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Abstract— This paper is concerned with the improved con-
straints handling in mixed-integer optimization problems. The
novel element is the reduction of the number of binary variables
used for expressing the complement of a convex (polytopic)
region. As a generalization, the problem of representing the
complement of a possibly non-connected union of such convex
sets is detailed. In order to illustrate the benefits of the proposed
improvements, a practical implementation, the problem of ob-
stacle avoidance using receding horizon optimization techniques
is considered.

I. INTRODUCTION

Problems like path following with obstacle and collision

avoidance are relevant in many applications involving the

control of cooperative systems. A popular framework for

the treatment of such decision problems is Mixed-Integer-

Programming (MIP), described in [1]. MIP has the ability

to include non-convex constraints and discrete decisions in

the optimization problem. For example, the evolution of

a dynamical system in an environment presenting obstacle

can be modeled in terms of a non-convex feasible region

which can be further expressed through the use of binary

decision variables, [2]. Reference like [3] detail the use of

MIP for off-line trajectory design with collision avoidance

constraints. In [4], the authors used the combination of MIP

and Model Predictive Control (MPC) to stabilize general

hybrid systems around equilibrium points. [5] applied MIP

in a predictive control framework to plan short trajectories

around nearby obstacles. The mixed-integer formulation has

also proven to be useful for cooperative reconnaissance [6],

path planning, [7] and air traffic management [8]. Another

interesting application approach was reported in [9] where

a feasible reference signal which permits set membership

testing for fault detection was computed over a non-convex

region leading to a MIP formulation.

MIP, despite its modeling capabilities and the availabil-

ity of good solvers has serious numerical drawbacks. As

stated in [10], mixed-integer techniques are NP-hard, i.e.

the computational complexity will increase in an exponential

relation to the number of binary variables used in the problem

formulation. This highlights the importance of reducing the

number of binary variables. Due to the negative influence

of the increase of binary variables there are a few attempts

in the literature to reduce their number. In [7] an iterative

method for including the obstacles in the best path generation

is provided. Other works, like [11], consider a predefined

path constrained by a sequence of convex sets. In all of
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these papers the binary variables reduction is not tackled

at the MIP level, but instead the original decision problems

are reformulated in a simplified MIP form.

In the present paper a novel approach is proposed in

the context of MIP complexity reduction. We refer here

specifically to problems where the binary variables are

used to express a non-convex region over which a (usually

quadratic) cost function has to be minimized. We formulate

the problem using fewer binary variables through a more

compact codification of the inequalities describing the feasi-

ble region. Thus the problem complexity will require only a

polynomial number of subproblems (LPs or QPs) that have to

be solved with obvious benefits for the computational effort.

Additionally, the technique is extended for the treatment of

non-connected non-convex regions. The method presented

in this paper can be used in several fields. We choose to

exemplify here with an agent control problem where it is

necessary to avoid stationary obstacles in a restricted region.

In this context the reduction technique is embedded within

an MPC path planning for multiple obstacles avoidance.

The rest of the paper is organized as follows. In Section II

the preliminaries are presented, the main idea being detailed

in Section III. Further on, in Section IV the novel method

is extended to non-connected non-convex regions. The im-

provements in the computational time for the approach are

detailed in Section V. Discussions based on an example are

presented in Section VI while the conclusions are drawn in

Section VII.

The following notation will be used throughout the pa-

per. The closure of a set S, cl(S) is the intersection of

all closed sets containing S. The collection of all pos-

sible N combinations of binary variables will be noted

{0, 1}N = {(b1, . . . , bN ) : bi ∈ {0, 1} , i = 1, . . . , N}. The

ceiling value of x ∈ R denoted as ⌈x⌉ is the smallest integer

greater than x. Denote B
n
p = {x ∈ R

n : ‖x‖p ≤ 1} as the

unit ball of norm p, where ‖x‖p is the p-norm of vector x.

II. PRELIMINARIES

For safety and obstacle avoidance problems (to take just

a few examples) the feasible region in the space of solutions

is a non-convex set. Usually this region is considered as the

complement of a convex region which describes an obstacle

and/or a safety region. Due to their versatility and relative

low computational burden the polyhedra are the instrument

of choice in characterizing these regions.

In the following we define a bounded polyhedral set,

P ⊂ R
n through its implicit half-space description:

P = {x ∈ R
n : hix ≤ ki, i = 1, . . . , N} (1)
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with (hi, ki) ∈ R
1×n × R and its complement, as:

CX(P ) , cl(X \ P ) (2)

with the reduced notation C(P ) whenever X is presumed

known or is considered to be the entire space R
n.

By definition every affine subspace which defines P

Hi = {x : hix = ki} (3)

will partition the space into two disjoint1 regions:

R+(Hi) = {x : hix ≤ ki} (4)

R−(Hi) = {x : −hix ≤ −ki} (5)

with i = 1, . . . , N .

The non-convex region C(P ), denoted by (2), may be

described as an union of regions that cover all space except

P :

C(P ) =
⋃

i

R−(Hi), i = 1, . . . , N. (6)

Therefore, we note that the complement of a bounded

polyhedra (1) is covered by an union of N overlapping

regions denoted as R−
i (a simplified notation for region (5)

associated to the ith inequality of (1)).

In order to have a tractable problem one has to use mixed

integer techniques with the end result being a polyhedra in

the extended space of state + auxiliary binary variables of

the form:

− hix ≤ −ki +Mαi, i = 1 . . . N (7)
i=N∑

i=1

αi ≤ N − 1 (8)

with M a constant chosen appropriately (that is, significantly

bigger than the rest of the variables) and (α1, . . . , αN ) ∈
{0, 1}N the auxiliary binary variables.

Remark 1. A region R−
i can be obtained from (7) with an

adequate choice of binary variables

αi , (1, . . . , 1, 0
︸︷︷︸

i

, 1, . . . , 1). (9)

However the converse is not true since no choice of binary

variables will describe a region (4). Indeed if the associated

binary variable is 1, the corresponding inequality degenerates

such that it covers any point x ∈ R
n (this represents the limit

case for M → ∞). The condition (8) is then required such

that at least one binary value is 0 and consequently at least

one inequality is verified. �

As it can be seen in the representation (7)–(8) a binary

variable is associated to each inequality in the description of

the polytope (1). Obviously, for a big number of inequalities,

the number of binary variables becomes exceedingly large.

Since their number exponentially affects the resolution of

any mixed integer algorithm (usually they are branch and cut

1The relative interiors of these regions do not intersect but their closures
have as a common bounday the affine subspace Hi.

algorithms and thus, very sensitive to the number of binary

terms) the goal to reduce their number is worthwhile. A first

step would be to eliminate from the half-space representation

of the polytope all the redundant constraints, [12]. We

suppose that this pre-treatment is performed and we are

dealing with a non-redundant description of the polyhedral

set.

III. BASIC IDEA

By preserving a linear structure of the constraints, we

propose in the present section a generic solution towards

the binary variables reduction.

To each of the regions in (6) we associated in (7) a unique

binary variable. Consequently, the total number of binary

variables is N , the number of supporting hyperplanes (see

(1)). However, a basic calculus shows that the minimum

number of binary variables necessary to distinguish between

these regions is

N0 = ⌈log2N⌉. (10)

The question that arises is the following: How to describe

the regions in a linear formulation similar to (7) through a

reduced number of binary variables?

(λ1, . . . , λN0
) ∈ Λ , {0, 1}N0 . (11)

The binary expression appearing in the inequalities has

to remain linear for computational advantages related to the

optimization solvers. This structural constraint is equivalent

with saying that any variable αi should be described by a

linear mapping in the form:

αi(λ) = ai0 +

N0∑

k=1

aikλk. (12)

In the reduced space of Λ we will arbitrarely associate a

tuple

λi ,
(
λi
1 . . . λ

i
N0

)
(13)

to each region R−
i . Note that this association is not unique,

and various possibilities can be considered: in the following,

unless otherwise specified, the tuples will be appointed in

lexicographical order.

The problem of finding a mapping in Λ which de-

scribes region R−
i reduces then to finding the coefficients

(
ai0, a

i
1, . . . , a

i
N0

)
for which αi = 0 for the associated

tuple and αi = 1 everywhere else. This translates into the

following conditions for any λi, λj ∈ {0, 1}N0 :






ai0 +
N0∑

k=1

aikλ
i
k = 0

ai0 +
N0∑

k=1

aikλ
j
k ≥ 1, ∀j 6= i

(14)

with λi
k the kth component of the tuple associated to R−

i .

Note that, in (14) the equality constraints for j 6= i were

relaxed to inequalities since the value of Mαi needs only to

be sufficiently large (any αi ≥ 1 being a feasible choice).

Nothing is said a priori about the non-emptiness of the set

described by (14). We need at least a point in the coefficients
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space (a0, a1, . . . , aN0
) which verifies conditions (14) in

order to prove the non-emptiness. To this end, we present

the following proposition:

Proposition 1. A mapping αi(λ) : {0, 1}
N0 → {0}∪ [1,∞)

which verifies (14) is given by:

αi(λ) =

N0∑

k=1

tk, where tk =

{

λk, if λi
k = 0

1− λk, if λi
k = 1

(15)

where λk denotes the kth variable and λi
k its value for the

tuple associated to region R−
i .

The coefficients
(
ai0, . . . , a

i
N0

)
of an equivalent linear

mapping (12) can be then obtained as:

ai0 =

N0∑

k=1

λi
k, aik =

{

1, if λi
k = 0

−1, if λi
k = 1

, k = 1, . . . , N0

(16)

Proof: The claim is constructive, by introducing mapping

(16) in (14) it can be seen by simple inspection that the

conditions are verified. �
For exemplification the case of a square will be described:







0 1
0 −1
1 0

−1 0







[
x1

x2

]

≤







1
1
1
1







(17)

As stated in this section the number of binary variables

(similar to the formulation (7)) is N = 4, equal with the

number of half-spaces described in (17). The reduced number

of variables will be N0 = ⌈log24⌉ = 2, according to (10).

Following the problem formulation (15) the variables αi can

be expressed as in (12) by

αi = ai0 + ai1λ
i
1 + ai2λ

i
2.

We associate to each region a tuple of two values (λ1, λ2)
in lexicographical order.

R−
2 : −h2x ≤ −k2

(
λ2
1, λ

2
2

)
= (0, 1)

(A) Feasible region for coefficients

a0

a1

a2

(B) R−(H2) and its tuple

FIG. 1: Outer regions and their associated tuples

The case of the 2nd half-space, associated to tuple

(λ2
1, λ

2
2) = (0, 1), is detailed in Figure 1(a). Using (14) we

obtain, as depicted in Figure 1(b), the feasible set of the

coefficients described by

a20 + a22 = 0, a20 ≥ 1, a21 ≥ 1.

This represents a polytopic region in the coefficients space

(a0, a1, a2) ∈ R
3 and, according to (15), the non-emptiness

is assured by the existence of at least a feasible combination

of coefficients leading to the mapping α2 = 1 + λ1 − λ2.

This means that the region R−
2 is associated with

[
0 1

]
[
x1

x2

]

≤ −1 +M(1 + λ1 − λ2)

Further, the same computations will be performed for the

rest of the regions, resulting in an extended system of linear

inequalities over mixed decision variables:






0 −1
0 1

−1 0
1 0







[
x1

x2

]

≤







−1 +M( λ1 + λ2)
−1 +M(1− λ1 + λ2)
−1 +M(1 + λ1 − λ2)
−1 +M(2− λ1 − λ2)







A. Interdicted tuples

By the choice of the cardinal N0 as in (10), the number

of tuples allowed by the reduced set of binary variables (11)

may be greater than the actual number of regions. For further

use we define Λalloc as the set of N allocated tuples and Λint

as the set of Nint = 2⌈log2N⌉ −N unallocated tuples which

evidently verify Λ = Λalloc ∪ Λint and Λalloc ∩ Λint = ∅.

The tuples left unallocated will be labeled as interdicted

and additional inequalities will have to be added to the

extended set of constraints (7). These restrictions are justified

by the fact that, under construction (16), an unallocated tuple

will not enforce the verification of any of the constraints of

(7) (see Remark 1). It then becomes evident that the single

constraint of (8) has to be substituted by a set of constraints

that implicitly make all the points Λint, defining the in-

terdicted combinations, infeasible. This raises the question

of how many such unallocated tuples may exist. An upper

bound is given by:

0 ≤ Nint ≤ 2⌈log2N⌉ − 2⌈log2N⌉−1 − 1 = 2⌈log2N⌉−1 − 1
(18)

where the bound is reached for the most unfavorable case of

N = 2⌈log2N⌉−1 + 1.

From the above relation it can be seen that the number of

unallocated tuples can be important. If we associate to each

of them an inequality intended to discard the combination

from the set of feasible points, we negatively influence the

speed of the associated optimization algorithm. This can

be alleviated by noting (as previously mentioned) that the

association between regions and tuples is arbitrary. One could

then chose favorable associations which will permit more

than one tuple to be removed through a single inequality.

Geometrically, the tuples are extreme points on the hyper-

cube B
N0

∞ and the inequalities we require are then half-spaces

which separate the points of the hypercube into allocated and

unallocated tuples. As a first step one should note that there

always exists a half-space that separates the points of a facet

from the rest of the hypercube.

An intuitive method is then to label as unallocated the

extreme points which compose entire facets on the hypercube

B
N0

∞ . By writing Nint as a sum of consecutive powers of 2

(Nint =
⌈log2Nint⌉−1∑

i=0

bi2
i) and using (18), an upper bound
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for the number of inequalities can be computed:

Nhyp =

⌈log2Nint⌉−1
∑

i=0

bi ≤ ⌈log2N⌉ − 1 (19)

where bi ∈ {0, 1}.

IV. REFINEMENTS FOR THE COMPLEMENT OF A UNION

OF CONVEX SETS

In the previous section the basic reduction method was

applied for treatment of the complement of a convex set. A

generic cases will be detailed in the following by considering

the complement of a union of convex (bounded polyhedral)

sets P =
⋃

l

Pl:

CX(P) = cl(X \ P) (20)

with2 Pl =
Kl⋂

kl=1

R+ (Hkl
) and N ,

∑

l

Kl.

This type of regions arises naturally in the context of

obstacle avoidance when there is more than a single object

to be taken into account.

In order to deal with the complement of a non-convex

region in the context of mixed-integer techniques several ad-

ditional theoretical tools will be introduced in the following.

Definition 1 (Hyperplane arrangements – [13]). A collection

of hyperplanes H = {Hi}i=1:N will partition the space in

an union of disjoint3 cells defined as follows:

A(H) =
⋃

l=1,...,γ(N)

(
N⋂

i=1

Rσl(i)(Hi)

)

︸ ︷︷ ︸

Al

(21)

where σl ∈ {−,+}N denotes feasible combinations of

regions (4)–(5) obtained for the hyperplanes in H.

Several computational aspects are of interest. The number

of feasible cells, γ(N), (in relation with the space dimension

– d and the number of hyperplanes – N ) is bounded by

([14]):

γ(N) ≤
d∑

i=0

(
N

i

)

(22)

Efficient (as computation time and storage requirements)

algorithms for cell enumerating were presented in [15].

In (7) a single binary variable was associated to a single

inequality but the mechanism can be applied similarly to

more inequalities. Thus, one can describe (21) in an extended

2The “+” superscript was chosen for the homogeneity of notation,
equivalently one could have chosen any combination of signs in the half-
space representation (4)–(5).

3By disjoint cells we refer to their relative interior’s intersection since
their closures have one of the hyperplanes Hi as a common boundary.

space of state + auxiliary binary variables as follows:

...

σl(1)h1x ≤ σl(1)k1 +Mαl

...

σl(N)hNx ≤ σl(N)kN +Mαl







Al

...

(23)

with condition

l=γ(N)
∑

l=1

αl ≤ γ(N)− 1 (24)

imposing that at least a set of constraints will be verified.

Construction (23)–(24) will permit, through projection

along the binary variables αl (see (9)), to obtain any of the

cells of hyperplane arrangement (21).

Analogously to Section III we propose in the following the

reduction of the number of binary variables by associating

to each of the cells an unique tuple. The binary part will

be computed following the constructive result in Proposi-

tion 1 and used accordingly in (23). Additional inequalities,

that render infeasible the unallocated tuples or describe

interdicted regions are introduced analogously to the case

presented in Subsection III-A.

Remark 2. Note that if we discard the linear structure

and allow a nonlinear formulation involving products of

binary variables, the hyperplane arrangements (21) can be

represented as:

...

−hix ≤ −ki +M ·
∏

l=1,...,γ(N)
σl(i)=

′−′

αl

hix ≤ ki +M ·
∏

l=1,...,γ(N)
σl(i)=

′+′

αl

...

(25)

where we used the fact that the cells of (21) use the same

half-spaces and thus they can be concatenated. The method

presented in [16] transforms an inequality with nonlinear

binary components into a set of inequalities with linear

binary components. However, this can be made only at the

expense of introducing additional binary variables. �

In the following an illustrative example is provided in

terms of a region composed by two triangles considered as

obstacles. The hyperplane arrangement resulting from the 6
hyperplanes in the definition of triangles will lead, according

to (22), to γ(6) = 22 cells. In order to allocate a tuple to

each of these cells we require 5 binary variables.

As it can be seen in Figure 2 the interdicted regions are

described by 4 cells and there are 10 unallocated tuples

remaining. For a minimum number of separating hyperplanes

we position them, as discussed in Subsection III-A, on 3
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faces of the dimension 5 hypercube, with 8, 4 and respec-

tively 2 points.

(0, 0, 0, 0, 1)

(0, 0, 0, 1, 1)

(0, 0, 0, 1, 0)

(0, 0, 0, 1, 1)

FIG. 2: Exemplification of hyperplane arrangement

A. Practical implementation for hyperplane arrangements

In the above, we presented a modality of describing the

cell arrangement (21) through MIP techniques. This allows,

by the interdiction of the tuples associated with the cells

describing the set P, to describe the non-connected and non-

convex region (20). However the resulting linear representa-

tion is not unique or necessarily minimal. In order to offer a

complete procedure for the complexity reduction scheme in

the case of union of convex sets, the techniques detailed in

Section III and Section IV can be used jointly to achieve a

better solution. To this end we provide Algorithm 1:

Algorithm 1: Hybrid scheme for representing C (P)

1 obtain the cell arrangement as in (21) for P;

2 compute the convex hull of P as

P
◦ = ConvexHull{P};

3 select the cells of (21) which intersect P◦;

4 obtain the regions describing C (P◦);
5 associate tuples to the selected cells and the regions

computed à priori;

As described in Algorithm 1 this hybrid scheme permits

to express (20) as an union of the cells of (21) which

intersect P◦ and of the regions (in the sense of (5)) which

describe C(P◦). As long as the number of cells in (21) is

significant we observe a sensible reduction in the required

number of binary variables as a result of using this hybrid

technique. Additionally, the number of total inequalities in

(23) decreases since the regions (5) are described by a single

inequality.

Figure 2 illustrates ConvexHull{P} (dashed contour) and

by using the proposed algorithm, the number of regions that

have to be described reduces to 14, 10 cells and 4 half-spaces,

which reduces the number of binary variables to 4.

V. NUMERICAL CONSIDERATIONS

In this Section we will test the computation time im-

provements for our approach versus the standard technique

encountered in the literature. As previously mentioned, a

MIP problem is NP-hard in the number of binary variables.

Therefore, a small reduction will render sensible improve-

ments.

The complexity of the MIP algorithm with constraints in

the classical form (7)–(8) will be of the order of O(2N ·
lQP (N + 1)) where lQP denotes the cost of solving a QP.

Using the alternative formulation proposed in Section III we

obtain the complexity as

O(2⌈log2N⌉·lQP (N+⌈log2N⌉−1)) = O(N ·lQP (N)). (26)

In fact, one can see that the MIP problem is now P-hard in

the number of QP subproblems.

In Section IV a method for describing in the MIP formal-

ism of the complement of a possibly non-connected union

of polytopes was presented. The main drawback is that in

both classical and reduced formulation the problem depends

on the number of cells. Supposing the hyperplanes from

the hyperplane arrangement (21) are in random position we

obtain for formulation (23)–(24) a complexity of order

O(2γ(N) · lQP (N ·Nd + 1)) (27)

and employing the techniques from Section III the complex-

ity reduces to

O(2⌈log2γ(N)⌉ · lQP (N ·Nd +1)) = O(γ(N) · lQP (N
d+1)).

(28)

Again, we observe that the MIP problem becomes P-hard in

the number QP subproblems.

VI. COLLISION AVOIDANCE EXAMPLE

Collision avoidance has been shown to be crucial in many

applications involving the control of multi-agent systems.

The goal of this example is to present a control approach for

an agent operating in an environment filled with stationary

obstacles. The agent evolves from an initial position to

a target position while avoiding the randomly distributed

obstacles.

We consider the dynamics of the agent described by a LTI

system as follows:

ξk+1 = Aξk +Buk. (29)

The agent model is used in a predictive control [17]

context which permits the use of non-convex state constraints

for obstacle avoidance behavior.

An optimal control action u∗ is obtained from the control

sequence u ,
{
uk|k, uk+1|k, · · · , uk+N−1|k

}
as a result of

the optimization problem:

u∗ = argmin
u

(ξTk+N |kPξk+N |k +

N−1∑

l=1

ξTk+l|kQξk+l|k +

+

N−1∑

l=0

uT
k+l|kRuk+l|k)

subject to:

{

ξk+l|k = Aξk+l−1|k +Buk+l−1|k

ξk+l|k ∈ C(P), l = 1, . . . , N
(30)
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FIG. 3: The trajectory of the agent with collision free behavior

Here Q ≥ 0, R > 0 are the weighting matrices, P ≥ 0
defines the terminal cost and P is an union of polytopes

describing the obstacles.

As previously stated this requires the use of MIQP tech-

niques which are NP-hard in the number of binary variables.

The methods presented in this paper would certainly fit very

nicely with this type of problem. The non-convex and non-

compact feasible region can be described as in Sections III

or IV and, ultimately, the number of binary variables will be

reduced accordingly.

As a practical application we consider a linear system (ve-

hicle, pedestrian or agent in general form) whose dynamics

are described by:

A =







0 0 1 0
0 0 0 1
0 0 − µ

m
0

0 0 0 − µ
m






, B =







0 0
0 0
1
m

0
0 1

m







(31)

where ξ = [x y vx vy]
T , u = [ux uy]

T are the state and the

input of the system. With the components of the state being

(x, y), the position, and (vx, vy) the velocities of the agent,

m is the mass of the agent and µ its damping factor.

We consider the position component of the agent state

to be constrained by two obstacles defined by 4 and 4
hyperplanes. These 8 hyperplanes will result in 29 cells

as detailed in (21). This would require ⌈log229⌉ = 5
binary variables for representing the feasible region. If the

enhancements presented in Subsection IV-A are used we

will find 5 cells inside ConvexHull(P) and its exterior is

described by 5 regions of form (5). This will result in a

reduced number of binary variables ⌈log210⌉ = 4 and less

inequality constraints.

We apply the predictive control strategy for horizon N = 2
and cost matrices Q = 105 · I4, R = I2 and P = 105 ·
I4 and obtain the trajectory depicted in Figure 3. Note that

increasing the horizon length will enhance the accuracy of

the trajectory.

VII. CONCLUSIONS

In this paper we present several remarks leading to com-

putational improvements of the MIP techniques of solving

optimization problems with real and binary variables. We

introduce a novel linear constraints expression for reducing

the number of binary variables necessary in describing the

exterior of convex sets. An additional method for describing

in the same framework a collection of non-connected convex

sets (or their complement) was also provided. The numerical

improvements over previous techniques were presented and

tested in an obstacle avoidance control problem.
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