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Abstract— In this paper, we consider the problem of multi-
armed bandits with a large number of correlated arms. We
assume that the arms have Bernoulli distributed rewards,
independent across time, where the probabilities of success are
parametrized by known attribute vectors for each arm, as well
as an unknown preference vector, each of dimension n. For
this model, we seek an algorithm with a total regret that is
sub-linear in time and independent of the number of arms.
We present such an algorithm, which we call the Three-phase
Algorithm, and analyze its performance. We show an upper
bound on the total regret which applies uniformly in time. The
asymptotics of this bound show that for any f ∈ ω(log(T )),
the total regret can be made to be O(n · f(T )), independent of
the number of arms.

I. INTRODUCTION

A. Motivation

The stochastic multi-armed bandit problem is the follow-
ing: suppose we are allowed to choose to “pull,” or play,
any one of m slot machines (also known as one-armed
bandits) in each of T timesteps, where each slot machine
generates a reward according to its own distribution which
is unknown to us. The parameters of the reward distributions
are correlated between machines, but the rewards themselves
are independent across machines, and independent and iden-
tically distributed across time slots. The choice of which
arm to pull may be a function of the sequence of past
pulls and the sequence of past rewards. If our goal is to
maximize the total reward obtained, taking expectation over
the randomness of the outcomes, ideally we would pull the
arm with the largest mean at all times. However, we do not
know in advance which arm has the largest mean, so a certain
amount of exploration is required. Too much exploration,
though, wastes time that could be spent reaping the reward
offered by the best arm. This exemplifies the fundamental
trade-off between exploration and exploitation present in a
wide class of online machine learning problems.

We consider a model for multi-armed bandit problems in
which a large number of arms are present, where the expected
rewards of the arms are coupled through an unknown param-
eter of lower dimension. Now, it is no longer necessary for
each arm to be investigated in order to estimate the expected
reward from that arm. Instead, we can estimate the underly-
ing parameter; in this way, each pull can yield information
about multiple arms. We present a simple algorithm, as well
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as a bound on the expected total regret as a function of
time horizon when using this algorithm. While possibly sub-
optimal, this bound is independent of the number of arms.

This model is applicable to certain e-commerce appli-
cations: suppose an online retailer has a large number of
related products, and wishes to maximize revenue or profit
coming from a certain set of customers. If the preferences
of this set of customers are known, the list of items which
are displayed can be sorted in descending order of expected
revenue or profit. However, we may not know a priori what
this preference vector is, so we wish to learn online by
sequentially presenting each user with an item, observing
whether the user buys the item, and then updating an internal
estimate of the preference vector.

As a concrete example, imagine an online camera store,
with hundreds of different camera models in stock. However,
there are perhaps closer to ten features which people will
compare when deciding which, if any, to purchase. There are
permanent features of the camera itself, such as megapixel
count, brand name, and year of introduction, as well as
extrinsic features, such as price, review scores, and item
popularity. All of these features might be considered by the
customer in order to decide whether or not to buy the camera.
If bought, the store gains a profit corresponding to the item.
A key distinction of our model, when compared to previous
work, is the incorporation of this inherently binary choice
customers are faced with: to buy or not to buy.

B. Model

Our model consists of a multi-armed bandit with m
arms (items) and n underlying parameters (attributes), where
m ≥ n, and potentially m � n. Each arm i is asso-
ciated with a constant n-dimensional attribute vector ui,
and we assume that rank [u1, . . . , um] = n. There is also
a constant but unknown n-dimensional preference vector
z∗ ∈ Rn. The quality βi = uTi z

∗ of arm i is a scalar
indicating how desirable the item is to a user. The expected
reward of an arm i assuming a given z is defined as

αi(z) = f
(
uTi z

)
=

1
1 + exp

(
−uTi z

) , ∀ i ∈ {1, . . . ,m} ;

thus the expected rewards of all of the arms are coupled
through z∗. We note that our results are applicable to
more general functions f ; we will comment more on this
later. For notational simplicity, let α∗i = αi(z∗). Let b ∈
{1, . . . ,m − 1} denote the number of equally best arms,
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so that α∗1 = α∗2 = · · · = α∗b > α∗b+1 ≥ · · · ≥ α∗m. At
each timestep t up to a finite time horizon T , a policy will
choose to pull exactly one arm, call this arm Ct, and a reward
Xt will be obtained, where Xt ∼ Ber(α∗Ct

). We wish to
find policies g which maximize the total expected reward,∑T
t=1Xt, or equivalently, minimize the expected total regret,

Eg

[∑T
t=1 (α∗1 −Xt)

]
= T · α∗1 − Eg[

∑T
t=1 α

∗
Ct

].

C. Prior Work

For an introduction and survey of classical multi-armed
bandit problems and their variations, see Mahajan and
Teneketzis [1]. One of the earliest breakthroughs on the
classical multi-armed bandit problem came from Gittins and
Jones [2], who showed that under geometric discounting, the
optimal policy assigns an index to each arm, now known
as the Gittins index, and pulls the arm with the largest
Gittins index. Other proofs of this optimality have been
given later by Weber [3] and Tsitsiklis [4]. Whittle [5]
proved that a similar index-based result is nearly optimal
in the “restless bandit” variation of this model, where the
arms which are not pulled also evolve in time. While these
policies greatly simplify a single m-dimensional problem
into m 1-dimensional problems, it is still, in general, too
computationally complex for online learning.

Lai and Robbins [6] proved an achievable O(m · log T )
lower bound for the expected total regret of the stochastic
multi-armed bandit problem in the case of independent arms.
Related work by Agrawal et al. [7], [8], [9] and Anantharam
et al. [10], [11] considered similar models with i.i.d. and
Markov time dependencies for each arm, and extended the
results to include “multiple plays” and “switching costs”.

Abe et al. [12] and Auer [13] considered models with finite
numbers of arms, with reward distributions that are correlated
through a multi-variate parameter z of dimension n, and
obtained upper bounds on the regret of order O(

√
mT )

and O(
√
nT · log T ), respectively. Mersereau et al. [14]

considered a model in which the expected rewards are affine
functions of a scalar parameter z, but allowed the set of
arms to be a bounded, convex region in Rn, in which
case m is uncountably infinite. They then derived a policy
whose expected total regret is Θ(

√
T ). Rusmevichientong

and Tsitsiklis [15] expanded this model to allow for a multi-
variate parameter z of dimension n, and showed that the
expected total regret (ignoring log T factors) is Θ(n

√
T ).

Dani et al. [16] independently considered a nearly identical
model, and obtained similar results.

Auer et al. [17] considered a non-stochastic version of the
multi-armed bandit problem, in which the rewards are no
longer drawn from an unknown distribution, but can instead
be adversarially generated. The resultant total weak regret,
calculated by comparison with the single arm which is best
over the entire time horizon, is shown to be O(

√
mT ). The

change from logarithmic to polynomial regret in this model
is due to having rewards which are time-dependent and
potentially adversarially generated, instead of being drawn
from a time-independent distribution.

Audibert et al. [18] considered the problem of best arm
identification in a stochastic multi-armed bandit setting, but
where the goal is to maximize the probability of determining
the best arm at the end of a time horizon, as opposed
to the usual goal of minimizing total regret over a time
horizon. This model is useful when considering exploration
and exploitation as occurring in series, instead of in parallel.
The probability of error is shown to be upper bounded by a
decaying exponential in T .

Auer et al. [19] investigated the finite-time regret of the
multi-armed bandit problem, assuming bounded but other-
wise arbitrary reward distributions. Using upper confidence
bound algorithms, where the confidence interval of an arm
shrinks as the arm is subjected to more plays, they achieve
a logarithmic upper bound on the regret, uniform over time,
that scales with the “gaps” between the expected rewards for
the arms.

A common idea used in crafting policies to solve the
multi-armed bandit problem is that of the doubling trick
[20], [21]. This technique is used to convert a parametrized
algorithm which works on a time horizon T , along with its
corresponding bound, into a non-parametrized algorithm that
runs forever, with an upper bound that holds uniformly over
time.

II. ALGORITHM AND MAIN RESULTS

A. Three-Phase Algorithm

We first present an algorithmic description of a pol-
icy for the multi-armed bandit problem described in
Section I.B. This algorithm, which we call the Three-
phase Algorithm, will depend on a scheduling function
g : N1 → N0 , such that g is strictly increasing, and that
g(l) ∈ o (exp (k · l)) , ∀k > 0 . Since g is not surjec-
tive in general, its inverse g−1 is not defined over all
of N0; however, the monotonicity of g allows us to de-
fine g−1 in the following natural way: let g−1(t) =
max {1,max {l ∈ N1 : g(l) ≤ t}} , ∀t ∈ N0. In Theorem
2.5, we will show that the expected total regret of this policy
is E[RT ] ∈ O

(
n · g−1(T )

)
, independent of the number of

arms m.
The algorithm requires a selection of n previously de-

termined arms, Σ = {σ(i)}ni=1 ⊆ {1, . . . ,m} , such that
UΣ =

[
uσ(1), . . . , uσ(n)

]
has rank n. Such a choice exists

since we assume [u1, u2, . . . , um] has rank n. The algorithm
starts by pulling arms in Σ until each has yielded both a 1
and a 0. Note this takes a random, but a.s. finite number of
timesteps (together called Phase 0). After this, the algorithm
proceeds in epochs. Epoch l consists of n exploration pulls
(called Phase 1), one for each arm in Σ, and g(l) exploitation
pulls (called Phase 2). In other words, Phase 1 refines our
estimate of z∗, and Phase 2 repeatedly pulls the best arm
given that estimate. If we impose a time horizon of T , epochs
1, 2, . . . are appended until the time horizon T has been
reached. The three phases are illustrated in Figure 1.

For each timestep t in either Phase 0 or Phase 1, an arm
i ∈ Σ is chosen, and the empirical count qi,Xt is incremented
by 1. Prior to each Phase 2 timestep during epoch l, there
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Fig. 1. Given a time horizon T , we partition the T timesteps into Phase 0, Phase 1, and Phase 2 timesteps. The Phase 1 and Phase 2 timesteps are
grouped into a total of L(ω) epochs.

Algorithm 1 Three-phase Algorithm
Require: Scheduling function g : N1 → N0, such that g is

strictly increasing, and g(l) ∈ o (exp (k · l)) , ∀k > 0
Require: Set of chosen arms Σ = {σ(i)}ni=1 ⊆ {1, . . . ,m},

such that UΣ =
[
uσ(1), . . . , uσ(n)

]
has rank n.

1: t← 1, l← 1
2: qi,0 ← 0, qi,1 ← 0 ∀i ∈ Σ
3: while ∃i ∈ Σ, j ∈ {0, 1} , such that qi,j = 0 do
4: Pull arm Ct ← min {i ∈ Σ : qi,0 = 0 or qi,1 = 0},

obtain reward Xt {Phase 0}
5: qCt,Xt

← qCt,Xt
+ 1

6: t← t+ 1
7: end while
8: loop
9: for i← 1 to n do

10: Pull arm Ct ← σ(i), obtain reward Xt {Phase 1}
11: qCt,Xt

← qCt,Xt
+ 1

12: t← t+ 1
13: end for
14: Form the estimates α̂i ←

qi,1
qi,0 + qi,1

, ∀i ∈ Σ

15: Form the estimate ẑ ←
(
UTΣ
)−1

 f−1
(
α̂σ(1)

)
...

f−1
(
α̂σ(n)

)


16: C(l) ← arg maxi∈{1,...,m} αi(ẑ)
17: for s← 1 to g(l) do
18: Pull arm Ct ← C(l), obtain reward Xt {Phase 2}
19: t← t+ 1
20: end for
21: l← l + 1
22: end loop

have already been l Phase 1 pulls. We can form empirical
estimates for α∗i based on only the Phase 0 and Phase 1
timesteps, namely α̂i,l =

qi,1
qi,0 + qi,1

, ∀i ∈ Σ. Note that

being in Phase 2 implies we have completed Phase 0, which
ensures that qi,0 ≥ 1 and qi,1 ≥ 1, and thus 0 < α̂i,l < 1.

Since f is strictly increasing and continuous, its inverse
exists. Since UΣ is an n× n matrix with full rank,

(
UTΣ
)−1

exists. We can now form an estimate for z∗, namely

ẑ =
(
UTΣ
)−1

 f−1
(
α̂σ(1)

)
...

f−1
(
α̂σ(n)

)


and choose Ct = arg maxi∈{1,...,m} αi(ẑ).
Remark 2.1: In practice, LU decomposition, instead of

matrix inversion, can be used to solve for ẑ. Also, since
f is strictly increasing, the estimated best arm in epoch l,
C(l), can be computed as arg maxi∈{1,...,m}

(
uTi ẑ

)
.

We shall point out some of the ideas behind this algorithm.
First, the algorithm is defined to run indefinitely; to obtain
the total regret for any finite time horizon T , we simply
terminate the algorithm when timestep T has been reached.
This achieves the same outcome as an application of the
doubling trick, in that the algorithm is not dependent on a
time horizon T . Our algorithm is similar to the algorithm
UCB2 of [19]. The main difference is that in our exploration
phases, the choice of arm exploits the correlation model that
we have assumed in our problem. Furthermore, as we will
see later, unlike UCB2, the lengths of the exploitation phases
are chosen to grow sub-exponentially in the epoch number
in order to obtain a regret bound that grows (slightly larger
than) logarithmically in the time horizon. As we gain more
information and are able to estimate z∗ more accurately, we
can spend a greater fraction of timesteps exploiting the arm
we think is best; this is achieved by choosing a suitable
scheduling function g to control the ratio of the number
of exploitation (Phase 2) pulls versus exploration (Phase 1)
pulls, as a function of the epoch number l.

B. Main Results

Note that there is only randomness in the outcomes
{Xt}Tt=1, since the Three-phase Algorithm is deterministic
in the selection of the arm Ct, conditioned on the history.
We will use ω to denote the sample-paths of {Xt}Tt=1. Let
L (ω) denote the number of epochs (including partial epochs,
as the final one may be truncated) up to timestep T , for a
given sample-path ω. Note that given T and g(l), L(ω) is the
same deterministic function of T0(ω) for all sample-paths.

Let Ri,T (ω) be the total regret up to timestep T in the
Phase i timesteps for a sample-path ω. Now, let RT (ω) =
R0,T (ω)+R1,T (ω)+R2,T (ω), the total regret up to timestep
T for a sample-path ω. Our goal is to find an upper bound
on E [RT ], the expected total regret. In particular, we are
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interested in the asymptotic behavior of the upper bound as
T →∞.

Lemma 2.2: For the Three-phase Algorithm, we have the
following bound on the expected total Phase 0 regret up to
timestep T :

E [R0,T ] ≤α∗1
∑
i∈Σ

[
1

α∗i (1− α∗i )

]
.

Proof:
Note that E [R0,T ] ≤ α∗1E

[∑
i∈ΣWi

]
, where Wi ∼

Geo (α∗i ) + Geo (1− α∗i ) is the time it takes to first observe
a 1 and subsequently observe a 0 from an arm i ∈ Σ. Thus,

E [R0,T ] ≤α∗1
∑
i∈Σ

[(
1
α∗i

+
1

1− α∗i

)]
=α∗1

∑
i∈Σ

[
1

α∗i (1− α∗i )

]
.

�

Lemma 2.3: For the Three-phase Algorithm, we have the
following bound on the expected total Phase 1 regret up to
timestep T :

E [R1,T ] ≤α∗1n · E[L].
Proof:

E [R1,T ] ≤E

L(ω)∑
l=1

n∑
i=1

(
α∗1 − α∗σ(i)

)
≤α∗1n · E[L].

�

Lemma 2.4: For the Three-phase Algorithm, for a given
choice of scheduling function g, we have the following bound
on the expected total Phase 2 regret up to timestep T :

E [R2,T ] ≤ 2α∗1n ·
L′−1∑
l=1

{exp (−l · γ) g(l)}+ α∗1n · E[L],

where L′ is a constant which depends on {ui}mi=1 and z∗.
Proof: Recall that α∗i = f

(
uTi z

∗), where f (β) =
1

1 + exp (−β)
is strictly increasing and continuous. Thus

f−1 is well defined, strictly increasing and continuous. Since
α∗1 = α∗2 = · · · = α∗b > α∗b+1 ≥ · · · ≥ α∗m, and
because f

(
uTi z

)
is continuous in z and defined over Rn,

it follows that there exists a neighborhood of z∗, denoted
A, such that arg maxi∈{1,...,m} αi(z) ∈ {1, . . . , b}, ∀z ∈ A.
Since UΣ is full rank, A must contain an open parallelotope
centered at z∗, Bz∗ (δ) =

{
z :
∥∥UTΣ z − UTΣ z∗∥∥∞ < δ

}
,

where δ > 0 and is largest possible. An example of the
problem parameters and the induced region A is shown in
Figure 2.

Consider any z ∈ Bz∗ (δ). By definition, |uTi z− uTi z∗| <
δ, ∀i ∈ Σ. This is equivalent to

∣∣f−1 (αi(z))− f−1 (α∗i )
∣∣ <

δ, ∀i ∈ Σ. Since f−1 is continuous, this is equiv-
alent to having a set of constants {αi, αi}i∈Σ, such
that αi < αi(z) < αi , where αi = f

(
f−1 (α∗i )− δ

)
and

αi = f
(
f−1 (α∗i ) + δ

)
, ∀i ∈ Σ.

Fig. 2. As an example, consider a scenario with n = 2 and m = 3. The
arms {ui}3

i=1 and the preference vector z∗ are located at the indicated
points. The shaded region is A.

For a Phase 2 timestep during epoch l, the algorithm
forms the empirical average rewards α̂i, ∀i ∈ Σ. If
it is the case that αi < α̂i < αi, ∀i ∈ Σ, then
by the discussion above, ẑ ∈ Bz∗(δ) ⊆ A , and hence,
Ct = arg maxi∈{1,...,m}{uTi ẑ} ∈ {1, . . . , b} , and we will
have chosen one of the best arms, accumulating zero regret.

Note that during epoch l, we have that qi,0 + qi,1 ≥ 2 +
(l − 1) ≥ l ∀i ∈ Σ, where the first term is due to the Phase
0 pulls and the second term is due to the Phase 1 pulls.
Furthermore, during epoch l, α̂i is a sum of qi,0 + qi,1 i.i.d.
Ber (α∗i ) random variables, ∀i ∈ Σ. By the Chernoff bound,

P (α̂i < αi) ≤ exp [− (qi,0 + qi,1) ·D (αi||α∗i )]
≤ exp [−l ·D (αi||α∗i )] , and

P (α̂i > αi) ≤ exp [− (qi,0 + qi,1) ·D (αi||α∗i )]
≤ exp [−l ·D (αi||α∗i )] , ∀i ∈ Σ,

where D (p||q) = p · log
p

q
+ (1− p) · log

1− p
1− q

is the K-L

divergence between two Bernoulli distributions.

Let γ = mini∈Σ min {D (αi||α∗i ) , D (αi||α∗i )}. Note
that from the definitions of αi and αi, it follows that
αi < α∗i < αi, ∀i ∈ Σ. Since D (p||q) = 0 ⇐⇒
p = q, we have that γ > 0. By the union bound,
P (∃i ∈ Σ : α̂i /∈ (αi, αi)) ≤ 2n exp (−l · γ).
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Reviewing the chain of implications, we have

P (ẑ /∈ A) ≤P (ẑ /∈ Bz∗(δ))
=P

(∥∥UTΣ ẑ − UTΣ z∗∥∥∞ > δ
)

=P
(
∃i ∈ Σ :

∣∣uTi z − uTi z∗∣∣ > δ
)

=P
(
∃i ∈ Σ :

∣∣f−1 (α̂i)− f−1 (α∗i )
∣∣ > δ

)
=P (∃i ∈ Σ : α̂i /∈ (αi, αi))
≤2n exp (−l · γ) .

Then, we have a bound on the expected per-timestep regret
r2,l during epoch l:

E [r2,l] =E [r2,l|ẑ ∈ A] · P (ẑ ∈ A)
+ E [r2,l|ẑ /∈ A] · P (ẑ /∈ A)
≤0 · P (ẑ ∈ A) + α∗1 · P (ẑ /∈ A)
≤2α∗1n exp (−l · γ) .

Note that the above derivation depends only on the epoch
number l, and is independent of the initial duration T0(ω).
Thus, E[r2,l] = E[r2,l|T0(ω)].

We can now find the expected total regret in the phase 2
times up to time T :

E [R2,T ]

=E

L(ω)∑
l=1

r2,l · g(l)


≤E

E
L′−1∑
l=1

r2,l · g(l) +
L(ω)∑
l=L′

r2,l · g(l)|T0(ω)


≤E

L′−1∑
l=1

E[r2,l|T0(ω)] · g(l) +
L(ω)∑
l=L′

E[r2,l|T0(ω)] · g(l)


≤
L′−1∑
l=1

E[r2,l] · g(l) + 2α∗1n · E
[

1
2
L(ω)|T0(ω)

]

=2α∗1n ·
L′−1∑
l=1

{exp(−l · γ)g(l)}+ α∗1n · E[L],

where L′ = max
{
l : exp (−l · γ) g(l) >

1
2

}
is a con-

stant, independent of sample-path, that depends on {ui}mi=1

and z∗ (and is therefore unknown to the algorithm). How-
ever, since we have assumed g(l) ∈ o (exp (k · l)) ∀k > 0 ,
it follows that liml→∞ exp (−l · γ) g(l) = 0 , and thus L′ is
finite. Therefore, the sum

∑L′−1
l=1 {exp (−l · γ) g(l)} is well

defined.

�

Theorem 2.5: For the Three-phase Algorithm, we have the
following asymptotic bound on the expected total regret up
to timestep T : E [RT ] = O

(
n · g−1(T )

)
.

Proof:
Let us partition the total time T by Phases, T = T0(ω) +

T1(ω) + T2(ω), where Ti(ω) is the number of timesteps in
Phase i for sample-path ω. Note that for all sample-paths

ω in which L (ω) ≥ 2, we have that g (L (ω)− 1) ≤ T ,
where the left side counts the number of Phase 2 timesteps
in the penultimate epoch. Thus, L (ω) ≤ g−1(T ) + 1 for all
sample-paths, and hence, E[L] ≤ g−1(T ) + 1 .

Using Lemmas 2.2, 2.3, and 2.4,

E[RT ] =E[R0,T +R1,T +R2,T ]

≤K + 2α∗1n · g−1(T )

∈O
(
n · g−1(T )

)
where

K =α∗1
∑
i∈Σ

[
1

α∗i (1− α∗i )

]

+ 2α∗1n ·

1 +
L′−1∑
l=1

[exp (−l · γ) g(l)]


is a constant which depends on n, {ui}mi=1, and z∗ (and is
therefore unknown to the algorithm), but is finite for any
valid set of problem parameters.

�

Corollary 2.6: If g−1(t) ∈ ω (log(t)), then g is a valid
scheduling function for the Three-phase Algorithm.
Proof: Because g−1(t) ∈ ω (log(t)), by definition,

limt→∞
k1 · g−1(t)

log(t)
>

1
k2

, ∀k1, k2 > 0.

Since g : N1 → N0 is strictly increasing by assumption,
liml→∞ g(l) =∞ . Also, note that by construction, ∀l ∈ N1,
g−1(g(l)) = l. Thus, we can make the substitution t = g(l),

lim
l→∞

k1 · g−1(g(l))
log(g(l))

= lim
t→∞

k1 · l
log(g(l))

= lim
t→∞

exp(k1 · l)
g(l)

>
1
k2
,

Hence limt→∞
g(l)

exp(k1 · l)
< k2. Therefore we have the

desired result, g(l) ∈ o(exp(k1 · l)), ∀k1 > 0 , so g is a valid
scheduling function.

�

Let log∗(x), the iterated logarithm function, be defined
recursively by

log∗(x) =

{
0, if x ≤ 1
1 + log∗ (log x) , if x > 1

.

Corollary 2.7: The Three-phase Algorithm can achieve
E[RT ] ∈ O (n · log(T ) · log∗(T )) .

Proof: Let gLLS(l) = max {t ∈ N1 : log(t) · log∗(t) ≤ l}.

Now, g−1
LLS(t) = blog(t) · log∗(t)c, so limt→∞

g−1
LLS(t)
log(t)

=

limt→∞ log∗(t) → ∞. Thus, gLLS ∈ ω (log(t)), and is
a valid scheduling function for the Three-phase Algorithm,
so an expected total regret of E[RT ] ∈ O

(
n · g−1(T )

)
⊆

O (n · log(T ) · log∗(T )) is achievable.

�
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Remark 2.8: In accordance with other results, such as
[6], we suspect this problem has a lower bound that is
asymptotically c · n · log(T ), where c is dependent on the
problem parameters {ui}mi=1 and z∗. If this is the case, then
by including the term log∗(T ), we are able to obtain an upper
bound which is not tight, but within a factor of log∗(T ),
while avoiding a dependence on the problem parameters.

C. Generalizations of the Basic Model

1) Arm-dependent Rewards: Suppose that each arm i has
a potentially different value of the reward, so that instead of a
{0, 1} reward, it has a {0, wi} reward. Furthermore, suppose
that {wi}mi=1 is known. Now, Xt ∼ wCt · Ber

(
α∗Ct

)
instead

of Xt ∼ Ber
(
α∗Ct

)
. Let the indices of the arms be sorted by

decreasing expected reward wiα∗i .
Then, Theorem 2.5 generalizes with only minor modifica-

tions to the proof, yielding

E[RT ] ∈O
(
w1α

∗
1n · g−1(T )

)
.

Corollary 2.7 also generalizes, so that an expected total re-
gret of E[RT ] ∈ O (w1α

∗
1n · log(T ) · log∗(T )) is achievable

with the Three-phase Algorithm.
2) Generalized Functional Dependency on Quality:

If we generalize the definition of the expected reward
of an arm i assuming a preference vector z to be
αi(z) = fi

(
uTi z

)
, ∀i ∈ {1, . . . ,m}, with the condition

that fi(β) : R→ (0, 1) is strictly increasing and continuous,
but otherwise arbitrary, all of the discussion above still
holds. The algorithm only needs a slight modification in the
formation of the estimate ẑ, which is now

ẑ =
(
UTΣ
)−1

 f−1
σ(1)

(
α̂σ(1)

)
...

f−1
σ(n)

(
α̂σ(n)

)
 .

III. CONCLUSIONS

We have proposed a class of parametrized multi-armed
bandit problems, in which the reward distribution is Bernoulli
and independent across arms and across time, with a param-
eter that is a non-linear function of the scalar quality of an
arm. The real-valued qualities are inner products between
the unknown preference and known attribute vectors. Under
this model, we are able to capture the fundamentally binary
choice inherent in certain online machine learning problems.
Our proposed algorithm can be implemented efficiently, and
is nearly optimal in the sense that its asymptotic expected
total regret can be made to be O

(
n · g−1(T )

)
, for any

function g−1(T ) ∈ ω (log(T )). This is in contrast to the
O (m log(T )) bound of Lai and Robbins, and the O(n ·

√
T ),

large-m bound of Mersereau et al.
Several extensions to this work are possible. For example,

can small modifications to the algorithm be made in order
to obtain O(n ·

√
T ) regret when given a continuum of arms

instead of discrete set of arms? Similarly, slight modifications

to this algorithm, in order to allow for arbitrary reward dis-
tributions instead of only binary rewards, could also provide
a more general application of our nonlinear model. Finally,
extensions to multiple plays and having time dependent z∗

and {ui}mi=1 would be directly applicable for e-commerce
applications.
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