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Abstract— This paper presents a methodology for the robust
stabilization of spatially distributed processes with sampled
sensor measurements that are transmitted to the actuators
over a resource-constrained communication medium. Initially,
a finite-dimensional system that captures the slow process
dynamics is derived and used to design a Lyapunov-based
controller that enforces closed-loop stability in the absence of
communication suspensions. An explicit characterization of the
stability properties of the closed-loop system under discrete
measurement sampling is obtained and then used to devise a dy-
namic communication logic which can adaptively adjust the rate
of information transfer from the sensors to the controller. The
key idea is to monitor the evolution of the Lyapunov function
at the sampling times and suspend communication for periods
when the prescribed stability threshold is satisfied. During such
periods, the controller switches to a finite-dimensional model
that provides estimates of the slow states to compute the control

action. At times when the sampled state begins to breach the
expected stability threshold, communication is restored and the
controller switches back to the sampled measurements. The
results are illustrated through an application to a representative
diffusion-reaction process.

I. INTRODUCTION

With the advent of wireless sensor networks (WSNs) in

recent years and the push by major industrial organizations,

such as WINA, ZigBee and ISA, for adoption of wire-

less technology by the process industries, there has been

a growing realization that WSNs can play a major role

in expanding the capabilities of existing process control

systems beyond what is currently feasible with wired de-

vices and point-to-point architectures alone [1]–[3]. The low

cost, flexibility and ease of installation and maintenance of

wireless sensors mean that more devices could be deployed

and more process variables could be monitored and con-

trolled than is cost-effective with solely wired networks. This

provides opportunities for improving the existing control

quality (e.g., through high-density sensing and deployments

in unsafe areas) and for pursuing capabilities that cannot be

realized otherwise, including proactive fault-tolerance and

real-time plant reconfiguration to accommodate projected

market demand changes. Realizing this potential, however,

requires handling the challenges that WSNs introduce from

a control point of view, including resource constraints (e.g.,

limited battery power and communication capabilities) and

the occasional unreliability due to interference in the field
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or environmental impact [4], which can significantly limit

the control benefits of WSNs if not handled properly in

the controller design framework. While a substantial and

growing body of research work on networked control systems

already exists (e.g., [5]–[9]), the majority of these studies

deal with lumped parameter systems modeled by ordinary

differential (or difference) equations. Many important engi-

neering applications, however, are characterized by spatial

variations and are naturally modeled by partial differential

equations (PDEs) such as transport-reaction processes.

Compared with the extensive literature on control of

distributed parameter systems in process control (e.g., [10]–

[16]), results on networked control of spatially distributed

processes are limited at present. Efforts to address this

problem were initiated in [17], [18] where resource-aware

networked control and scheduling strategies were developed

on the basis of appropriate finite-dimensional approximations

of the infinite-dimensional system. A key idea – inspired

by the results in [19] – was to utilize model-based net-

worked control techniques to enforce closed-loop stability

with minimal sensor-controller communication requirements.

These results were subsequently extended in [20] where a

state-dependent communication logic was introduced to fur-

ther reduce the sensor-controller communication and allow

the control system to respond quickly and adaptively to

changes in operating conditions. The implementation of these

approaches, however, requires the availability of process

measurements at all times. In practice, process measure-

ments are typically available from the sensors at discrete

times instances and not continuously. The limitations on the

frequency of measurement availability imposes restrictions

on the implementation of the feedback controller and can

erode the closed-loop stability properties if not explicitly

accounted for at the design stage. Furthermore, the lack

of continuous measurements limits our ability to accurately

monitor the evolution of the state which is a necessary

pre-requisite for the correct implementation of the sensor-

controller communication logic.

Motivated by these considerations, we focus on the

problem of controlling spatially distributed processes with

sampled sensor measurements over a resource-constrained

wireless sensor network. A model-based networked control

structure with a dynamic sensor-controller communication

policy is developed to robustly stabilize the process with

minimal sensor-controller communication. The rest of the
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paper is organized as follows. In Section II, we consider dis-

tributed processes modeled by highly-dissipative nonlinear

PDEs and use model reduction techniques to obtain a finite-

dimensional system that captures the dominant dynamics

of the PDE. This system is then used in Section III to

design a robust Lyapunov-based controller and characterize

the closed-loop stability properties under discrete measure-

ments. This characterization is then used in Section IV to

derive the communication logic which uses the Lyapunov

stability bound as a threshold for adaptively adjusting the

rate of information transfer from the sensors to the controller.

Finally, the results are illustrated through simulations in

Section V.

II. PRELIMINARIES

A. Class of systems

We consider spatially-distributed processes modeled by

nonlinear parabolic PDEs of the form:
∂x̄(z, t)

∂t
= α

∂2x̄

∂z2
+ βx̄ + f(x̄) + ω

m∑

i=1

bi(z)ui(t)

+
∑n

j=1 wj(x̄)dj(z)θj(t), |θj(t)| ≤ θj
b

(1)

subject to the boundary and initial conditions:

x̄(0, t) = x̄(π, t) = 0, x̄(z, 0) = x̄0(z) (2)

where x̄(z, t) ∈ IR denotes the process state variable, z ∈
[0, π] is the spatial coordinate, t ∈ [0,∞) is time, ui denotes

the i-th manipulated input, bi(·) is a known function that

describes how the control action is distributed in [0, π], θj is

an uncertain variable, which may represent uncertain process

parameters or exogenous disturbances, θj
b is a positive real

number that captures the maximum size of the uncertain

variable, f(·) and wi(·) are sufficiently smooth nonlinear

functions, dj(·) is a known function that specifies the po-

sitions of action of the uncertain variable θj , the parameters

α > 0, β are constants, and x̄0(z) is a smooth function of z.

Throughout the paper, the norm notations | · |, ‖ · ‖ and ‖ · ‖2

will be used to denote the standard Euclidean norm, the L2

norm associated with a finite-dimensional Hilbert space, and

the L2 norm associated with an infinite-dimensional Hilbert

space, respectively. Furthermore, the notation x(t−k ) will be

used to denote the limit limt→t−
k

x(t).

B. Formulation of the infinite-dimensional system

Using standard techniques from operator theory [21], the

PDE of (1)-(2) can be formulated as an infinite-dimensional

system of the following form:

ẋ = Ax + Bu + f(x) + W(x)θ, x(0) = x0 (3)

where x(t) = x̄(z, t), t ≥ 0, 0 < z < π, is the state function

defined on the Hilbert space H = L2(0, π) endowed with

inner product and norm:

〈ω1, ω2〉 =

∫ π

0

ω1(z)ω2(z)dz, ‖ω1‖2 = 〈ω1, ω1〉
1

2 (4)

where ω1, ω2 are two elements of L2(0, π), A is the differen-

tial operator defined by Aφ = αd2φ
dz2 +βφ, 0 < z < π, where

φ(·) is a smooth function on (0, π) with φ(0) = φ(π) = 0,

B is the input operator defined by Bu = ω
∑m

i=1bi(·)ui, u =
[u1 · · ·um]T , W is the uncertainty operator with W(x)θ =∑n

j=1wj(x̄)dj(z)θj(t), θ = [θ1 · · · θn]T and x0 = x̄0(z).
For A, the eigenvalue problem is given by Aφj =

λjφj , j = 1, . . . ,∞, where λj denotes an eigenvalue

and φj denotes an eigenfunction. The solution to this

eigenvalue problem is given by λj = β − αj2, φj(z) =√
2
π sin(jz), j = 1, . . . ,∞. It can be seen that all the

eigenvalues of A are real and ordered. Also, for a given α,

only a finite number of unstable eigenvalues exists, and the

distance between two consecutive eigenvalues increases as j
increases. Furthermore, the spectrum of A can be partitioned

as σ(A) = σ1(A)
⋃

σ2(A), where σ1(A) = {λ1, . . . , λm}
contains the first m (with m finite) ”slow” eigenvalues and

σ2(A) = {λm+1, λm+2, . . .} contains the remaining ”fast”

stable eigenvalues where |λm|/|λm+1| = O(ǫ) and ǫ < 1
is a small positive number that characterizes the extent of

separation between the slow and fast eigenvalues of A. This

implies that the dominant dynamics of the PDE can be

described by a finite-dimensional system.

C. Modal decomposition

Defining the orthogonal projection operators, Ps and Pf ,

such that xs = Psx ∈ Hs := span{φ1, . . . , φm}, xf =
Pfx ∈ Hf := span{φm+1, φm+2, . . . }, the state of the

system of (3) can be decomposed as x = xs +xf . Applying

Ps and Pf to the system of (3) and using the decomposition

of x, the system of (3) can be decomposed as:

ẋs=Fs(xs, xf ) + Bsu + Ws(xs, xf )θ, xs(0) = Psx0 (5)

ẋf=Ff (xs, xf ) + Bfu + Wf (xs, xf )θ, xf (0) = Pfx0 (6)

where Fs(xs, xf ) = Asxs + fs(xs, xf ), As = PsA is

an m × m diagonal matrix of the form As = diag{λj},

Bs = PsB, fs = Psf , Ws = PsW , Ff(xs, xf ) = Afxs +
ff (xs, xf ), Af = PfA is an unbounded differential operator

which is exponentially stable (following from the fact that

λm+1 < 0 and the selection of Hs and Hf ), Bf = PfB,

ff = Pff , and Wf = PfW . In what follows, the xs-

and xf -subsystems will be referred to as the slow and fast

subsystems, respectively. Neglecting the fast and stable xf -

subsystem of (6), the following approximate, m-dimensional

slow system can be obtained:

˙̄xs = Fs(x̄s, 0) + Bsu + Ws(x̄s, 0)θ (7)

where the bar symbol denotes that the variable is associated

with a finite-dimensional system.

III. ROBUST STABILIZATION USING SAMPLED SENSOR

MEASUREMENTS

To realize the desired robust distributed networked control

structure, the first step is to synthesize a nonlinear feedback

controller that enforces robust closed-loop stability with an

arbitrary degree of asymptotic attenuation of the effect of

the uncertainty on the closed-loop system in the absence of

communication suspension. As an example, we consider the

following robust nonlinear controller [22]:

u=k(x̄s, θb, ρ, χ, φ)

=−




L∗
Fs

V +
√

(L∗∗
Fs

V )2 + |(LBV )T |4

|(LBV )T |2



 (LBV )T
(8)

when |(LBV )T | 6= 0, and u = 0 when |(LBV )T | = 0, where

L∗∗
Fs

V = LFs
V + ρ‖ x̄s ‖ + χ|(LWs

V )T |θb (9)

L∗
Fs

V = LFs
V +

(
L∗∗
Fs

V − LFs
V

) ( ‖ x̄s ‖
‖ x̄s ‖ + φ′

)
(10)
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V : Hs → IR≥ 0 is a robust control Lyapunov function [23],

[24] for the system of (7), LFs
V , LBV and LWs

V are Lie

derivatives of V , θb is an upper bound on |θ(t)|, and ρ, χ, φ′

are tunable parameters that satisfy ρ > 0, χ > 1 and φ′ > 0.

Consider the system of (7) under the control law of (8)-

(10) and continuous communication. Evaluating V̇ along the

trajectories of the closed-loop system, it can be verified that

there exists a positive real number φ∗ such that if φ :=
φ′(χ − 1)−1 ∈ (0, φ∗], V̇ satisfies the following bound:

V̇ (x̄s) ≤ −ϕV (x̄s) + γ1(φ) (11)

for some positive constant ϕ and a class K function γ1(·),
which implies that the state of the approximate closed-loop

system remains bounded and converges in finite-time to a

terminal neighborhood around the origin whose size can

be made arbitrarily small by appropriate selection of the

controller tuning parameters.

To analyze the stability properties of the closed-loop sys-

tem when the state measurements are sampled and transmit-

ted to the controller at discrete times, we consider the typical

case when the sampling period is constant and the same for

all the sensors. The following proposition establishes the fact

that the robust controller of (8)-(10) possesses a robustness

property that preserves closed-loop stability when the control

action is implemented in a discrete (sample and hold) fashion

with a sufficiently small hold time.

Proposition 1: Consider the system of (7) under the con-

trol law of (8)-(10) with φ ∈ (0, φ∗]. Let u(t) = k(x̄s(tj))
for all t ∈ [tj , tj+1), j = 0, 1, 2, · · · , where tj+1 − tj = ∆.

Then given any positive real numbers δb and δd, where

δb > δd + 2ϕ−1γ1(φ), there exists a positive real number

∆∗ such that if x̄s(0) ∈ Ωb := {x̄s ∈ Hs : V (x̄s) ≤ δb} and

∆ ∈ (0, ∆∗], we have lim sup
t→∞

V (x̄s(t)) ≤ δd + 2ϕ−1γ1(φ).

Proof: Let the control action be computed for some

x̄s(tj) ∈ Ω and held constant for some time ∆ > 0. Then,

∀t ∈ [tj , tj+1), where tj+1 = tj + ∆, we have:

V̇ (t) ≤ −ϕV (x̄s(t)) + γ1(φ)

+ LBs
V (x̄s(t))[k(x̄s(tj)) − k(x̄s(t))]

(12)

where (11) was used to establish the inequality in (12). Since

Ωb is compact, one can find, for all x̄s(tj) ∈ Ωb and a given

∆, a positive real number K1 such that ‖x̄s(tj) − x̄s(t)‖ ≤
K1∆ , ∀t ∈ [tj , tj+1). Then due to the continuous properties

of x̄(t), the function k(·) and LBs
V (·), one can easily find

positive real numbers, K1 and M , such that ‖k(x̄s(tj)) −
k(x̄s(t))‖ ≤ K1∆ and ‖LBs

V (x̄s(t))‖ ≤ M∆. Substituting

these inequalities in (12) yields for all t ∈ [tj , tj+1):

V̇ (x̄s(t)) ≤ −ϕV (x̄s(t)) + γ1(φ) + MK1∆
2 (13)

which implies that:

V̇ (x̄s(t)) ≤ − 1
2ϕV (x̄s(t))

∀ V (x̄s(t)) ≥ δr + 2ϕ−1, δr = 2ϕ−1MK1∆
2 > 0

(14)

The above analysis implies that, given δd, we can choose

δr < δd and find a corresponding value of ∆ ≤ ∆⋆⋆ :=√
δdϕ/

√
2MK1, such that if the control action is computed

for any x̄s(tj) ∈ Ωb and the hold time is less than ∆⋆⋆,

we get that V̇ (x̄s(t)) remains negative for V (x̄s(t)) ≥ δr +
2ϕ−1γ1(φ), and x̄s(t) remains inside Ωb and converges in

finite time to the level set Ωr := {x̄s ∈ Hs : V (x̄s) ≤
δr + 2ϕ−1γ1(φ)}.Then we consider ∆′ such that:

δd + 2ϕ−1γ1(φ) = max
x̄s(tj)∈Ωr,t∈[tj,tj+∆′]

V (x̄s(t)) (15)

Since Ωr is compact, V (·) is a continuous function of x̄s,

and x̄s evolves continuously in time, then one can always

choose a sufficiently small ∆′ such that (15) holds. Let

∆⋆ = min{∆⋆⋆, ∆′} and Choosing ∆ ∈ (0, ∆∗], then

for all x̄(tj) ∈ Ωd

⋂
Ωr, by definition x̄s(t) ∈ Ωd for

t ∈ [tj , tj+1). For all x̄s(tj) ∈ Ωd\Ωr, V̇ (x̄s(t)) < 0 for

t ∈ [tj , tj+1). Since Ωd is a level set of V , then x̄s(t) ∈ Ωd,

for t ∈ [tj , tj+1). Either way, for all initial conditions in

Ωd, x̄s(t) ∈ Ωd for all future times. Note that for x̄s(tj) ∈
Ωb\Ωd, negative definiteness of V̇ is guaranteed for ∆ ≤ ∆⋆.

Hence, all trajectories originating in Ωb converge to Ωd,

which has been shown to be invariant under the control

law with a hold time ∆ ≤ ∆∗. This implies that, for all

x̄s(t0) ∈ Ωb, lim sup
t→∞

V (x̄s(t)) ≤ δd + 2ϕ−1γ1(φ).

IV. NETWORKED CONTROL USING DYNAMIC

SENSOR-CONTROLLER COMMUNICATION

A. Model-based networked controller design

The implementation of the controller of (8)-(10) requires

that the state measurements be transmitted at each sam-

pling time. Since the sensor-controller communication link

is resource-constrained, it is desired to reduce the commu-

nication rate below the sampling rate without jeopardizing

closed–loop stability. To accomplish this goal, a finite-

dimensional model of the system of (7) is included in the

control system to provide the controller with an estimate of

the state when the sensor-controller communication is sus-

pended. The state of the model is then updated based on the

actual state measurements when communication is restored.

Under this model-based control strategy, the controller of

(8)-(10) is implemented as follows:
u(t) = k(x̂s(t)), t ∈ (tj , tk)
˙̂xs(t) = ν(t)[F̂s(x̂s(t)) + B̂su(t)], ν(t) ∈ {0, 1}

x̂s(tj) = x̄s(tj), j, k = 0, 1, 2, · · ·, j < k

(16)

where x̂s is the state of the model that generates estimates of

x̄s, F̂s(·) and B̂s are bounded operators that represent models

of Fs(·) and Bs, respectively (notice that in general F̂s(·) 6=
Fs(·), B̂s 6= Bs). The times tj = j∆ and tk = k∆ are the

j-th and k-th sampling times, respectively, where tk is the

earliest transmission time after tj , ν(t) is a model switching

signal which is a binary variable that takes a value of ν = 1
when the approximate model is used by the controller to

compute the control action, and a value of ν = 0 when

the sample-and-hold scheme is used instead (i.e., when the

controller uses the sampled measurements).
B. An adaptive sensor-controller communication policy

Consider the finite-dimensional system of (7) subject to the

model-based network controller of (16). Using the result of

Proposition 1 and evaluating the time-derivative of V along

the trajectories of the networked closed-loop system, starting

from any x̄s(tj) ∈ Ω, for t ∈ [tj , tj+1) yields:

V̇ (x̄s(t)) ≤ −ϕV (x̄s(t)) + γ1(φ) + γ2(∆)
+ LBs

V x̄s(t)[k(x̂s(t)) − k(x̄s(tj))]
(17)

where we have used the bound in (13) with γ2(∆) =
MK1∆

2 to derive the inequality in (17). Examining this
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inequality and comparing it with (13) reveals explicitly the

perturbation effect of communication suspension on closed-

loop stability. Specifically, the discrepancy between k(x̂s(t))
and k(x̄s(tj)) alters the rate at which the Lyapunov function

decays. As the model estimation error grows, the error in the

implemented control action grows as well, and may become

large enough to cause the growth of the Lyapunov function

and render the closed-loop system potentially unstable. When

this happens, the sensors must be allowed to send their mea-

surements to update the state of the model at next sampling

time, and the controller must switch back to the sample-and-

hold scheme to compensate for the increase of the Lyapunov

function to avert instability. This communication policy is

formalized in the following theorem.

Theorem 1: Consider the closed-loop system of (7) and

(8)-(10), for which the Lyapunov function, V , satisfies (13)

for φ ∈ (0, φ∗] and ∆ ∈ (0, ∆∗] when state measure-

ments are transmitted at every sampling time. Consider also

the networked closed-loop system of (7) and (16) for any

x̄s(t0) ∈ Ωb such that V (x̄s(t0)) > δd + 2ϕ−1γ1(φ), and

set x̂s(t0) = x̄s(t0). Let ν(t) = 1, ∀ t ∈ [t0, tj⋆), where tj⋆

is the earliest time such that:

V (x̄(t−j⋆)) ≥ V (x̄(tj−1)) (18)

and V (x̄s(t
−

j⋆)) > δd + 2ϕ−1γ1(φ). Then the update law

given by x̂s(tk) = x̄s(tk), ν(t) = 0 for t ∈ [tk, tk+1), ∀ k ≥
j⋆, guarantees that lim sup

t→∞

V (x̄s(t)) ≤ δd + 2ϕ−1γ1(φ).

Proof: Note that at any time the state of the model

is re-set as x̂s(tk) = x̄s(tk) and ν(t) = 0 for all t ∈
[tk, tk+1), we have that x̂s(t) = x̄s(tk) and, therefore,

k(x̂s(t)) − k(x̄s(tk)) = 0, which when substituted into (17)

yields V̇ (x̄s(t)) ≤ −ϕV (x̄s(t)) + γ1(φ) + γ2(∆), for all

t ∈ [tk, tk+1). This is the same bound obtained when the

controller is implemented using the sample-and-hold scheme,

which implies that V̇ (x̄s(t)) < − 1
2ϕV (x̄s(t)) < 0 for all

V (x̄s(t)) ≥ δd + 2ϕ−1γ1(φ). Since the control action is

computed using the sample-and-hold scheme for all k ≥ j⋆

(i.e., for all future times), then it follows from the result of

Proposition 1 that lim sup
t→∞

V (x̄s(t)) ≤ δd + 2ϕ−1γ1(φ).

Remark 1: The implementation of the adaptive communi-

cation strategy proposed in Theorem 1 requires monitoring

the evolution of the state at each sampling time to determine

if (18) holds. As long as this condition is not satisfied, the

approximate model is used to compute the control action and

sensor-controller communication is terminated. When this

condition is satisfied, however, the model state is updated

and the controller reverts to the sample-and-hold strategy

to calculate the control action and ensure practical stability

and ultimate boundedness of the closed-loop state. In this

manner, the sensor-controller communication rate is always

kept below the sampling rate (as long as j⋆ > 0), and

is increased only when necessary to maintain closed-loop

stability. Depending on the quality of the model chosen, the

resulting communication rate can be as low as zero (in cases

where a perfect model is used), and as high as the sampling

rate (in case where poor models are used).

Remark 2: Note that the communication logic presented

in Theorem 1 tolerates an increase in V for at most one

sampling period. This could be restrictive in cases where a

temporary finite increase in V does not necessarily lead to

continued growth in V in the future or subsequent instability.

In such cases, a less restrictive policy that can be used would

be not to restore communication at the first sampling time

that V increases, and keep relying on the model until a

pre-specified threshold is breached. For example, one can

suspend communication and request an update (i.e., switch

to the sample-and-hold strategy) only when V (x̄s(tj)) ≥
V (x̄s(t0)). This logic can lead to further reduction in sensor-

controller communication without loss of stability.

Remark 3: Another aspect of the result of Theorem 1

is that once the sampled state (under model-based control)

begins to breach the specified stability threshold, the con-

troller is forced to switch to using the sampled measurements

for all future sampling times. While this is sufficient to

guarantee closed-loop stability, it is possible to relax this

requirement by implementing the sample-and-hold strategy

only until it forces the closed-loop state to converge closer to

the desired terminal set (this is guaranteed from Proposition

1), and then switching back at this time to the model-based

control strategy. This can lead to additional savings in sensor-

controller communication, especially when the model-based

controller is stabilizing only in some small neighborhood of

the origin and the initial condition lies outside this region.

The following algorithm formalizes this idea and represents

a generalization of the communication logic of Theorem 1:

• Starting from any initial condition x̄s(t0) ∈ Ω, set

x̂s(t0) = x̄s(t0), ν(t) = 1 and implement the model-

based controller for t ∈ [t0, tj), where tj is the earliest

time such that V (x̄s(tj)) ≥ V (x̄s(tj−1)).
• Switch to and implement the sample-and-hold strategy

for all t ∈ [tj , tk), i.e., set x̂s(ti) = x̄s(ti) and ν(t) = 0
for all j ≤ i ≤ k and t ∈ [tj , tk), where tk is the earliest

time such that V (x̄s(tk)) < V (x̄s(tj−1))
• Set x̂s(tk) = x̄s(tk) and ν(t) = 1 for all t ∈ [tk, tm)

(i.e., switch back to model-based control), where tm is

the earliest time such that V (x̄s(tm)) ≥ V (x̄s(tm−1)).
• Repeat steps 2-3 until V (x̄s(t)) ≤ δd + 2ϕ−1γ1(φ).

Finally, it should be noted that while the above algorithm

attempts to keep the sensor-controller information transfer

to a minimum without loss of stability, some performance

deterioration may occur if too many back-and-forth switch-

ings between the model-based and sample-and-hold control

strategies are allowed. Ultimately, the number of switchings

should be chosen in a way that balances the fundamental

tradeoff between the extent of network utilization and the

achievable closed-loop performance.

Remark 4: In addition to modifying the switching thresh-

old and the frequency of switching between the model-

based and sample-and-hold control strategies, an additional

measure that can be taken to enhance the flexibility of

the adaptive communication policy is to consider several

Lyapunov function candidates instead of a single one. The
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idea here would be to monitor those functions simultaneously

and request an update only if all the functions begin to breach

their respective thresholds. As long as at least one candidate

continues to decrease at every sampling time, no updates

from the sensors are necessary and the model-based control

scheme can be implemented.

Remark 5: It can be shown that the networked controller

and adaptive communication logic that stabilizes the ap-

proximate finite-dimensional system continuous to stabilize

the infinite-dimensional system provided that the separation

between slow and fast eigenvalues of the differential operator

is sufficiently large. This argument can be justified using

singular perturbation techniques and is omitted for brevity.

V. SIMULATION STUDY: APPLICATION TO A

DIFFUSION-REACTION PROCESS

To illustrate the design and implementation of the net-

worked control structure under adaptive communication pol-

icy with sampled measurements, we consider a long, thin

catalytic rod in a reactor where a zeroth-order exothermic

reaction takes place. A cooling medium in contact with the

rod is used to provide/remove heat from the rod. Under

standard modeling assumptions, the spatiotemporal evolution

of the rod temperature is described by:
∂x̄

∂t
=

∂2x̄

∂z2
− βU x̄ + (βT + θ1)[e

−γ/(1+x̄) − e−γ ]

+ βU b(z)u(t)

(19)

where x̄ denotes the dimensionless temperature, βT = 50.0,

βU = 4.0, γ = 2.0 denote dimensionless heat of reac-

tion, heat transfer coefficient, activation energy, respectively.

u(t) denotes the dimensionless temperature of the cooling

medium, θ1 is a parametric uncertainty in the heat of reac-

tion, which for simulation purposes is chosen as θ1 = 2.0.

It can be verified that the operating steady state x̄(z, t) = 0
(with u = θ1 = 0) is unstable. The control objective is to

stabilize the temperature profile at this unstable steady state

by manipulating the temperature of the cooling medium.

The solution of the eigenvalue problem for the differential

operator yields λj = −j2 − βU , φj(z) =
√

2
π sin(jz),

j = 1, 2, · · · ,∞. The first eigenvalue is considered to be

the dominant one and Galerkins method is applied to derive

an ODE that describes the approximate temporal evolution

of the amplitude of the first eigenmode:
˙̄a1 = λ1ā1 + f(ā1) + g(za)u + w(ā1)θ1 (20)

where x̄(z, t) =
∑∞

i=1 ai(t)φi(z), f(ā1) =
βU 〈φ1(z), h(ā1)〉, g(za) = βU 〈φ1(z), b(z)〉, w(ā1) =
βU 〈φ1(z), h(ā1)〉, h(ā1) = e−γ/(1+ā1φ1(z)) − e−γ and

a single point actuator (with finite support) is used for

stabilization. This ODE is used to design the networked

controller and derive the communication logic which are

then implemented on a 30-th order Galerkin discretization

of the PDE (higher-order discretizations led to identical

results). Specifically, a Lyapunov-based controller of the

form of (8)-(10) is designed by using a quadratic Lyapunov

function of the form V (ā1) = ā2
1 and setting the controller

tuning parameters as χ = 1.1, ρ = 0.0001, φ = 0.0001 to

ensure that the closed-loop state converges in finite time to

a small neighborhood of the desired steady state.

In order to further reduce the sensor-controller communi-

cation rate, a model is considered as ˙̂a1(t) = ν(t)(λ1â1(t)+
f̂(â1(t)) + ĝ(za)u(t)) where, for simplicity, f̂ = f and ĝ =
g. The control law is implemented as in (16) where the model

state is used by the controller so long as no measurements

are transmitted, but is updated using the true measurement

whenever it is transmitted. To determine the appropriate

update times and the value of ν, the evolution of V (a1(tj))
is monitored, and the model state is updated and ν is re-set

to zero (such that controller switches to using the sampled

measurements) when either: (1) V (a1(tj)) ≥ V (a1(tj1))
while a1(tj) is outside the terminal set {V (a1) ≤ δd =
0.0001}, or (2) the state a1(tj) is on the verge of escaping the

terminal set while previously inside. The controller reverts to

relying on the finite-dimensional model by re-setting ν = 1
whenever V (a1(tk)) becomes less than V (a1(tj−1)) for

k > j (see the algorithm described in Remark 3).
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Fig. 1. Plots (a)-(b): Closed-loop state profiles under the dynamic
communication policy with sampled sensor measurements and za = 0.5π

and za = 0.4π. Plots (c)-(d): Update times of the model under the dynamic
communication policy for za = 0.5π and za = 0.4π, respectively.

Figs.1 (a) depicts the evolution of the closed-loop state

profiles when the process is operated using the dynamic

communication policy with ∆ = 0.1 hr and za = 0.5π. It can

be seen that the closed-loop system is successfully stabilized

near the desired steady-state. Fig.1 (c) shows when the

model embedded in the controller is updated. The variable

“Update” can either be 1 or 0 representing on/off sensor-

controller communication. It can be seen that communication

is restored twice (and the measurement held for one sampling

period each time) before a1 converges inside the desired

terminal set. Following this, communication is suspended

until the state attempts to escape the terminal set at t = 4.6 s.

At this sampling time, the sensors are prompted to send their

measurements to update the model and the sample-and-hold

scheme is implemented until the corrective action forces the

state back into the terminal set. While not shown in the plot,

examination of the behavior of the “Update” variable over

a longer time period shows that, once the state is inside

the terminal set, the sensor-controller communication is re-

established in a nearly periodic fashion (roughly every 4
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hr), which is needed to compensate for the approximation

error resulting from the discrepancy between a1 and ā1. It

should be noted that the adaptive communication policy is

able to enforce closed-loop stability and maintain a closed-

loop performance that is quite similar to the one obtained

under the static policy with the higher communication rate.

From the stability analysis in Section IV, it can be seen

that, for a given model, the actuator location is one of the key

factors that influences the communication rate. To show this

dependence, we implemented the dynamic communication

policy described above on the process for the case when the

actuator is placed at za = 0.4π and the sampling period

is maintained at ∆ = 0.1. Figs.1(b) show the evolution of

the closed-loop state profiles in this case. It can be seen

that the performance of closed-loop system deteriorates after

changing the actuator location and that the frequency of

sensor-controller communication is increased substantially

to ensure the convergence of the closed-loop state close to

the desired steady state. This increase can be observed from

Fig.1(d) which shows the update times of the model.

In addition to network utilization considerations, we also

investigated the disturbance-handling capabilities of both

static and dynamic communication policies in order to

compare their robustness with respect to unanticipated dis-

turbances during process operation. To this end, a point

disturbance in the jacket temperature at zd = π/8 with an

amplitude θb = 0.5 is introduced at t = 3 hr and lasts until

t = 5 hr. Figs.2(a)-(c), which depict the closed-loop state and

manipulated input profiles subject to the unexpected external

disturbance, show that both communication policies can

successfully overcome the influence of the disturbance and

force the temperature to converge near the desired steady-

state. Fig.2(d) shows the update times when the dynamic

communication policy is implemented. It can be seen that

the dynamic communication policy can quickly detect the

disturbance and respond by increasing the sensor-controller

communication rate to its maximum value (i.e., the sampling

rate) which helps the closed-loop state return near the desired

steady-state once the disturbance has disappeared. Given the

comparable closed-loop performance in both cases, the dy-

namic policy leads to a large saving in information transfer.
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