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Abstract— The standard solutions of the L2-disturbance
attenuation and optimal control problems hinge upon the com-
putation of the solution of a Hamilton-Jacobi (HJ), Hamilton-
Jacobi-Bellman (HJB) respectively, partial differential equation
or inequality, which may be difficult or impossible to obtain
in closed-form. Herein we focus on the matched disturbance
attenuation and on the optimal control problems for fully
actuated mechanical systems. We propose a methodology to
avoid the solution of the resulting HJ (HJB, respectively) partial
differential inequality by means of a dynamic state feedback.
It is shown that for planar mechanical systems the solution of
the matched disturbance attenuation and the optimal control
problems can be given in closed-form.

I. INTRODUCTION

In recent years the problem of controlling mechanical

systems has become crucial in several applications, e.g.
robotics and home-automation, flight and aircraft control or

surgery applications, to name just a few. The main task

consists in determining a control action (open-loop) or a

control law (closed-loop) such that either the mechanical

system evolves according to a desired reference trajectory,

regardless of disturbances acting on the system, or such that

the trajectories of the mechanical system and the control

input minimize a criterion of optimality. It is well-known

that the standard solutions of the control problems informally

defined above are related to a Hamilton-Jacobi, Hamilton-

Jacobi-Bellman, respectively, partial differential equation or

inequality, the solution of which may be, however, difficult

or impossible to compute in practical cases [1], [7], [20],

[21].

Therefore several approaches to approximate, in a neigh-

borhood of the origin, with a desired degree of accuracy,

the solution of the HJ and of the HJB partial differential

equation or inequality have been proposed, see [4], [6], [10],

[11], [13], [14], [19], [22]. Most of these results rely either

on the iterative computation of the coefficients of a local

expansion of the solution, provided that all the functions of

the nonlinear system are analytic or on the solution of the HJ

(HJB, resp.) inequality or equation along the trajectories of
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the system. Finally, a large effort has been devoted to avoid

the hypothesis of differentiability of the storage function,

interpreting the HJ (HJB, resp.) inequality or equation in the

viscosity sense, see [3], [5], [16].

In [2] the problem of disturbance attenuation and set point

regulation for a rigid robot is approached. It is shown that

a PD type controller is sufficient to render the closed-loop

system dissipative with respect to the supply rate associated

to the notion of L2-gain. In [9] the H∞ control of a rigid

spacecraft is considered and a H∞ suboptimal feedback is

proposed. In particular, it is shown that if the torque does

not appear in the penalty variable then almost disturbance

decoupling can be obtained.

The optimal control problem for mechanical systems has

been addressed in [8]. In particular the same assumptions

are considered herein and in [8], namely the equations of

the rigid body are perfectly known and the positions and

the velocities are measurable. Therein, however, a prelim-

inary feedforward term is designed to compensate for the

effect of gravity, hence only the components of the control

forces that affect the kinetic energy are considered in the

optimization, neglecting the gravitation-dependent torques.

Moreover, the control law resulting from the optimization is a

linear static state feedback and the value function that solves

the Hamilton-Jacobi equation resembles the Hamiltonian

function of the mechanical system with the potential energy

replaced by a quadratic function.

The main contribution of this article is a method to con-

struct dynamically, i.e. by means of a dynamic extension, an

exact solution of a (modified) HJ inequality or a HJB equa-

tion for fully actuated mechanical systems without actually

solving any partial differential equation. The methodology

yields a dynamic state feedback control law achieving a

desired level of disturbance attenuation or a criterion of

optimality while guaranteeing at the same time asymptotic

stability of the zero equilibrium of the closed-loop system.

The rest of the article is organized as follows. In Section II

the basic definitions and results of the methodology proposed

in [17], [18] are summarized. In Section III the definition of

the problems, i.e. the matched disturbance attenuation and

optimal control problems for mechanical systems, is given

and discussed. The main result is presented in Section IV,

where it is also shown that for planar mechanical systems a

closed-form solution can be obtained. Finally, the application

of the method to a two-degree-of-freedom (2DOF) planar

robot is discussed and conclusions are drawn in Sections V

and VI, respectively.
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II. PRELIMINARIES [17], [18]

Consider the first-order quadratic partial differential in-

equality defined as1

Vxf(x) +
1

2
VxG(x)V

T
x +

1

2
H(x) ≤ 0 , (1)

with x ∈ R
n, where f : R

n → R
n is a smooth vector

field, G = GT : R
n → R

n×n, and H : R
n → R+ is

a positive semidefinite smooth mapping with H(0) = 0,

Hx(0) = 0. Assume that f(0) = 0, hence f(x) = F (x)x,

for some continuous mapping F : R
n → R

n×n, possibly

not unique. Note that the partial differential equations or

inequalities arising in the L2-disturbance attenuation and in

the optimal control problems have the form of the pde in (1).

Note that the quadratic approximation of the inequality (1)

is solved by the quadratic function V = 1
2x

T P̄ x with P̄ =
P̄T > 0 given by the algebraic Riccati equation

P̄A+AT P̄ + P̄GP̄ +H = 0 , (2)

with

A ,
∂f

∂x

∣

∣

∣

x=0
, H ,

∂2H

∂x2

∣

∣

∣

x=0
, G , G(0) . (3)

We now define the following notion of solution of the

inequality (1).

Definition 1: A C1 mapping P : R
n → R

1×n, zero at

zero, is said to be an algebraic P̄ solution of (1) if there

exists a mapping Σ : Rn → R
n×n, with xT Σ(x) x > 0,

for all x ∈ R
n \ {0}, such that

P (x)f(x) +
1

2
P (x)G(x)P (x)T +

1

2
H(x) + xTΣ(x)x ≤ 0 ,

(4)

and P (x) is tangent at x = 0 to the symmetric positive

definite solution of (2), i.e. ∂P (x)T

∂x

∣

∣

∣

x=0
= P̄ . ⋄

Note that P (x) is not assumed to be a gradient vector. A

similar approach is proposed in [12] where the solutions of

the Hamilton-Jacobi partial differential inequality are char-

acterized in terms of nonlinear matrix inequalities (NLMI).

Therein, however, it is assumed that the solution of the NLMI

is a gradient vector. Using the algebraic P̄ solution P (x),
define the function

V (x, ξ) = P (ξ)x +
1

2
(x− ξ)TR(x− ξ) , (5)

with ξ ∈ R
n and R = RT ∈ R

n×n positive definite.

Remark 1: Consider V as in (5) and note that there exist

a non-empty compact set Ω1 ⊆ R
2n containing the origin

and a positive definite matrix R̄ such that for all R ≥ R̄
the function V (x, ξ) in (5) is positive definite for all (x, ξ) ∈
Ω1 ⊆ R

2n. In fact, since P (x) is tangent at x = 0 to the

solution of the algebraic Riccati equation (2), the function

P (x)x : Rn → R is, locally around the origin, quadratic

1In what follows we use the notation Vx to denote the gradient of the
scalar function V with respect to the vector x.

and moreover has a local minimum for x = 02. Hence, the

existence of R̄ can be proved noting that the function P (ξ)x
is (locally) quadratic in (x, ξ) and, restricted to the manifold

M = {ξ ∈ R
n : ξ = x}, is positive definite for all x 6= 0 in

Ω1. N

To streamline the presentation define

∆(x, ξ) = (R − Φ(x, ξ))Λ(ξ)T , (6)

with Λ(ξ) = Ψ(ξ)R−1, where Φ(x, ξ) ∈ R
n×n is a contin-

uous mapping such that P (x) − P (ξ) = (x − ξ)TΦ(x, ξ)T ,

Ψ(ξ) ∈ R
n×n is the Jacobian matrix of the mapping P (ξ)

and Acl(x) = F (x) + G(x)N(x), with N(x) such that

P (x) = xTN(x)T .

Theorem 1: [17], [18] Let P (x) be an algebraic P̄ solu-

tion of (1). Let the matrix R > 0 be such that V (x, ξ) is

positive definite in a set Ω ⊆ R
2n containing the origin and

such that

1

2
Acl(x)

T∆+
1

2
∆TAcl(x) +

1

2
∆TG(x)∆ < Σ(x) , (7)

for all (x, ξ) ∈ Ω \ {0}. Then there exists k̄ such that for all

k ≥ k̄ the function V (x, ξ) > 0 satisfies

HJ (x, ξ) ,Vx(x, ξ)f(x) + Vξ(x, ξ)α(x, ξ) +
1

2
H(x)

+
1

2
Vx(x, ξ)G(x)Vx(x, ξ)

T ≤ 0 ,

(8)

for all (x, ξ) ∈ Ω, with α(x, ξ) = −kV T
ξ = −k(Ψ(ξ)Tx −

R(x− ξ)).

Theorem 2: [17], [18] Let P (x) be an algebraic P̄ so-

lution of (1) with Σ(0) > 0. Then, there exist a matrix

R > 0, a neighborhood of the origin Ω ⊆ R
2n and k̄ such

that for all k ≥ k̄ the function V (x, ξ) > 0 satisfies the

partial differential inequality (8) for all (x, ξ) ∈ Ω.

III. PROBLEM DEFINITION

Consider fully actuated mechanical systems described by

the Euler-Lagrange equation [15], namely

M(q)q̈ + C(q, q̇)q̇ +G(q) = τ̃ , (9)

where G(q) describes the potential forces and the matrix

C(q, q̇), which is linear in the second argument, describes

the Coriolis and centripetal forces.

Defining the variables x1 = q and x2 = q̇, with

x1(t) ∈ R
n, x2(t) ∈ R

n and x(t) = (x1(t), x2(t)),
equation (9) is equivalent to a system of first-order ordinary

differential equations, namely

ẋ1 = x2 ,

ẋ2 = M(x1)
−1 [τ̃ − C(x1, x2)x2 −G(x1)] .

(10)

Assume that the preliminary feedback τ̃ = τ̂ + G(0),
τ̂ ∈ R

n, is applied to compensate for the effect of gravity

2This can be easily proved considering that the first-order derivative of
the function is zero in x = 0 and (P (x)x)xx = 2P̄ > 0, where Vxx

denotes the Hessian matrix of the scalar function V (x) with respect to the
vector x.
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at the origin. Under this assumption, the gravitational term

becomes G̃(x1) = G(x1)−G(0) which is zero at the origin.

Therefore, there exists a continuous mapping Ḡ : R
n →

R
n×n such that G̃(x1) = Ḡ(x1)x1, for all x1 ∈ R

n.

Finally, suppose that the variables of interest - to op-

timize or for which a desired attenuation level needs to

be guaranteed in the optimal control or the disturbance

attenuation problems, respectively - are the positions x1 and

the velocities x2 of the joints.

Problem 1: (L2-disturbance attenuation). Consider sys-

tem (10) and let γ > 1 and τ̂ = u + d, where u ∈ R
n is

the control input whereas d ∈ R
n is an unknown disturbance

signal. The regional dynamic state feedback L2-disturbance

attenuation problem with stability consists in determining an

integer ñ ≥ 0, a dynamic control law of the form

ξ̇ = α(x, ξ) ,

u = β(x, ξ) ,
(11)

with ξ(t) ∈ R
ñ, α : R2n × R

ñ → R
ñ, β : R2n × R

ñ → R
n

and a set Ω̄ ⊂ R
2n×R

ñ, containing the origin of R2n×R
ñ,

such that the closed-loop system (10)-(11) has the following

properties.

(i) The zero equilibrium of the system (10)-(11) with

d(t) = 0, for all t ≥ 0, is asymptotically stable with

region of attraction containing Ω̄.

(ii) For every d ∈ L2(0, T ), such that the trajectories of

the system remain in Ω̄, the L2-gain of (10)-(11) from

d to z = [xT uT ]T is less than or equal to γ, i.e.

∫ T

0

‖x(t)‖2dt+

∫ T

0

‖u(t)‖2dt ≤ γ2

∫ T

0

‖d(t)‖2dt ,

for all T ≥ 0. ⋄

Problem 2: (Optimal Control). Consider system (10) with

τ̂ = u. The approximate regional dynamic optimal control

problem consists in determining an integer ñ ≥ 0, a dynamic

control law (11) and a set Ω̄ ⊂ R
2n × R

ñ containing the

origin of R
2n × R

ñ such that the closed-loop system (10)-

(11) has the following properties.

(i) The zero equilibrium of the system (10)-(11) is asymp-

totically stable with region of attraction containing Ω̄.

(ii) For any ū and any (x0, ξ0) such that the trajectories of

the system (10)-(11) remain in Ω̄

J((x0, ξ0), β) ≤ J((x0, ξ0), ū) ,

where

J((x0, ξ0), u) =
1

2

∫

∞

0

(

L(x, ξ) + uTu
)

dt ,

and L(·, ·) : R
4n → R+ is a positive semidefinite

function. ⋄

IV. DISTURBANCE ATTENUATION AND APPROXIMATE

OPTIMAL CONTROL

In order to approach the matched L2-disturbance atten-

uation and the optimal control problems within the same

framework, define ǫ2 = −(1/γ2 − 1), where γ ∈ (1,∞] is

the desired disturbance attenuation level. Note that ǫ ∈ (0, 1],
where the case ǫ = 1, that is γ = ∞, represents the optimal

control problem since no restriction on the attenuation level

is imposed. The choice of γ ∈ (1,∞) yields a compromise

between the optimal strategy and the maximum achievable

robustness with respect to L2 exogenous inputs.

Remark 2: Let H(x) = µ2
1x

T
1 x1 + µ2

2x
T
2 x2,

f(x) ,

[

x2

−M(x1)
−1

(

C(x1, x2)x2 + G̃(x1)
)

]

, (12)

and

G(x) , −ǫ2
[

0 0
0 M(x1)

−2

]

. (13)

When γ = ∞ the instantaneous cost minimized by the

optimal control law is given by L(x, ξ) = (H(x)+ρ(x, ξ)),
where ρ(x, ξ) is defined as ρ(x, ξ) = −HJ (x, ξ) ≥ 0,

with HJ (x, ξ), f(x) and G(x) as in (8), (12) and (13),

respectively. Moreover, the actual cost paid is V (x(0), ξ(0)),
with V (x, ξ) defined in (5), hence the cost can be minimized

with a proper initialization of the dynamic controller, i.e. for

a given initial condition x0, it is possible to select the initial

condition of the dynamic extension ξ(0) such that

ξ(0) = argmin
ξ

V (x0, ξ) . (14)

N

A. Fully actuated mechanical systems

In this section the solutions to Problems 1 and 2 are given

for the fully actuated mechanical systems described by the

equations (10).

To begin with the definition of an algebraic P̄ solution

for the system (10) requires the computation of the positive

definite matrix P̄ that solves the linearized problem. To this

end consider the first-order approximation of the nonlinear

system (10), namely

ẋ =

[

0 In
−M(0)−1D 0

]

x+

[

0
M(0)−1

]

u .

where D = DT ∈ R
n×n is a constant matrix defined as

D = ∂G/∂x1(0). Note that D is the Hessian matrix of the

potential energy U(x1) evaluated in x1 = 0, therefore if the

potential energy has a strict local minimum at the origin, then

D is positive definite. The corresponding algebraic Riccati

equation is given by

P̄A+AT P̄ − ǫ2P̄BBT P̄ +HTH = 0 , (15)

where H = diag{µ1In, µ2In}. Partitioning the matrix P̄ as

P̄ =

[

P̄1 P̄2

P̄T
2 P̄3

]

,
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let the matrices P̄1, P̄2 and P̄3 ∈ R
n×n be defined as the

solutions of the system of quadratic matrix equations

µ2
1In = P̄2M(0)−1D +DTM(0)−1P̄T

2 + ǫ2P̄2M(0)−2P̄T
2

P̄1 = DTM(0)−1P̄3 + ǫ2P̄2M(0)−2P̄3 ,

P̄3 =
1

ǫ
M(0)[P̄2 + P̄T

2 + µ2
2In]

1/2 .

(16)

Note that the solution of the matrix equations (16) exists and

is unique.

Proposition 1: Consider the mechanical system (10). Sup-

pose that Σi(0) > 0, i = 1, 2, let γ ∈ (1,∞]. Let

xT
i Υ

T
i (x)Υi(x)xi = xT

i (µ
2
i In + Σi(x))xi > 0, i = 1, 2,

let W1(x1, x2) be such that

ΥT
1 (x)Υ1(x) = W1M(x1)

−1Ḡ(x1) + Ḡ(x1)
TM(x1)

−1W1

+ ǫ2W1M(x1)
−2W1

and let

V1(x) = W1M(x1)
−1

[

C(x) + ǫ2M(x1)
−1W2

]

+ Ḡ(x1)
TM(x1)

−1W2 ,

V2(x) = W2M(x1)
−1

[

C(x) +
ǫ2

2
M(x1)

−1W2

]

−
1

2
Υ2(x)

TΥ2(x) ,

with W2(x1, x2) such that W2(0, 0) = P̄3. Then there exist

a matrix R > 0, a neighborhood of the origin Ω ⊆ R
4n and

k̄ such that for all k ≥ k̄ the function V (x, ξ) as in (5), with

P (x) = [xT
1 V1 + xT

2 V2, x
T
1 W1 + xT

2 W2] , (17)

is positive definite and satisfies for all (x, ξ) ∈ Ω the

Hamilton-Jacobi partial differential inequality (8), hence the

dynamic control law

ξ̇ = −k(Ψ(ξ)Tx−R(x− ξ)) ,

u = −g(x)T
[

P (x)T + (R − Φ(x, ξ))(x − ξ)
]

,
(18)

solves Problem 1 if ǫ ∈ (0, 1) and Problem 2 if ǫ = 1.

Proof: Let Σi(0) > 0, i = 1, 2, f(x) and G(x) as in (12)

and (13), respectively, ǫ ∈ (0, 1), and note that P (x) as in

(17) is an algebraic P̄ solution of the equation (4), i.e.

2xT
1 V1x2 + 2xT

2 V2x2 − 2xT
1 W1M

−1G̃− 2xT
2 W2M

−1G̃

− ǫ2
(

xT
1 W1 + xT

2 W2

)

M−2 (W1x1 +W2x2)

− 2xT
1 W1M

−1Cx2 − 2xT
2 W2M

−1Cx2 + xT
1 Υ

T
1 Υ1x1

+ xT
2 Υ

T
2 Υ2x2 = 0.

(19)

Then, by Theorems 1 and 2 there exist k, R and a set

Ω ⊆ R
4n such that the dynamic control law (18) solves the

regional dynamic state feedback L2-disturbance attenuation

problem with stability. If ǫ = 1 in (13) then the dynamic

control law (18) solves Problem 2. �

Remark 3: Let µ1 6= 0. The mechanical system (10) is

zero-state detectable with respect to the output h(x) =
[µ1x1, µ2x2]

T . Therefore, considering the condition (8), by

LaSalle’s invariance principle and zero-state detectability, the

feedback (18) asymptotically stabilizes the zero equilibrium

of the closed-loop system. N

B. Planar Mechanical Systems

In the case of planar mechanical systems the solutions

of the linearized disturbance attenuation problem and of the

equation (19) can be given in closed-form. Consider planar

fully actuated mechanical systems. Defining the variables

x1 = q and x2 = q̇, with x1(t) ∈ R
n, x2(t) ∈ R

n,

equation (9) is equivalent to a system of first-order ordinary

differential equations, namely

ẋ1 = x2 ,

ẋ2 = M(x1)
−1 [τ̂ − C(x1, x2)x2] .

(20)

The solution of the algebraic Riccati equation (15) for the

system (20) is

P̄1 = µ1

[

2µ1

ǫ
M(0) + µ2

2In

]1/2

,

P̄2 =
µ1

ǫ
M(0) , P̄3 =

1

2
[S + ST ] ,

(21)

with S = ǫ−1M(0)
[

2µ1ǫ
−1M(0) + µ2

2In
]1/2

.

The following result provides solutions to Problems 1 and

2 for fully actuated planar mechanical systems (20).

Corollary 1: Consider the mechanical system (20). Sup-

pose that Σi(0) > 0, i = 1, 2, let γ ∈ (1,∞]. Let

W1(x1, x2) =
1

ǫ
Υ(x)TM(x1) and

V1(x1, x2) = Υ(x)

[

1

ǫ
C(x1, x2) + ǫM(x1)

−1W2

]

,

V2(x1, x2) = W2M(x1)
−1

[

C(x1, x2) +
ǫ2

2
M(x1)

−1W2

]

−
1

2
Υ2(x)

TΥ2(x) ,

with W2(x1, x2) such that W2(0, 0) = P̄3. Then there exist

a matrix R > 0, a neighborhood Ω ⊂ R
4n containing the

origin and k̄ such that for all k ≥ k̄ the dynamic control law

defined in (18), with P (x) as in (17), solves Problem 1 if

ǫ ∈ (0, 1) and Problem 2 if ǫ = 1.

V. 2 DOF PLANAR ROBOT

Consider a planar fully actuated robot with two rotational

joints and let x1 = [χ1, χ2] ∈ R
2 be the relative positions

of the joints and x2 = [χ3, χ4] ∈ R
2 be the corresponding

velocities. The dynamics of the mechanical system can be

described by equations of the form (20) with

M(χ1, χ2) =

[

a1 + 2a2 cos(χ2) a2 cos(χ2) + a3
a2 cos(χ2) + a3 a3

]

,
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C(χ) =

[

0 −a2 sin(χ2)(χ4 + 2χ3)
a2 sin(χ2)χ3 0

]

where a1 = I1+m1d
2
1+I2+m2d

2
2+m2l

2
1, a2 = m2l1d2 and

a3 = I2+m2d
2
2, with Ii, mi, li and di the moment of inertia,

the mass, the length and the distance between the center of

mass and the tip of the i-th joint, i = 1, 2, respectively. In

the simulations we let m1 = m2 = 0.5Kg, l1 = l2 = 0.3m,

d1 = d2 = 0.15m and I1 = I2 = 0.0037Kgm2. To begin
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Fig. 1. Time histories of the angular positions of the joints for different
values of the parameter α (Top graph: α = 0.8. Middle graph: α = 1.
Bottom graph: α = 5) when the linear control law uo and the dynamic
control law are applied, dashed and solid lines, respectively.

with suppose that the action of the actuators is corrupted by

white noise and consider a desired attenuation level on the

position of the joints close to γ = 1, e.g. define ǫ = 0.1.

Let Σ(χ1, χ2) = diag{10−3(1 + χ2
1), 10

−3(1 + χ2
2)} and

determine the algebraic P̄ solution defined in Proposition 1.

Since the nonlinear Hamilton-Jacobi partial differential equa-

tion or inequality that yields the solution of the matched

disturbance attenuation problem for the considered planar

robot does not admit a closed-form solution, the performance

of the dynamic control law defined in (18) is compared

with the solution of the linearized problem, i.e. the static

state feedback given by uo = −BT P̄ x. In the dynamic

control law, the matrix R is selected as R = αΦ(0, 0),
with α ∈ R+. Let the initial condition of the planar robot

be [χ1(0), χ2(0), χ3(0), χ4(0)] = [π/2, π/2, 0, 0]. Figure 1

displays the time histories of the angular positions of the

joints for different values of the parameter α when the

linearized control law uo and the dynamic control law (18)

are applied, dashed and solid lines, respectively. In all the

plots the same disturbance affects the actuators. The behavior

of the joints with α = 0.8 is displayed in the top graph and it

can be noted that the dynamic control law guarantees worse

rejection of the matched disturbances than the control law

uo. Increasing the value of the parameter α improves the

performance of the dynamic control law. In particular, the

choice R = Φ(0, 0) (middle graph) yields a solution almost

identical to uo whereas selecting α = 5 the disturbance

attenuation is significantly improved (bottom graph).
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Fig. 2. Ratio between the costs yielded by the dynamic control law
- considering the optimal value of [ξ1(0), ξ2(0)] for each χ(0), letting
[ξ3(0), ξ4(0)] = [0, 0] - and by the optimal static state feedback for the
linearized system.
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Fig. 3. Top graph: time histories of the angular positions of the two
joints when the dynamic control law and the optimal state feedback uo are
applied, left and right graph, respectively. Middle graph: time histories of
the dynamic control law and uo, left and right graph, respectively. Bottom
graph: time histories of the dynamic extension ξ.

Consider the ideal case of absence of disturbances and

let ǫ = 1, i.e. γ = ∞. Figure 2 displays, for different

initial conditions, the ratio between the costs yielded by

the dynamic control law - considering the optimal value of

[ξ1(0), ξ2(0)] for each χ(0), letting [ξ3(0), ξ4(0)] = [0, 0]
- and by the optimal static state feedback for the linearized

system, namely ρ = Vd(χ(0), ξ(0))/Vo(χ(0)). Obviously,
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ρ < 1 implies that the cost paid by the dynamic control law

is smaller than the cost of the optimal static state feedback

for the linearized system.

Let α = 1.2 and χ(0) = [π/4, π/4, 0, 0]. As above, the

dynamic control law is compared with the optimal solution

of the linearized problem obtained with ǫ = 1, whose

optimal cost is V (χ(0)) = 1
2χ(0)

T P̄χ(0) = 0.2606.

Set [ξ3(0), ξ4(0)] = [0, 0]. The optimization of the

value function V (χ(0), ξ(0)), which gives the optimal

cost paid by the solution, with respect to ξ1(0) and

ξ2(0), yields the values ξo1(0) = 0.3, ξo2(0) = −0.9
and the corresponding value attained by the function is

V (χ(0), ξo1(0), ξ
o
2(0), 0, 0) = 0.2081. The top graph of

Figure 3 shows the time histories of the angular positions of

the two joints when the dynamic control law, with α = 1.2,

and the optimal state feedback uo are applied, left and right

graph, respectively. The time histories of the dynamic control

law and the optimal local state feedback are displayed in the

middle graph of Figure 3, left and right graph respectively,

whereas the bottom graph shows the time histories of the

state of the dynamic extension, ξ.

In the last simulation a comparison between the dynamic

control law (18) and the linear control law proposed in [8] is

performed. In the following the variables to minimize are the

positions together with the velocities of the joints, since the

conditions of existence for the control law in [8] can not be

satisfied considering only the minimization of the positions

of the joints, as in the previous numerical example.
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Fig. 4. Ratio between the cost paid by the dynamic control law (18),
considering the optimal value of [ξ1(0), ξ2(0)] for each χ(0), letting
[ξ3(0), ξ4(0)] = [0, 0], and the control law proposed in [8].

Figure 4 displays the ratio between the cost paid by the

dynamic control law (18), considering the optimal value of

[ξ1(0), ξ2(0)] for each χ(0), letting [ξ3(0), ξ4(0)] = [0, 0],
and the linear control law proposed in [8]. It can be noted

that the cost paid by the dynamic solution is lower than the

cost of the linear control law of [8].

VI. CONCLUSIONS

The matched L2-disturbance attenuation problem and the

optimal control of fully actuated mechanical systems are

studied. It is shown that a dynamic control law can be

designed by means of a dynamic extension. The methodology

hinges upon the solution of an algebraic Riccati equation

without involving any partial differential equation. Moreover,

for planar mechanical systems the solution can be given in

closed-form. The article is concluded with an example of

application of the proposed methodology to a 2 DOF planar

robot.
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