂j, i) for every pair of nodes i and
j.

In this paper, the communication in the multi-agent net-
work is supposed to be directed and time-varying. The
system topology is modeled as a time-varying directed graph
G�(t) = (V, ℰ�(t)), where ℰ�(t) represents the arc (link) set

defined by a piecewise constant switching signal function
� : [0,+∞) → P with P as the set of all possible
interconnection topologies. At time t, node i ∈ V can receive
the information from j ∈ V if there is an arc (j, i) ∈ ℰ�(t)
from j to i, and in this way, j is said to be a neighbor of
agent i. As usual, we assume there is a dwell time, denoted
by a constant �D for �(t), as a lower bound between two
switching times.

Denote the joint digraph of G�(t) in time interval [t1, t2)
with t1 < t2 ≤ +∞ by

G([t1, t2)) = ∪t∈[t1,t2)G(t) = (V,∪t∈[t1,t2)ℰ�(t)). (5)

Then G�(t) is said to be uniformly jointly strongly connected
(UJSC) if There exists a constant T > 0 such that G([t, t+
T )) is strongly connected for any t ≥ 0.

B. Distributed Control Law

In this subsection, we introduce the neighbor-based control
laws for the agents.

Let K be a closed convex subset in Rd and denote ∣x∣K ≜
inf{∣x− y∣ ∣ y ∈ K}, where ∣ ⋅ ∣ denotes the Euclidean norm
for a vector or the absolute value of a scalar. Then we can
associate to any x ∈ Rd a unique element PK(x) ∈ K
satisfying ∣x−PK(x)∣ = ∣x∣K , where the map PK is called
the projector onto K and

⟨PK(x)− x,PK(x)− y⟩ ≤ 0, ∀y ∈ K. (6)

Clearly, ∣x∣2K is continuously differentiable at point x, and
(see [1])

∇∣x∣2K = 2(x− PK(x)). (7)

Denote x = (x1, ⋅ ⋅ ⋅ , xN )T ∈ RNm and let continuous
function aij(x, t) > 0 be the weight of arc (j, i), for i, j ∈ V .
Let Ni(�(t)) represent the set of agent i’s neighbors. Then
we present the control law for the agents:

ui =
∑

j∈Ni(�(t))

aij(x, t)(xj − xi) + PSi(xi)− xi. (8)

Remark 2.2: In practice, the weights for a multi-agent
network, aij , may not be constant because of the complex
communication and environment uncertainties, and then the
multi-agent system become time-varying or nonlinear (refer-
ring to [21], [18], [23]). Here aij(x, t) is written in a general
form simply for convenience, and global information is not
required in the study. For example, aij can depend only on
the state of xi, time t and xj (j ∈ Ni), which is certainly
a special form of aij(x, t). In this case, the control laws of
form (8) are still decentralized.

Remark 2.3: In (8), we suppose that agent i can observe
the vector PSi(xi) − xi based on the information of fi. In
practice, Si may be solved by agent i beforehand, and then
the control is made based on the information of Si. In some
other cases, vector PSi(xi) − xi may also be obtained by
agent i directly based on the information of fi. For example,
if fi = ∣xi∣�Ki for some constant � > 0 and convex set Ki,

then one has PSi(xi)− xi = 1
2∇f

2
�
i .
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Fig. 1. The goal of the agents is to achieve a consensus in S0.

Without loss of generality, we assume the initial time
t = 0, and the initial condition x0 = (x1(0), ⋅ ⋅ ⋅ , xn(0))T ∈
Rnd. Moreover, for the weights aij(x, t), we use the follow-
ing assumption.
Assumption 2. There are 0 < a∗ ≤ a∗ such that a∗ ≤
aij(x, t) ≤ a∗, x ∈ RNm, t ≥ 0.

With (1) and (8), the closed loop system is expressed by

ẋi =
∑

j∈Ni(�(t))

aij(x, t)(xj−xi)+PSi(xi)−xi, i = 1, ⋅ ⋅ ⋅ , N.

(9)
Let x(t) be the trajectory of (9) with initial condition

x(0) = x0. Then the considered optimal consensus is defined
as following (see Fig. 1).

Definition 2.1: (i) A global optimal solution set conver-
gence for System (9) is achieved if

lim
t→+∞

∣xi(t)∣S0 = 0, i = 1, ⋅ ⋅ ⋅ , N (10)

for any initial condition x0 ∈ RmN .
(ii) A global consensus for System (9) is achieved if

lim
t→+∞

xi(t)− xj(t) = 0, i, j = 1, ⋅ ⋅ ⋅ , N (11)

for any initial condition x0 ∈ RmN .
(iii) A global optimal consensus is achieved for System

(9) if both (i) and (ii) hold.
Remark 2.4: If both (10) and (11) hold, one has

lim
t→+∞

ẋi = lim
t→+∞

∑
j∈Ni(�(t))

aij(x, t)(xj − xi)

+PSi(xi)− xi
= 0. (12)

Thus, it follows that there exists z∗ ∈ S0 such that
limt→+∞ xi(t) = z∗, i = 1, ⋅ ⋅ ⋅ , N .

III. MAIN RESULT

In this section, we give the main result and then some
basic results for its proof.

The main difficulties to obtain optimal consensus result
from the fact that we have to consider the consensus and
the convergence to the optimal solution together. Control
rule in the form of (8) without the term PSi(xi) − xi has

been studied for consensus [13], [21], [18]. However, if
the agents also try to solve the optimization problem (2)
cooperatively, the term like PSi(xi)− xi is then inevitable.
In fact, the term PSi(xi)−xi could coincide the subgradient
of fi in many cases, and then (8) will be consistent with the
subgradient method for multi-agent optimization [27], [30].
Therefore, there is usually a tradeoff between consensus and
optimization, and it is hard to achieve both of them.

In this paper, we suppose that Assumptions 1 and 2 always
hold. The following is the main result of the paper.

Theorem 3.1: System (9) achieves an optimal consensus
if G�(t) is uniformly jointly strongly connected (UJSC).

To prove Theorem 3.1, on one hand, we have to prove all
the agents converge to the global optimal solution set S0,
and on the other hand we have to verify that a consensus is
also achieved.

To do this, we will first show a method to estimate the
distance function.

Define di(t) = ∣xi(t)∣2S0 and let

d̄(t) = max
i∈V

di(t)

be the maximum among all the agents.
According to the definition of d̄(t), it is easy to see that

usually it is not continuously differentiable. However, d̄(t) is
indeed locally Lipschitz. Thus, we can still analyze the Dini
derivative of d̄(t) to study its convergence property.

The upper Dini derivative of a function ℎ : (a, b) →
R,−∞ ≤ a < b ≤ +∞ is defined as

D+ℎ(t) = lim sup
s→0+

ℎ(t+ s)− ℎ(t)

s
.

Suppose ℎ is continuous on (a, b). Then ℎ is non-increasing
on (a, b) if and only if D+ℎ(t) ≤ 0 for any t ∈ (a, b) (see
[11] for details). The next result is given for the calculation
of Dini derivative [4], [21].

Lemma 3.1: Let Vi(t, x) : R × Rd → R (i = 1, ⋅ ⋅ ⋅ , n)
be C1 and V (t, x) = maxi=1,⋅⋅⋅ ,n Vi(t, x). If ℐ(t) = {i ∈
{1, 2, ⋅ ⋅ ⋅ , n} : V (t, x(t)) = Vi(t, x(t))} is the set of indices
where the maximum is reached at t, then D+V (t, x(t)) =
maxi∈ℐ(t) V̇i(t, x(t)).

The following lemma was obtained in [18], which is also
useful in what follows.

Lemma 3.2: Suppose K ⊂ Rd is a convex set and
xa, xb ∈ Rd. Then

⟨xa − PK(xa), xb − xa⟩ ≤ ∣xa∣K ⋅ ∣∣xa∣K − ∣xb∣K ∣ . (13)

Particularly, if ∣xa∣K > ∣xb∣K , then

⟨xa−PK(xa), xb− xa⟩ ≤ −∣xa∣K ⋅ (∣xa∣K − ∣xb∣K). (14)
Then we prove the following lemma.
Lemma 3.3: D+d̄(t) ≤ 0 for any t ≥ 0.

Proof: According to (7), one has

dℎi(t)

dt
= 2⟨xi − PS0(xi), ẋi⟩

= 2⟨xi − PS0(xi),
∑

j∈Ni(�(t))

aij(x, t)(xj − xi)

+PSi(xi)− xi.⟩ (15)
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Then, based on Lemma 3.1 and let ℐ(t) denote the set
containing all the agents that reach the maximum of d̄(t)
at time t, we obtain

D+d̄(t) = max
i∈ℐ(t)

d

dt
di(t)

= 2 max
i∈ℐ(t)

[⟨xi − PS0(xi),
∑

j∈Ni(�(t))

aij(xj − xi)

+PSi(xi)− xi⟩]. (16)

Furthermore, for any i ∈ ℐ(t), according to (14) of Lemma
3.2, one has

⟨xi − PS0(xi), xj − xi⟩ ≤ 0 (17)

for any j ∈ Li(�(t)) since it always holds that ∣xj ∣S0 ≤
∣xi∣S0 . Moreover, it is easy to see that for any i ∈ V ,

⟨xi − PS0(xi),PSi(xi)− xi⟩ = ⟨(xi − PSi(xi))
+(PSi(xi)− PS0(xi)),PSi(xi)− xi⟩. (18)

Next, in light of (6), we obtain

⟨PSi(xi)− PS0(xi),PSi(xi)− xi⟩ ≤ 0 (19)

since we always have PS0(xi) ∈ Si for all i = 1, ⋅ ⋅ ⋅ , N .
Therefore, with (16), (18) and (19), one has

D+d̄(t) = max
i∈ℐ(t)

d

dt
di(t)

≤ 2 max
i∈ℐ(t)

⟨xi − PSi(xi),PSi(xi)− xi⟩

≤ 2 max
i∈ℐ(t)

[−∣xi∣2Si ]

≤ 0 (20)

which leads to the conclusion. □
With Lemma 3.3, there exists a constant d̄∗ ≥ 0 such

that limt→∞ d̄(t) = d̄∗. Clearly the optimal solution set
convergence will be achieved for system (9) if and only if
d̄∗ = 0.

Furthermore, since it always holds that di(t) ≤ d̄(t), there
exist constants 0 ≤ �i ≤ �i ≤ d̄∗ such that

lim inf
t→∞

di(t) = �i, lim sup
t→∞

di(t) = �i,

for all i = 1, ⋅ ⋅ ⋅ , N .
Then we consider the following system:

ẋi =
∑

j∈Ni(�(t))

aij(x, t)(xj − xi) + �i(t), i = 1, ⋅ ⋅ ⋅ , N

(21)
where �i(t) : R≥0 → R, i = 1, ⋅ ⋅ ⋅ , N . The following
conclusion holds.

Proposition 3.1: Suppose limt→∞ �i(t) = 0, i =
1, ⋅ ⋅ ⋅ , N . Then system (21) achieves the global consensus
if G�(t) is UJSC.

Proof: Let

ℏ(t) = max
i∈V
{xi(t)}, ℓ(t) = min

i∈V
{xi(t)}

be the maximum and minimum state value at time t. Denote
ℋ(x(t)) = ℏ(t)− ℓ(t).

Then since limt→∞ �i(t) = 0, we have that ∀" >
0,∃T̂ (") > 0 such that ∣�i(t)∣ < ", t > T̂ . Take k0 ∈ V with
xk0(sK0) = ℓ(sK0), where K0 = (N − 1)T, s = 0, 1, . . . .
Then it is not hard to find that for all t ∈ [sK0, (s+ 1)K0],

xk0(t) ≤ �0ℓ(sK0) + (1− �0)ℏ(sK0) + �0".

where �0 ≜ 1
2e
−(N−1)a∗K0 and �0 ≜ K0 + 1

(N−1)a∗ .
Furthermore, since G�(t) is UJSC, similar estimations can

be carried out on k0’s neighbors, neighbors’ neighbors, and
so on. Then we can find two constants 0 < �N−1 < 1 and
0 > 0 to ensure the following inequality:

ℋ(x((s+ 1)K0)) ≤ (1− �N−1)ℋ(x(sK0)) + 0". (22)

Since s can be any nonnegative integer in (22), the conclu-
sion follows immediately.

IV. SET CONVERGENCE

In this section we give a result for set convergence and
then prove Theorem 3.1.

At first we give another proposition.
Proposition 4.1: Suppose G�(t) is UJSC. If �i = �i = d̄∗

for all i = 1, ⋅ ⋅ ⋅ , N , then d̄∗ = 0.
Proof: Based on the definitions of �i and �i, one has

lim
t→+∞

di(t) = d̄∗, i = 1, ⋅ ⋅ ⋅ , N

when �i = �i = d̄∗ holds for for all i = 1, ⋅ ⋅ ⋅ , N . Thus, for
any " > 0, there exists T1(") > 0 such that, when t > T1("),

di(t) ∈ (d̄∗ − ", d̄∗ + "), i = 1, ⋅ ⋅ ⋅ , N. (23)

We will prove d̄∗ = 0 by contradiction. Suppose d̄∗ > 0
in the following.

First we have the following claim.
Claim. limt→+∞ ∣xi∣Si = 0 for all i = 1, ⋅ ⋅ ⋅ , N .

According to (15), (18) and (19), we obtain

dℎi(t)

dt
≤ −2∣xi∣2Si + 2⟨xi − PS0(xi),∑

j∈Ni(�(t))

aij(x, t)(xj − xi)⟩. (24)

Furthermore, according to Lemma 3.2 and (23), one has that
for any " > 0, there exists T2(") > 0 such that, when t >
T2("),

⟨xi−PS0(xi), xj−xi⟩ ≤ ∣xi∣S0 ⋅ ∣∣xi∣S0 − ∣xj ∣S0 ∣ ≤ " (25)

for all i ∈ V and j ∈ Ni(�(t)). Thus, if it does not holds
that limt→+∞ ∣xi∣Si = 0 for all i = 1, ⋅ ⋅ ⋅ , N , there exist a
node i0 and two constant �0,M0 > 0 such that

∣xi0(t)∣Si0 ∈ [
M0

2
,M0], t ∈ [tk, tk + �0] (26)

for a time serial

0 < t1 < ⋅ ⋅ ⋅ < tk < tk+1 < ⋅ ⋅ ⋅

with tk + �0 ≤ tk+1 for k = 1, 2, ⋅ ⋅ ⋅ . With (24), (25) and
(26), it follows that, for any " > 0, when tk > max{T1, T2},
one has

dℎi0(t)

dt
≤ −1

2
M2

0 + ", t ∈ [tk, tk + �0]. (27)
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Note that (27) contradicts (23), and then the claim is proved.
Therefore, for any " > 0, there exists T3(") > 0 such that

when t > T3,

di(t) = ∣xi(t)∣2S0 ∈ (d̄∗ − ", d̄∗ + "), i = 1, ⋅ ⋅ ⋅ , N. (28)

and
∣xi(t)∣Si < ", i = 1, ⋅ ⋅ ⋅ , N. (29)

Then, based on Proposition 3.1 and (29), when G�(t) is
UJSC, one has

lim
t→+∞

xi(t)− xj(t) = 0, i, j = 1, ⋅ ⋅ ⋅ , N,

which implies that for any " > 0, there exists T4(") > 0
such that when t > T4,

∣xi(t)− xj(t)∣ < ", i, j = 1, ⋅ ⋅ ⋅ , N. (30)

With (29) and (30), for any " > 0, when t > max{T3, T4},
one has that

∣xi(t)∣Sj < 2", i, j = 1, ⋅ ⋅ ⋅ , N, (31)

which implies

∣xi(t)∣S0 < 2", i, j = 1, ⋅ ⋅ ⋅ , N. (32)

Thus, (32) contradicts (28) when " is sufficiently small.
Therefore, d̄∗ > 0 does not hold and the conclusion holds
immediately. □

Then we have the following result on optimal set conver-
gence.

Theorem 4.1: System (9) achieves the optimal solution set
convergence if G�(t) is UJSC.
Proof: We also prove the conclusion by contradiction. Sup-
pose d̄∗ > 0.

Then, for any " > 0, there exists T1(") > 0 such that,
when t > T1("),

di(t) ∈ (0, d̄∗ + "), i = 1, ⋅ ⋅ ⋅ , N. (33)

According to Proposition 4.1, there exist at least one agent
i0 ∈ V such that 0 ≤ �i0 < �i0 ≤ d̄∗. Take �0 =√

1
2 (�i0 + �i0). Then there exists a time serial

0 < t̂1 < ⋅ ⋅ ⋅ < t̂k < ⋅ ⋅ ⋅

with limt→∞ t̂k = ∞ such that ℎi0(t̂k) = �20 for all k =
1, 2, ⋅ ⋅ ⋅ .

Furthermore, take t̂k0 > T1, and according to (24) and
Lemma 3.2, one has for all t > t̂k0 ,

dℎi0(t)

dt
≤ 2

∑
j∈Ni(�(t))

ai0j(x, t)⟨xi0 − PS0(xi0), xj − xi0⟩

≤ 2(N − 1)a∗∣xi0(t)∣S0(
√
d̄∗ + "− ∣xi0(t)∣S0),

which is equivalent to

d
√
ℎi0(t)

dt
≤ −(N − 1)a∗

√
ℎi0(t) + (N − 1)a∗

√
d̄∗ + ".

As a result, for t ∈ (t̂k0 ,∞), we have√
ℎi0(t) ≤ e−(N−1)a

∗(t−t̂k0 )
√
ℎi0(t̂k0) +

(1− e(N−1)a
∗(t−t̂k0 ))

√
d̄∗ + "

≤ e−(N−1)a
∗(t−t̂k0 )�0

+(1− e(N−1)a
∗(t−t̂k0 ))

√
d̄∗ + ". (34)

Next, since G�(t) is uniformly jointly strongly connected,

there is at lest one arc leaving from i0 entering i1 ∈ V in
G([t̂k0 , t̂k0 +T )). Moreover, it is not hard to see that this arc
exits for at least �D during t ∈ [t̂k0 , t̂k0 + T + 2�D), which
implies that (i0, i1) ∈ G�(t) for some t ∈ [t̃1, t̃1 + �D) ⊆
[t̂k0 , t̂k0 + T + 2�D). Denote T0 = T + 2�D. Then, one has√
ℎi0(t) ≤ −e(N−1)a

∗T0�0 + (1− e(N−1)a
∗T0)

√
d̄∗ + "

.
= �1 (35)

for all t ∈ (t̂k0 , t̂k0 + T0). Thus, for t ∈ [t̃1, t̃1 + �D), one
has
dℎi1(t)

dt
≤ 2

∑
j∈Ni(�(t))∖i0

ai1j(x, t)⟨xi1 − PS0(xi1),

xj − xi1⟩
+ai1i0(x, t)⟨xi1 − PS0(xi1), xi0 − xi1⟩

≤ 2(N − 2)a∗∣xi1(t)∣S0(
√
d̄∗ + "− ∣xi1(t)∣S0)

−a∗∣xi1(t)∣S0(∣xi1(t)∣S0 − �1), (36)

which is equivalent to

d
√
ℎi1(t)

dt
≤ −[(N − 2)a∗ + a∗]

√
ℎi1(t)

+(N − 2)a∗
√
d̄∗ + "+ a∗�1. (37)

Then we obtain√
ℎi1(t) ≤ e−[(N−2)a

∗+a∗](t−t̃1)
√
ℎi1(t̃1)

+(1− e−[(N−2)a
∗+a∗](t−t̃1))

⋅ (N − 2)a∗
√
d̄∗ + "+ a∗�1

(N − 2)a∗ + a∗

for for t ∈ [t̃1, t̃1 + �D), which leads to√
ℎi1(t̃1 + �D) ≤ e−[(N−2)a

∗+a∗]�D
√
d̄∗ + "

+(1− e−[(N−2)a
∗+a∗]�D )

× (N − 2)a∗
√
d̄∗ + "+ a∗�1

(N − 2)a∗ + a∗
.
= �1 (38)

Therefore, based on similar analysis for (34), one has when
t ∈ [t̃1 + �D,∞)√

ℎi1(t) ≤ e−(N−1)a
∗(t−(t̃1+�D))�1

+(1− e−(N−1)a
∗(t−(t̃1+�D)))

√
d̄∗ + ".

(39)

Note that we have that �0 < �1 < d̄∗. Therefore, we can
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proceed similar analysis on time intervals (t̂k0 + T0, t̂k0 +
2T0), (t̂k0 +2T0, t̂k0 +3T0), ⋅ ⋅ ⋅ , (t̂k0 +(N−1)T0, t̂k0 +NT0)
respectively, and then get similar estimation as (34) and (39)
by �0 < �1 < ⋅ ⋅ ⋅ < �N−1 < d̄∗ for agents i2, ⋅ ⋅ ⋅ , iN−1
with V = {i0, i1, ⋅ ⋅ ⋅ , iN−1}. Thus, we obtain√
ℎij (t̂k0 +NT0)) ≤ e−(N−1)T0a

∗
�N−1

+(1− e−(N−1)NT0a
∗
)×

√
d̄∗ + "

for all j = 0, 1, ⋅ ⋅ ⋅ , N − 1, which contradicts the definition
of d̄∗ since

e−(N−1)T0a
∗
�N−1 + (1− e−(N−1)NT0a

∗
)
√
d̄∗ + " <

√
d̄∗

for sufficiently small ". This completes the proof. □
Then we prove the main result:

Proof of Theorem 3.1: In fact, it is not hard to see that the
conclusion hold by combining Proposition 3.1 and Theorem
4.1. □

Remark 4.1: UJSC is sufficient, but not necessary to guar-
antee an optimal consensus for System 9. However, simple
examples can be constructed to show that weaker require-
ment for connectedness, such as, uniformly jointly quasi-
strongly connectivity (UQSC) is not enough for optimal
consensus, although it has been shown that UQSC can ensure
a consensus for nonlinear multi-agent systems [21].

V. CONCLUSIONS

This paper addressed an optimal consensus problem
for multi-agent systems. With time-varying interconnection
topologies and uniformly joint connectivity assumption, the
considered multi-agent system achieved not only a consen-
sus, but also an optimal one by agreeing within the global
solution set of a sum of objective functions corresponding to
multiple agents. Moreover, control laws applied to the agents
were nonlinear and distributed.
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