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Abstract— Controllers in the linear parameter-varying (LPV)
framework are commonly designed in continuous time (CT)
requiring accurate and low-order CT models of the system.
Nonetheless, most of the methods dedicated to the identification
of LPV systems are addressed in the discrete-time setting. In
practice when discretizing models which are naturally expressed
in CT, the dependency on the scheduling variables becomes
non-trivial and over-parameterized. Consequently, direct iden-
tification of CT-LPV systems in an input-output setting is inves-
tigated. To provide consistent model parameter estimates in this
setting, a refined instrumental variable approach is proposed.
The statistical properties of this approach are demonstrated
through a Monte Carlo simulation example.

I. INTRODUCTION

The framework of linear parameter-varying (LPV) sys-

tems was introduced in the 1990s with the purpose to handle

in a simple but efficient way the often nonlinear or time-

varying nature of systems encountered in practice. The LPV

system class forms an intermediate step between linear time-

invariant (LTI) systems and nonlinear/time-varying plants as

the signal relations in LPV systems are considered to be

linear just as in the LTI case, but the parameters are assumed

to be functions of a measurable time-varying signal, the so-

called scheduling variable p : Z → P. Here the compact

set P ⊂ R
nP denotes the scheduling space. This LPV

modeling concept allows for a wide representation capability

of physical processes, but the real practical significance of the

LPV framework lays in its well worked out and industrially

reputed control synthesis approaches, e.g. [1], [18], [24], that

have led to many successful applications of LPV control in

practice [3], [13], [14], [23].

However a major drawback of the LPV framework today

is that, despite the advances of the LPV control field, identi-

fication of such systems is not well developed as the current

methods are unable to support control design in practice.

Commonly LPV controllers are synthesized in continuous

time (CT) as stability and performance requirements of the

closed loop behavior can be more conveniently expressed in

CT, like in a mixed-sensitivity setting [28].

However, LPV identification methods are almost exclu-

sively developed for discrete time (DT) (for a recent survey

see [20]), as in this setting it is much easier to handle

the estimation of parameter-varying dynamics. Nonetheless,
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the absence of CT methods represents a gap between the

available identification approaches and the needs of LPV

control synthesis.

Therefore, there is a growing need in the LPV framework

for efficient identification methods that directly deliver reli-

able CT models.

In practice, CT systems can only be identified based

on sampled measured data records. Thus in general, for

delivering a CT model estimate, the available approaches

in system identification can be categorized as follows:

• Indirect approaches: These methods involve the iden-

tification of a DT model in a completely DT setting

which is followed by the transformation of the DT

model estimate into a CT form.

• Direct approaches: The methods formulate the identi-

fication of the CT model directly based on samples of

the measured CT signals.

Unfortunately, transformation of DT-LPV models to CT-

LPV models is more complicated than in the LTI case

and despite recent advances in LPV discretization theory

(see [21], [22]) the CT realization of DT models is still

in an immature state. LPV discretization can result in an

increase of the system order and more importantly in com-

plicated (rational) dynamic dependence on p (dependence

of the model coefficients on time-shifted versions of p) for

which most of the available identification methods are not

well suited. An illustrative example is the estimation of an

LPV longitudinal axis IO model of an aircraft where the

coefficients associated with the stability (output-side) and

control derivatives (input-side) relate rationally to the DT

parameters even if only a successive Euler method is used

to approximate the derivatives. Even for a simple CT-LPV

system, estimation of a DT model to obtain afterwards a CT

realization is a tedious task with many underlaying problems

for which there are no general theoretical solutions available.

Unlike an indirect approach, a direct solution offers a way

to efficiently overcome these problems in case the time-

derivatives of the input/output signals can be reconstructed

from the acquired sampled data. The offered solutions in

the LTI case often require the use of signals prefiltering

[4]. These filters depend on design parameters, that need

to be adequately chosen w.r.t. the underlaying unknown

system to achieve reasonable performance of the estimation.

In the CT-LTI case, one of the methods for relaxing the

need of prefiltering is the refined instrumental variable for

continuous-time (RIVC) method. This method is attractive in

the sense that it provides consistent estimates under the real-

istic assumption of an unknown noise model and it achieves
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similar performance as prediction-error-minimization (PEM)

methods [17].

Another problem related to CT identification using sam-

pled data is the complicated mathematical handling of CT

stochastic processes for modeling noise in the system. An

efficient way to avoid such complexity is to consider a DT

form of the noise model, like in a Box-Jenkins form, which

leads to a so-called hybrid model structure (see [7], [15]). In

order to avoid the different issues linked to the simultaneous

use of CT and DT filters, this paper focuses on the case

when the noise is output-additive and white with a Gaussian

distribution: the output error (OE) case.

Recently, an LPV identification approach has been intro-

duced, which efficiently addresses the minimization of the

prediction error for LPV-OE models by using a multiple-

input single-output (MISO) LTI reformulation of the data-

generating LPV system [9]. This paper aims at providing

the very first step towards bridging the existing gap between

LPV control and identification via the introduction of a direct

CT identification approach. This method benefits from the

properties of RIV methods in the CT case and uses the recent

advances of the prediction error minimization framework [9],

[20].

The paper is organized as follows: in Section II, the

general class of CT-LPV systems in an IO representation

form is introduced. In Section III, the proposed CT-LPV-IV

method is described and analyzed, while its performance is

illustrated in Section IV through a simulation example.

II. PROBLEM DESCRIPTION

A. System description

Consider the data generating CT-LPV system described by

the following equations

So

{

Ao(pt, d )χo(t) = Bo(pt, d )u(t),

y(t) = χo(t) + eo(t),
(1)

where d denotes the differentiation operator w.r.t. time, i.e.

d = d
dt

, p : R → P is the scheduling variable with pt = p(t),
χo is the noise-free output and eo is a white gaussian noise

process with variance σ2
eo

. Ao, Bo are polynomials in d with

coefficients ao
i and bo

i that are meromorphic functions1 of p

with no singularity on P:

Ao(pt, d ) = d na +

na∑

i=1

ao
i (pt)d

na−i, (2a)

Bo(pt, d ) =

nb∑

j=0

bo
j (pt)d

nb−j . (2b)

Note that ao
i and bo

j are functions of p at time t, which

is called static dependence. In LPV system theory, a more

general p-dependence of coefficients than static is required

to establish equivalence of representations. In particular, it

can be required that the coefficients ao
i and bo

j depend also

on time derivatives of p, which is called dynamic depen-

dence [20]. In order to simplify the upcoming discussion,

1A function f is called meromorphic if f =
g

h
where g, h are

holomorphic (analytic) functions and h is not the zero function.

we restrict our attention to static dependence. Nevertheless,

the established results hold also in the case of dynamic

dependence of (1) and of the proposed model structure.

In terms of identification we can assume that sampled

measurements of (y, p, u) are available with a sampling

period Ts > 0. Hence, we will denote the discrete-time

samples of these signals as u(tk) = u(kTs), where k ∈ Z.

B. Model structure considered

The process model is denoted by Gρ and defined in a

form of an LPV-IO representation with a static scheduling

dependence:

Gρ : (A(pt, d , ρ), B(pt, d , ρ)) (3)

where the p-dependent polynomials A and B given as

A(pt, d , ρ) = d
na +

na∑

i=1

ai(pt)d
na−i,

B(pt, d , ρ) =

nb∑

j=0

bj(pt)d
nb−j ,

are parameterized as

ai(pt) = ai,0 +

nα∑

l=1

ai,lfl(pt), i = 1, . . . , na, (4a)

bj(pt) = bj,0 +

nβ∑

l=1

bj,lgl(pt), j = 0, . . . , nb, (4b)

In this parametrization, {fl}
nα

l=1 and {gl}
nβ

l=1 are mero-

morphic functions of p, with static dependence, allowing the

identifiability of the model (they can be chosen for example

as linearly independent functions on P). The associated

model parameters are stacked column-wise:

ρ = [ a1 . . . ana
b0 . . . bnb ]⊤ ∈ R

nρ , (5)

where

ai = [ ai,0 ai,1 . . . ai,nα
] ∈ R

nα+1

bj = [ bj,0 bj,1 . . . bj,nβ
] ∈ R

nβ+1

and nρ = na(nα + 1) + (nb + 1)(nβ + 1). Introduce also

G = {Gρ | ρ ∈ R
nρ}, as the collection of all process models

in the form of (3).

With respect to the considered OE structure, the signal

relations of the LPV-BJ model, denoted in the sequel as Mρ,

are defined as:

Mρ

{

A(pk, d , ρ)χ(t)=B(pk, d , ρ)u(t),

y(tk)=χ(tk) + e(tk),
(6)

Based on this model structure, the model set, denoted as

M = {Mρ | ρ ∈ R
nρ} = G, corresponds to the set of

candidate models in which we seek the model that explains

data gathered from So the best, under a given identification

criterion (cost function).
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C. Predictors and prediction error

Similar to the LTI case, in the LPV prediction error

framework, one is concerned about finding a model in a given

LPV model structure M, which minimizes the statistical

mean of the squared prediction error based on past samples

of (y, u, p). However in the LPV case, no transfer function

representation of systems is available.
Furthermore, multiplication with d is not commutative

over the p-dependent coefficients [20], meaning that

d (B(p, d )u(t)) =

nb∑

j=0

(
∂bj

∂p
(pt)dpt

)

d
nb−ju(t)+

B(p, d )du(t), (7)

which is not equal to B(p, d )du(t).
1) System reformulation and prediction error: Following

the same idea developed in [9] and if the system belongs to

the model set defined, it is possible to express the CT-LPV

system as a CT-MISO-LTI system by rewriting the signal

relations of (1) as

χ(na)
o (t) +

na∑

i=1

ao
i,0χ

(na−i)
o (t)

︸ ︷︷ ︸

Fo(d )χo(t)

+

na∑

i=1

nα∑

l=1

ao
i,lfl(p(t))χ(na−i)

o (t)
︸ ︷︷ ︸

χo
i,l

(t)

=

nb∑

j=0

nβ∑

l=0

bo
j,lgl(p(t))u(nb−j)(t)

︸ ︷︷ ︸

uj,l(t)

, (8)

where g0(¦) ≡ 1 and the superscript (n) for a signal,

like u(n), denotes the nth time-derivative of the signal,

e.g. u(n)(t) = d nu(t). Furthermore, Fo(d ) = d na +
∑na

i=1 ai,0d
na−i while u(n)(tk) represents the value of the

signal u(n)(t) sampled at time instance tk.
Note that in this way, the time variation of the coefficients

is expressed in terms the signals χo
i,l(t) and uj,l(t):

χo
i,l(t) = fl(p(t))χ(na−i)

o (t) {i, l} ∈ {1 . . . na, 1 . . . nα},

uj,l(t) = gl(p(t))u(nb−j)(t) {j, l} ∈ {1 . . . nb, 1 . . . nα}.

Therefore, the process part of the LPV-BJ model is rewritten

as a MISO system with (nb + 1)(nβ + 1) + nanα inputs

{χo
i,l}

na,nα

i=1,l=1 and {uj,l}
nb,nβ

j=0,l=0. By using (8), (6) can be

rewritten in terms of the sampled output signal y(tk) as

y(tk) = −

(
na∑

i=1

nα∑

l=1

ao
i,l

Fo(d )
χo

i,l

)

(tk)

+





nb∑

j=0

nβ∑

l=0

bo
j,l

Fo(d )
uk,j



(tk) + eo(tk), (10)

which is a sampled LTI representation of the system (1).
2) Prediction Error Model: Similarly to the LTI case,

the one-step-ahead prediction error can be expressed and

defined as [10]:

ερ(tk) = y(tk) − ŷρ(tk), (11)

where ŷρ(tk) is the one step ahead predictor based on the

model (6). Under the commonly used assumption that noise-

free observation of the sequence {pk, pk−1, . . .} is available

and based on the MISO-LTI form (10), ŷρ(tk) is defined as:

ŷρ(tk) = −

(
na∑

i=1

nα∑

l=1

ai,l

F (d , ρ)
χi,l

)

(tk)

+





nb∑

j=0

nβ∑

l=0

bj,l

F (d , ρ)
uk,j



(tk). (12)

3) Prediction error minimization: Denote DN =
{y(tk), u(tk), p(tk)}N

k=1 a data sequence of So. Then to

provide an estimate of ρ based on the minimization of ερ,

an identification criterion W (DN , ρ) can be introduced, like

the least square criterion

W (DN , ρ) =
1

N

N∑

k=1

ε2
ρ(tk), (13)

such that the parameter estimate is

ρ̂N = arg min
ρ∈R

nρ
W (DN , ρ). (14)

4) CT filtering and sampled data: The output predictor

(12) of the model structure consists of a “sampled” CT

filtering operation, so it becomes a question how to evaluate

(12) in practice when only sampled measurements of the CT

signals (y, p, u) are available. In order to apply a CT filter on

sampled data one can either interpolate the samples to obtain

a continuous-time signal and apply the CT filter on it or

use a numerical approximation, i.e. DT approximation of the

considered system. This is a common problem in simulation

of continuous-time systems. For simulation purposes, DT

approximation of the system can efficiently be dealt with

by using powerful numerical algorithms available [2].

Note that to derive an accurate DT approximation of the

system itself, it is often sufficient in terms of the classical

discretization theory to assume that the sampled free CT

signals of the system are restricted to be constant in the

sampling period [6], which has also been shown in case

of LPV systems with static dependence [20]. This provides

the hypothesis, also used in [15], [7], that if CT (p, u) are

piecewise constant between two samples, then the trajectory

of y is completely determined by its observations at the

sample period Tsk. Therefore, under these inter-sampling

conditions, the following operation is well-defined [5]:

(F (d )y) (tk) = F (d )y(tk), (15)

Under this assumption, and considering that a CT filter can

only be applied to sampled data via numerical approxi-

mation, the usual filter properties such as commutativity

holds between a DT filter and the numerical approximation

of a CT filter. Nevertheless, it is important to notice that

the numerical approximation method used to approximate

the CT filter does not introduce any transformation of the

coefficients to be estimated which remain, in terms of (12),

the coefficients of the parsimonious CT model.
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D. Identification problem statement

Based on the previous considerations, the identification

problem addressed in the sequel can now be defined.

Problem 1: Given a CT-LPV data generating system So

defined as in (1) and a data set DN collected from So.

Based on the CT-LPV model structure Mρ defined by

(6), estimate the parameter vector ρ using DN under the

following assumptions:

A1 So ∈ M.

A2 In the parametrization (4a-b), {fl}
nα

l=1 and {gl}
nβ

l=1

are chosen such that (Go) is identifiable for any

trajectory of p.

A3 u(tk) is not correlated to eo(tk).
A4 DN is informative with respect to M.

A5 So is globally BIBO stable, i.e. for any trajectory

of p : R → P and any bounded input signal u, the

output of So is bounded [20].

III. REFINED INSTRUMENTAL VARIABLE FOR LPV

SYSTEMS

Based on the MISO-LTI formulation (12), it becomes

possible theoretically to achieve optimal PEM using linear

regression [9]. This allows to extend the Refined Instrumental

Variable (RIV) approach of the LTI identification framework

to provide an efficient way of identifying CT-LPV models.

A. Linear Regression for CT-LPV-BJ models

Using the LTI model (6), reformulated as (12), y(tk) can

be written in the regression form:

y(na)(tk) = ϕ⊤(tk)ρ + ṽ(tk), (16)

where,

ϕ(tk) = [ −y(na−1)(tk) . . . − y(tk) − χ1,1(tk) . . .

. . . − χna,nα
(tk) u0,0(tk) . . . unb,nβ

(tk) ]⊤

ρ = [ a1,0 . . . ana,0 a1,1 . . . ana,nα
b0,0 . . . bnb,nβ

]⊤

ṽ(tk) = F (d , ρ)e(tk).

The extended regressor in (16) contains the noise-free output

terms {χi,k}. Therefore, by momentary assuming that

{χi,l(tk)}na,nα

i=1,l=0 are known a priori, the prediction error

ερ(tk) for (16) is given in terms of (11) as:

ερ(tk) = (F (d , ρ)yf) (tk) −

na∑

i=1

nα∑

l=1

ai,lχ
f
i,l(tk)

+

nb∑

j=0

nβ∑

l=0

bj,lu
f
k,j(tk), (17)

where yf(tk), uf
j,l(tk) and χf

i,l(tk) represent the outputs of an

hybrid prefiltering operation, involving the continuous-time

filter (see [27]):

Qc(d , ρ) =
1

F (d , ρ)
, (18)

Based on (17), the associated linear-in-the-parameters model

takes the form [27]:

y
(na)
f (tk) = ϕ⊤

f (tk)ρ + ṽf(tk), (19)

where

ϕf(tk) = [ −y
(na−1)
f (tk) . . . − yf(tk) − χf

1,1(tk) . . .

. . . − χf
na,nα

(tk) uf
0,0(tk) . . . uf

nb,nβ
(tk) ]⊤

ṽf(tk) = Qc(d , ρ)ṽ(tk) = e(tk).

B. The refined instrumental variable approach

Under the assumption that the CT filter Qc(d , ρ) and

{χi,l(tk)}na,nα

i=1,l=0 are known a priori, traditional parametric

estimation methods from the LTI framework could provide

efficient estimates of ρ. However, in practice, Qc(d , ρ) is

usually unknown and can only be estimated. Furthermore,

it is important to note that the regressors (19) and (16)

contain time-derivatives of y and u which, in the assumed

framework considering sampled data, can only be approxi-

mated. It is well-known that the approximation of derivatives

requires low-pass filtering of the corresponding signals. The

most commonly used filters for this purpose are Poisson’s

filters, or state-variable filters [4]. However, in the proposed

approach F (d , ρ) achieves this stable low-pass filtering di-

rectly. Therefore, it is a particular strength of the presented

reformulation (19) that the estimated filter F (d , ρ) is not

only used for the minimization of the prediction error but it

also provides the filtering for the approximation of the time

derivatives. In order to estimate the parameter vector in (19)

without the prior knowledge of Qc(d , ρ), the RIV method is

proposed due to the following reasons:

• RIV methods lead to optimal estimates in the LTI case

if So ∈ M (see [19], [26], [27]).

• In a practical situation of identification, Go ∈ G might

be fulfilled due to first principle or expert’s knowledge.

However, it is commonly fair to assume that the model

is not OE. In such case, RIV methods have the advan-

tage of providing consistent estimates whereas methods

such as extended least squares (LS) are biased and more

advanced PEM methods need robust initialization [12].

• The RIV algorithm has been successfully used for

models with similar CT structure, like in the case of

linear models [16], [26] and nonlinear ones [8].

Aiming at the extension of the RIV approach for the estima-

tion of CT LPV models, consider the relationship between

the process input and output signals as in (16). Based on this

form, the extended-IV estimate is given as [26]:

ρ̂XIV(N) = arg min
ρ∈R

nρ

∥
∥
∥
∥
∥

[

1

N

N∑

k=1

ζf(tk)ϕ⊤
f (tk)

]

ρ

−

[

1

N

N∑

t=1

ζf(tk)y
(na)
f (tk)

]∥
∥
∥
∥
∥

2

W

, (20)

where ζ(tk) is the instrument, ‖x‖2
W = xT Wx, with W a

positive definite weighting matrix and the filtered variables

ζf , ϕf and yf are constructed using a stable prefilter. If Go ∈
G, the extended-IV estimate is consistent under the following

two conditions2:

2The notation Ē{.} = limN→∞

1

N

PN
t=1

E{.} is adopted from the
prediction error framework of [10].
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C1 Ē{ζf(tk)ϕ⊤
f (tk)} is full column rank.

C2 Ē{ζf(tk)ṽf(tk)} = 0.

Moreover it has been shown in [19], [25] and [26] that the

minimum variance estimator can be achieved if:

C3 W = I .

C4 ζ is chosen as the noise-free version of the extended

regressor in (16) and is therefore defined in the

present LPV case as:

ζ(tk) =
[
−χ(na−1)(tk) . . . −χ(tk) −χ1,1(tk) . . .

. . . χna,nα
(tk) u0,0(tk) . . . unb,nβ

(tk)
]⊤

.

C5 Go ∈ G and nρ is equal to the minimal number

of parameters required to represent Go with the

considered model structure.

C6 The CT filter used is chosen as the filter (18).

While conditions C1-3 and C5 are quite straight-forward

to fulfill (see [19], [25]), the construction of a suitable

instrument and filter fulfilling C4 and C6 are not trivial

in practice. The RIV algorithm involves an iterative (or

relaxation) algorithm in which, at each iteration, an ‘auxiliary

model’ is used to generate the instrumental variables (which

guarantees C2), as well as the associated prefilters. This aux-

iliary model is based on the parameter estimates obtained at

the previous iteration. Consequently, if convergence occurs,

C4 and C6 are fulfilled. Thus, the RIV is a suitable method

to i) efficiently estimate the parameter vector ρ in (19) when

So ∈ M and ii) consistently estimate ρ in the practical

situation when the noise model structure is inaccurate.

C. The LPV-RIVC Algorithm

Step 1 The usual initialization for the CT-RIV algorithm

is a DT model estimate obtained by an LS method

or a DT-RIV algorithm. In the LPV case how-

ever, the transformation of a DT model into a

CT model is not trivial. Consequently, the initial

estimate proposed for the LPV-RIVC algorithm is

an LTI-RIVC estimate of Mρ, i.e. ρ̂(0) is given.

Set τ = 0.

Step 2 Compute an estimate of χ(tk) via numerical ap-

proximation of

A(pt, d , ρ̂
(τ))χ̂(t) = B(pt, d , ρ̂

(τ))u(t),

where ρ̂(τ) is estimated in the previous iteration.

Based on Mρ̂(τ) , deduce χ̂(tk) which is bounded

according to Assumption A5.

Step 3 Compute the estimated continuous-time filter

Q̂c(d , ρ̂
(τ)) = 1

F (d ,ρ̂(τ))
, where F (d , ρ̂(τ)) is as

given in (8).

Step 4 Use the CT filter Q̂c(d , ρ̂
(τ)) as well as χ̂(tk) in

order to generate the estimates of the derivatives

which are needed:

Step 5 Build the filtered estimated regressor ϕ̂f(tk) and,

in terms of C4, the filtered instrument ζ̂f(tk).

Step 6 The solution of the IV optimization problem is then

ρ̂(τ+1)(N)=
[

N∑

k=1

ζ̂f(tk)ϕ̂⊤
f (tk)

]−1
N∑

k=1

ζ̂f(tk)y
(na)
f (tk) (21)

Step 7 If ρ(τ+1) has converged or the maximum number

of iterations is reached, then stop, else increase τ

by 1 and go to Step 2.

IV. SIMULATION EXAMPLE

In order to demonstrate the performance of the presented

algorithm, the following data-generating system is consid-

ered:

So

{

Ao(d , p) = d 2 + ao
1(p)d + ao

2(p),

Bo(d , p) = bo
0(p)d + bo

1(p),

where

ao
1(p) = 1 − 0.5p, ao

2(p) = 5 + 3p, (22a)

bo
0(p) = 2 + p, bo

1(p) = 5 − p. (22b)

By simulation of So with zero initial conditions, 3000
samples of data are collected in a 15s simulation interval

(Ts = 0, 005s). In the simulation, u is chosen as a white noise

with a uniform distribution U(−1, 1) while the scheduling

variable is taken as p(t) = sin(2
3πt).

The following model structure in terms of (3) is considered

to capture the dynamics of So:

M

{

A(d , p) = d 2 + a1(p)d + a2(p),

B(d , p) = b0(p)d + b1(p),

where

a1(p) = a1,0 + a1,1p, a2(p) = a2,0 + a2,1p, (23a)

b0(p) = b0,0 + b0,1p, b1(p) = b1,0 + b1,1p. (23b)

To show the statistical performance of the proposed IV

approach with this example the model is estimated using both

the LPV-RIVC algorithm and the MATLAB LSQNONLIN

method. The LSQNONLIN method is a nonlinear statistically

optimal optimization method, but being a nonlinear method

it is also sensitive to initialization [11]. Therefore, in order

to put this latter method at its best, it is initialized on the

true parameters.

The results of Monte Carlo simulations obtained by using

the above discussed methods are presented in Table I. The

statistical properties of each method are evaluated using the

mean and standard deviation of the estimated parameters .

These results are based on Nrun = 100 random realizations

under a Signal-to-Noise Ratio (SNR) of 10dB with:

SNR = 10 log
Pχo

Peo

, (24)

where Px is the power of signal x.

Table I shows that according to the theoretical results,

the estimated parameters using the LPV-RIVC algorithm

are unbiased. Moreover, the LPV-RIVC method achieves
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TABLE I

MONTE CARLO SIMULATION FOR SNR= 10dB

Method LSQNONLIN LPV-RIVC

Name True Value mean st. dev. mean st. dev.
a1,0 1 1.0026 0.0408 1.0040 0.0421
a1,1 -0.5 -0.5054 0.0707 -0.5089 0.0745
a2,0 5 5.0017 0.0698 5.0016 0.0731
a2,1 3 2.9996 0.1278 2.9973 0.1308
b0,0 2 2.0004 0.0298 1.9999 0.0311
b0,1 1 0.9988 0.0550 0.9981 0.0578
b1,0 5 5.0008 0.1469 5.0021 0.1559
b1,1 -1 -1.0274 0.2670 -1.0355 0.2732

the same performance as the optimal LSQNONLIN method,

where the latter approach uses the true parameter values

as initial conditions. Consequently, the presented algorithm

constitutes the first direct continuous-time method which

achieves efficient minimization of the prediction error in the

LPV context. It appears in this example that the empirically

accepted properties of the RIV based method might also

apply to the LPV case even though this cannot be proven yet.

Moreover, this method does not requires any filters designed

by the user to approximate time-derivatives of the measured

IO signals.

V. CONCLUSION

The proposed approach provides the very first direct global

LPV identification method that is able to give consistent

estimates of LPV-IO models in continuous-time and has a

low computational load. The proposed algorithm has been

tested on a representative numerical simulation example and

it has been shown that the procedure is robust to noise and

can compete with the optimal nonlinear optimization method

even in the case where the latter is initialized knowing the

true parameters. Furthermore, based on a previous work on

CT-LTI systems operating in closed loop, this methods opens

the possibility for closed-loop CT-LPV identification.
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