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Abstract— Offset free tracking in Model Predictive Control
requires estimation of unmeasured disturbances or the inclusion
of an integrator. An algorithm for estimation of an unknown
disturbance based on adaptive estimation with time varying
forgetting is introduced and benchmarked against the classical
disturbance modelling approach, where the system description
is augmented by a disturbance state. The time varying forget-
ting renders the new approach less sensitive to the nature of the
disturbance. By simulation we demonstrate that this algorithm
is advantageous in case of infrequent step disturbances of any
magnitude.

I. INTRODUCTION

Model Predictive Control (MPC) is a state of the art

control technology which utilizes a model of the system to

predict the process output over some future horizon and solve

a quadratic optimization problem with the control signal as

decision variables. Inequality constraints can be formulated

for both manipulated variables and the process outputs. The

first of the controls are implemented. After retrieving the next

process output the problem is solved again for the next con-

trol etc. Early achievements and industrial implementations

in Model Prediction Control include IDCOM and Dynamic

Matrix Control [1], [2]. These early algorithms were based on

step or impulse response models. More general linear input-

output models structure were used in Generalized Predictive

Control [3], but an interest in MPC implementations based

on state space models were created by the seminal paper [4].

The state space approach provides a unified framework for

discussion of the various predictive control algorithms and

is well suited for stability analysis [5].

In this paper the plant is represented by the linear, discrete

time, single input/single output ARX model (1). This model

class is selected based on a system identification argument.

This class is linear in the parameters and the parameter

estimation problem is convex.

A(q−1)y(t) = B(q−1)u(t) + d+ ε(t) (1a)

where A and B are polynomials of order n in the backward

shift operator q−1 and ε(t) ∈ Niid(0, σ
2).

A(q−1) = 1 + a1q
−1 + a2q

−2 + · · ·+ anq
−n (1b)

B(q−1) = b1q
−1 + b2q

−2 + · · ·+ bnq
−n (1c)
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The time invariant input d is an unmeasured disturbance

which is assumed constant over some horizon. Since the

system is exposed to such a constant disturbance a MPC

implementation will not provide offset-free tracking unless

an integrator is implemented or the disturbance is estimated

as part of the controller [6]. Performance of offset-free

ARX-model based MPC with either an integrator or by

the disturbance modelling approach is analyzed [7]. In this

paper, we present an adaptive technique to estimate a time

varying disturbance. A similar approach has successfully

been applied to estimate unmeasured disturbances for a fatty

acid distillation column MPC control problem [8]. Offset-

free tracking is a property which must be required for any

MPC implementation since unmeasured step disturbances in

the input is common in the process industries when e.g. a

feed source changes. Examples are refineries and cement

industries where the composition of the crude oil or raw

minerals may change significantly when feed is changed

from one source to another. In biochemical production the

problem may appear in continues downstream processing

where the feed comes from batch processes. The inclusion

of disturbance states may also be necessary for rendering

offset-free tracking in presence of a model/plant mismatch

which will be the case for all industrial implementations.

The main contribution of this paper is the application of

adaptive disturbance estimation with time varying forgetting

in an MPC to eliminate offset. This scheme is advantageous

for system exhibiting infrequent step disturbances since the

estimation algorithm acts fast. Increasing the sensitivity when

large prediction errors are observed and decrease the sensitiv-

ity towards the random process noise when the disturbance

remains at a constraint level. This feature is not possible

in MPC implementations where the system is augmented

with disturbance states. The paper is organized as follows.

The basic MPC algorithm is introduced in Sec. II. Then

the classical disturbance modelling approach and the novel

adaptive disturbance estimation algorithm is presented in the

two following sections. An illustrative simulation study is

performed in Section V. Conclusions are drawn in Sec. VI.

II. MODEL PREDICTIVE CONTROL BASED ON

ARX MODELS

The ARX model (1), excluding the constant disturbance,

is realized as a stationary state space model in innovation

form

xk+1 = Axk +Buk +Kεk (2a)

yk = Cxk + εk (2b)
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with the matrices (A,B,K,C) in observer canonical form

A =















−a1 1 0 · · · 0
−a2 0 1 · · · 0

...
...

...
...

−an−1 0 0 · · · 1
−an 0 0 · · · 0















B =







b1
...

bn






K =







−a1
...

−an







C =
[

1 0 · · · 0
]

The optimal predictions in the stationary state space model

in innovation form (2) is based on computation of the

innovations

εk = yk − ŷk|k−1 (3)

using the measurement yk at time k and the one-step-

ahead prediction, ŷk|k−1 = Cx̂k|k−1. The one-step-ahead

prediction of the states and outputs are

x̂k+1|k = Ax̂k|k−1 +Buk|k +Kεk (4a)

ŷk+1|k = Cx̂k+1|k (4b)

and similarly the (j+1)-step-ahead (j ≥ 1) predictions are

x̂k+1+j|k = Ax̂k+j|k +Buk+j|k j = 1, . . . , N − 1 (5a)

ŷk+1+j|k = Cx̂k+1+j|k j = 1, . . . , N − 1 (5b)

The ℓ2-based constrained predictive controller uses an ob-

jective function of the form

φ =
1

2

N−1
∑

j=0

‖ŷk+1+j|k − rk+1+j|k‖
2
2 + ρ‖∆uk+j|k‖

2
2 (6)

where ρ denotes the relative penalty on the control move

compared to the tracking error. This objective function

obviously depends on the control variables, hence the optimal

control problem is

min
{uk+j|k}

N−1

j=0

φ = φ({uk+j|k}
N−1

j=0
) (7a)

s.t. (4), (5) (7b)

umin ≤ uk+j|k ≤ umax j ∈ N (7c)

∆umin ≤ ∆uk+j|k ≤ ∆umax j ∈ N (7d)

with ∆uk+j|k = uk+j|k − uk+j−1|k (j ∈ N ), uk−1|k =
ûk−1|k−1, and N = {0, 1, . . . , N −1}. The optimal solution

is denoted {ûk+j|k}
N−1

j=0
. Only the first part of the solution,

ûk|k, is implemented on the process and the computations

are repeated as new measurements arrive. The constrained

optimal control problem (7) can be converted into a standard

convex quadratic program [7].

III. DISTURBANCE MODELLING

In presence of unmeasured disturbances the classical

approach to achieve offset free tracking performance for

a model predictive control implementation, is to include

disturbance states in the process model. This method was

originally presented in [9] and a thorough presentation of

disturbance models for linear model predictive control is

given in [10] and [11] with conditions for detectability of

the augmented systems.

Given a general system description on state space form

xk+1 = Axk +Buk +Bddk +Gwk (8a)

yk = Cxk + Cddk + vk (8b)

It is assumed that the disturbance evolves as

dk+1 = dk + ξk (9)

where the noise in the system is given by the following

Gaussian distribution




wk

ξk
vk



 = Niid









0
0
0



 ,





Q 0 S
0 Qξ 0
ST 0 R







 (10)

The augmented system description becomes
[

xk+1

dk+1

]

=

[

A Bd

0 I

] [

xk

dk

]

+

[

B
0

]

uk +

[

G 0
0 I

] [

wk

ξk

]

(11a)

yk =
[

C Cd

]

[

xk

dk

]

+ vk (11b)

The general idea is to use a state estimator for the augmented

system in the model predictive controller. The prediction

equations become

x̂k+1|k = Ax̂k|k +Buk|k +Bdd̂k|k (12a)

d̂k+1|k = d̂k|k (12b)

and the stationary Kalman filter with the gains, {Lx, Ld},

calculated from the solution to the Riccati equation, are
[

x̂k|k

d̂k|k

]

=

[

x̂k|k−1

d̂k|k−1

]

+

[

Lx

Ld

]

(yk−Cx̂k|k−1−Cdd̂k|k−1) (13)

This state estimator can estimate the unmeasured disturbance

and render the controller capable of offset free tracking. Qξ

only affect the gain Ld in the filter and for Qξ → ∞, Ld → 1
which would correspond to designing the MPC based on

a ARIX model. For the ARX model structure in (1) the

disturbance model is given by {Bd = G = K,Cd = 1, Q =
R = S = σ2}. [12] show that any choice of disturbance

model can give the same closed loop performance despite

the origin of the disturbance. The requirement is that the

disturbance covariance, used in calculation of the estimator

gain, is estimated from the autocovariance of plant data.

IV. ADAPTIVE DISTURBANCE ESTIMATION

If a disturbance is known, a MPC implementation using

this knowledge in the predictions can be implemented. If

we at time k have an estimate of d̂k, for future predictions

it will be assumed that this level d̂ of the disturbance will

remain constant. The mapping from the constant disturbance

to the states in the state space realization is the matrix K
just as for the random disturbance. Hence the one step ahead

predictions will be

x̂k+1|k = Ax̂k|k−1 +Bûk|k +K(d̂+ ek)

ŷk+1|k = Cx̂k|k−1

(14)
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ek+j is assumed zero in predictions more than one step ahead

while d̂ is constant. Note that ŷ is only dependent on the

disturbance through the state vector while y has a direct

dependence cf. (1). The reason being that û is calculated

by the MPC using knowledge of d̂ in the predictions. Since

the disturbance is unknown, we estimate it adaptively online.

We use a recursive least squares algorithm with discounted

measurements, minimize the following least squares criterion

[13]

VN =

N
∑

i=1

λN−ie2i (15)

or written in recursive from

Vk = λVk−1 +
1

2
e2k (16)

where ek = yk − Cx̂k|k−1 is the prediction error at time

instant k, N is the length of the current horizon and the

constant λ ∈ [0; 1] is the forgetting factor which state the

relative importance of old data compared to new in the loss

function. For a constant forgetting factor less than 1, the

weighting of old data deceases exponentially in time, typical

values of λ would be in the range from 0.9 to 0.99. An

estimate of the disturbance such that the loss function (15)

is minimized is obtained by the recursive algorithm

d̂k = d̂k−1 + κkek (17a)

κk =
Pk−1

λ+ Pk−1

(17b)

Pk = (1− κk)Pk−1λ
−1 (17c)

In this recursion Pk is the estimated variance of the distur-

bance estimate d̂k. κk is a gain from the prediction error

to the change in d̂ from time k − 1 to k. Since both the

disturbance and the variance of d̂k is unknown this recursion

can be initiated by setting d̂0 = 0 and P0 equal to some small

value. Typically the covariance P is initiated with a large

value since the objective is to achieve a fast estimation of an

unknown parameter. Here however the unknown parameter,

d, is initially assumed to be zero so a large value of P , which

would give a large gain, is not expected to be necessary.

The future predictions needed in the MPC will include

the disturbance estimate d̂ and assume it to be constant over

the prediction horizon. For this implementation of MPC with

disturbance estimation there are two free tuning parameters

which affect the closed loop performance. ρ in the cost

function (6) and the forgetting factor λ in the estimation

of the disturbance in (17). In a situation where the system

exhibits an abrupt change in the disturbance, as e.g. a step,

a value of λ close to one will give a slow convergence of d̂k
to the new level. For a smaller value of λ the estimation is

more sensitive to the new value of the output prediction error

ek, hence it will react faster but also be more influenced by

noise. The choice of λ in this method plays a similar role

as the choice of Qξ in the disturbance modelling method. A

good value for the forgetting factor depends on the system. A

reasonable choice of the forgetting factor is given in term of

the equivalent horizon N∞. The equivalent horizon is defined

as the horizon over which the parameters can be expected to

be constant.

λ = 1−
1

N∞
(18)

A. Time Varying Forgetting

In recursive estimation of time varying systems, the crite-

rion which is minimized, when using exponential forgetting,

is (16). An alternative method was proposed by [14] which

keeps the value of the criterion constant between samples.

Vk = λkVk−1 +
1

2
e2k

s.t. Vk = Vk−1 = V0

(19)

In this extension to the algorithm (17) the forgetting factor

becomes time varying according to the size of the prediction

error. The time varying forgetting factor is approximated by:

λk ≈ 1−
e2k

N∞σ2(1 + Pk−1)
(20)

where σ2 is the variance of process noise. The recursive

estimator for the forgetting factor is based on the following

distribution for the prediction error

ek ∈ Niid(0, σ
2(1 + Pk)) (21)

This method achieves an estimation which gives fast conver-

gence when a change is observed (small values of λk) and

it will reduce the effect of noise otherwise (λk ≈ 1− 1/N∞).

A change in the system is observed when the ratio between

the prediction error and its variance becomes large. I.e. the

method will adapt itself according to the observer’s ability to

predict the output one step ahead. This method is equivalent

to both disturbance modelling and the disturbance estimation

with exponential forgetting reported earlier, with respect to

design variables. Only the equivalent horizon N∞ is left as a

free tuning parameter. In this method N∞ should be chosen

according to which value of λk is preferred under steady

conditions. I.e. conditions where the estimate of the unknown

disturbance is close to the true value and small prediction

errors are achieved. On the other hand N∞ should not be so

large that the method is insensitive to an abrupt change in

the prediction error.

When implementing a time varying forgetting factor by

(20) it is necessary to include a lower limit λmin since

negative values will not be meaningful. A reasonable value

for the lower limit would base the estimation on at least 2 to 4

data points. Here λmin = 1−1/3 ≈ 0.67 is used. Furthermore

it is desired to lower the sensitivity to high frequency noise in

the recursion for the forgetting factor (20) [15]. The squared

prediction error normalized by (1 + Pk−1) will be replaced

with a low pass filtered signal of the process noise variance

νk with ν0 = 0 since the expected value of the prediction

error is zero. Given these extensions the full algorithm for
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disturbance estimation with Fortescue’s method is given by

d̂k = d̂k−1 + κkek (22a)

κk =
Pk−1

λk + Pk−1

(22b)

λk = max

{

1−
νk

N∞σ2
, λmin

}

(22c)

Pk = (1− κk)Pk−1λ
−1

k (22d)

where the filter equations for estimation of the prediction

error variance are

Tk = τTTk−1 + 1 (22e)

νk = νk−1 +
1

Tk

(

e2k
1 + Pk−1

− νk−1

)

(22f)

It is seen that the recursion (22) is just an extended version

of (17) with a time varying forgetting factor and a additional

recursion with a low pass filter for ν. We choose the filter

constant τT = 1/2 and initialize T0 = 1. I.e. the filter will be

based on approximately two data points, which gives some

smoothing without removing a change which may occur.

It is seen that (22) requires the knowledge of the variance

of the process noise, σ2. This requirement is in correspon-

dence with the disturbance modelling approach where this

variance is used in the design of the Kalman filter. We

will in this paper assume this variance known. In case it

is not, a process noise variance estimate ς can be estimated

recursively and initialized by ς0 = e20 [15].

Sk = τSSk−1 + 1 (23a)

ςk = ςk−1 +
1

Sk

(

e2k−Nd

1 + Pk−1−Nd

− ςk−1

)

(23b)

The filter constant τS should be chosen close to one such that

the estimate is based on a long horizon and less sensitive to

jumps in the prediction error, e.g. 0.99. S0 is also initialized

equal to one. It is seen that the recursion of ς uses values of

the prediction error and the variance P which are delayed

by Nd [15]. The reason for this delay is that, when a step

disturbance occurs and the prediction error gets large, it will

increase both νk+1 and ςk+1 simultaneously if Nd = 0.

This simultaneous increase will render the recursion of the

forgetting factor λ less sensitive to abrupt changes in the

prediction error. If Nd is an integer larger than zero, νk+1 and

λk+1 will react to an abrupt change while ςk+1 is not affected

immediately. This situation better reflects the intention in

(20) when σ2 is known.

V. SIMULATION EXAMPLE

In the following a series of closed loop simulations with

the two different MPC control implementations will be

performed and their performance compared on a numerical

example. The example will use the same ARX model for

simulation of the true system and for predictions in the MPC.

The model is

A(q−1)y(t) = B(q−1)u(t) + d(t) + ε(t) (24a)

where ε(t) ∈ Niid(0, 0.1
2) and

A(q−1) = 1− 2.4q−1 + 2.05q−2 − 0.63q−3 (24b)

B(q−1) = 0.5q−1 (24c)

The closed loop performance will be quantified by the func-

tion (25) which reflects the MPC performance cost evaluated

over the entire simulation horizon of 1000 samples.

φ̄ =
1

2(tf − t0)

tf
∑

t=t0

y2t + ρ(∆ut)
2 (25)

In all simulations the same seed of random noise is applied

to the process.

At first the methods will be tested on four different cases

of the disturbance profile in addition to the process noise and

for a wide span of their respective tuning parameters.

Base case dk = 0 ∀k ∈ 1, .., N
Small step dk = 1/4H(k − 50) ∀ k ∈ 1, .., N
Large step dk = 1H(k − 50) ∀ k ∈ 1, .., N
Drift dk = 1

1−q−1wk, where wk ∈ Niid(0, 0.1
2)

where the function H(k−k0) is the Heaviside step function.

Note that the drift disturbance is integrated noise of the same

variance as the process noise. The disturbance state variance

is Qξ ∈ [10−9, 103] for the disturbance model approach and

the equivalent horizon N∞ ∈ [1; 1000] for the disturbance

estimation approach with time varying forgetting. The closed

loop performance is shown in Figure 1. In this figure, the

closed loop performance is not plotted against the actual

tuning parameters. The performance is plotted against the

gain Ld in the disturbance state estimator in the disturbance

modelling case and against 1/N∞ for the disturbance es-

timation approach with time varying forgetting. This con-

version is performed to achieve a comparable scaling and

interpretation of the abscissa in the figures. Both axis are

now scaled between 0 and 1. A value close to 1 indicates a

high sensitivity of the prediction error to the update of the

disturbance while 0 indicates that no update will occur. Ld

in the disturbance modelling is fixed when Qξ is chosen for

a specific system. The gain κk in the disturbance update for

the disturbance estimation algorithm, change in time cf. (22)

when changes in the prediction error occur. Under stationary

conditions and no disturbance the quantity 1/N∞ = 1−λk =
κk, ignoring the lower bound λmin. We therefore have 1/N∞

as an indication of the lower bound on κk since a change in

the disturbance will provide a change on λk and increase

the gain until the disturbance is estimated after which it

will decrease to the lower bound again. Figure 1 shows that

the two methods do differ in closed loop performance and

sensitivity to the nature of the disturbance. It is seen that

the disturbance modelling approach needs a value of Ld

larger than 0.1 if any disturbance enters the system. The best

performance, for these cases, is achieved for different values

of the gain dependent on the disturbance and the value of

ρ in performance cost function. It is further more seen that

if the disturbance drifts, the disturbance modelling achieves

the best performance for a value of Ld which corresponds to
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(a) Disturbance modelling. ρ = 0
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Fig. 1. Closed loop performance for the four simulation scenarios using both MPC implementations with ρ ∈ {0, 0.01}. The performance is plotted as
function of the disturbance state estimator gain Ld for the disturbance model approach and the inverse of the equivalent horizon N∞ for the disturbance
estimation approach with time varying forgetting.

Qξ = 0.12 as expected. The disturbance estimation approach

does in general achieve good performance for small values

of 1/N∞ when the disturbance does not have character of a

drift. N∞ ≈ 10 seems to perform well in all cases. Good

performance is however observed if N∞ does not exceed

500 when an infrequent step of any magnitude enters the

system. This performance is not sensitive to the value of

ρ, except for when the methods are tuned very hard for

fast disturbance rejection. The performance have also been

tested outside the range of ρ presented here. In general both

methods have comparable performance when choosing the

best tuning for each case. The disturbance estimation is

clearly superior in robustness when the disturbance occurs as

infrequent steps while the disturbance modelling is superior

when the disturbance is a drift with a known variance. It is

however doubtful whether this variance can be obtained.

Secondly both methods are applied to a new simulation

case over 200 samples. Here the disturbance is initially equal

zero. At time t = 50 the disturbance steps to d = 0.5, at

t = 100 a large step to d = −1 and finally at t = 150 the

disturbance steps back to 0. For Qξ = {10−2, 10−4, 10−6}
and for N∞ = {3, 10, 100} the controllers are tested and

the loop response is show in Fig. 2 for ρ equal to 0

and 0.01. The values of the performance cost are given in

Table I. It is seen from this study that for the disturbance

estimation strategy, good disturbance rejection if achieved

for the entire range of N∞ at reasonably low values of

the performance cost. For the disturbance modelling only

the very hardly tuning controller with Qξ = 10−2 is able

to give comparable, and even faster, disturbance rejection.

TABLE I

THE TUNING PARAMETERS AND THE CLOSED LOOP PERFORMANCE

GIVEN BOTH MPC IMPLEMENTATIONS FOR THE SIMULATION CASE

WITH A SERIES OF SMALL AND LARGE STEPS IN THE DISTURBANCE.

Qxi Ld φ̄(ρ = 0) φ̄(ρ = 0.01)

10−2 0.62 0.0177 0.0341

10−4 0.095 0.0544 0.106

10−6 0.010 0.150 0.283

N∞
1/N∞ φ̄(ρ = 0) φ̄(ρ = 0.01)

3 0.67 0.0261 0.0485
10 0.10 0.0350 0.0701
100 0.010 0.0501 0.0991

For the less aggressive tuning the speed of the disturbance

rejection is significantly decreased which is seen in the

values for the performance cost. Unfortunately this type of

hard tuning is cannot be recommended in case the steps

in the disturbance is infrequent since a high value of Ld

results in a higher input and output variance for the loop.

Therefore the strategy with adaptive disturbance estimation

with an algorithm which is sensitive to the magnitude of the

prediction error is better suited to insure offset free tracking

for model predictive control implementations. This algorithm

is not in the same way dependent on a tuning which

balance disturbance rejection versus noise sensitivity since

the method tune the gain κ itself based on the observations.

Hence the tuning of the disturbance estimation method is

related to the noise sensitivity during steady state simulation,

and it is therefore much less sensitive to the nature and how
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(a) Disturbance modelling. ρ = 0
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(c) Disturbance modelling. ρ = 0.01
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(d) Disturbance estimation. ρ = 0.01

Fig. 2. Closed loop performance for a series of small and large steps in the disturbance using both MPC implementations with ρ ∈ {0, 0.01}.

frequent disturbances occur.

VI. CONCLUSION

A novel method for achieving offset free tracking in MPC

applications is presented. It is based on adaptive estimation

of the unknown disturbance with time varying forgetting.

This method is compared to a classical approach where

the system is augmented with a disturbance state which is

estimated as part of the state estimation. Both methods have

one free tuning parameter which expresses the sensitivity to

large prediction errors in the equation for the disturbance

update. It is shown that while the disturbance modelling

approach is superior when the disturbance is drifting with

a known variance, the adaptive disturbance estimation with

a time varying forgetting is more robust to the nature of

the disturbance and performs very well when a system is

subjected to infrequent step disturbances of any size.
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[13] L. Ljung and T. Söderstöm, Theory and Practice of Recursive Identi-

fication, A. S. Willsky, Ed. MIT Press, 1983.
[14] T. R. Fortescue, L. S. Kershenbaum, and B. E. Ydstie, “Imple-

mentation of self-tuning regulators with variable forgetting factors,”
Automatica, vol. 17, no. 6, pp. 831 – 835, 1981.

[15] N. K. Poulsen, “Robust self tuning controllers,” Ph.D. dissertation, In-
stitute of Mathematical Statistics and Operational Research (IMSOR),
Technical University of Denmark, 1985.

2422


