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Abstract— We develop the concept of an eigenvalue cycle
to completely characterize the critical erasure probability for
intermittent Kalman filtering. It is also proved that eigenvalue
cycles can be easily broken if the original physical system
is considered to be continuous-time — randomly-dithered
nonuniform sampling of observations makes the critical erasure
probability depend only on the dominant eigenvalue, making it
almost surely 1

∣�max∣2
.

I. INTRODUCTION

This paper can best be viewed as a response to [1], which
itself enhanced our understanding of the intermittent Kalman
filtering problem introduced by Sinopoli et al. in [2]. The
situation that this problem is modeling is that of estimation
over a so-called packet drop channel. A memoryless1 sensor
samples the output of an unstable2 continuous-time system,
quantizes it to a “sufficient” number of bits, binds these
bits together into a single packet, and transmits the packet
to the estimator through a communication system. Due to
network congestion or wireless fading, the entire transmitted
packet may be lost3 with a certain probability and this erasure
process is further simplified to be independent and identically
distributed (i.i.d.). The problem is designed to focus attention
on the effect of losing packets and so the number of bits per
packet is unconstrained. Formally, the problem is usually
formulated in discrete time:

x[n+ 1] = Ax[n] +Bw[n] (1)
y[n] = �[n] (Cx[n] + v[n]) . (2)

Here n is the non-negative integer-valued time index
and the system variables can take on complex values —
i.e. x[n] ∈ ℂm,w[n] ∈ ℂg,y[n] ∈ ℂl,v[n] ∈ ℂl. A,B and
C are complex matrices with appropriate dimensions. The
underlying randomness comes from the initial state x[0], the
persistent driving disturbances w[n], the observation noises

This work was supported by the Samsung Scholarship and the National
Science Foundation (CCF-729122).

The authors are with the Department of Electrical Engineering and
Computer Sciences at the University of California at Berkeley.

1This sensor memorylessness is at the heart of what Sinopoli, et al. are
trying to model. Otherwise, the earlier results of [3] immediately reveal that
the critical erasure probability only depends on the magnitude of the largest
eigenvalue. However, Sahai’s work implicitly pushed all of the estimation
complexity into the sensor rather than at the so-called estimator that sees the
unreliable output of a channel. Thus, there was a need to carefully separate
out the impact of intermittent observations themselves.

2Following Sahai in [3], unstable systems are used to abstract real prob-
lems of system performance into simpler binary questions of stabilizability.

3Such losses need not come from a network — they could occur because
of sensor occlusion or other sensor-level issue. That is why the issue of
intermittent observations needs to be studied on its own.

v[n] and the Bernoulli packet-drops �[n]. �[n] = 0 with
probability pe.

The objective is to find the best causal estimator x̂[n]
of x[n] that minimizes the mean square error (MMSE)
E[(x[n] − x̂[n])†(x[n] − x̂[n])]. Without loss of generality,
x[0],w[n] and v[n] are assumed to be zero mean. x[0],w[n]
and v[n] are independent and have uniformly bounded sec-
ond moments so that there exists a positive � such that

E[x[0]x[0]T ] ≤ �2I

E[w[n]w[n]T ] ≤ �2I

E[v[n]v[n]T ] ≤ �2I.

To prevent degeneracy, we also assume that there exists a
positive �′ such that

E[w[n]w[n]T ] ≥ �′2I.

We refer to the system (1) and (2) as intermittent observable
if the MMSE is uniformly bounded. Since more erasures can
be simulated from fewer erasures, it is obvious that there
must be a threshold on pe for intermittent observability:

Theorem 1 (Theorem 2. of [2]): Let (A,B) be control-
lable.4 Then, there exists a threshold p★e , such that for pe < p★e
the system (A,B,C) is intermittent observable and for
pe ≥ p★e the system (A,B,C) is not intermittent observable.

In fact, we can see that the condition that induces p★ =
1 is the system’s stability and the condition that induces
p★ = 0 is the lack of system observability. Thus, we can
think the intermittent observability as a concept that connects
stability and observability. In [2], Sinopoli et al. thought of
intermittent observability as a generalization of stability, and
gave a lower bound to the critical erasure probability based
on Lyapunov stability. However, their lower bound given in
a linear matrix inequality (LMI) form, while computable, is
neither tight in general nor does it give any insight into the
solution. A more intuitive bound was given by Elia in [4].

Theorem 2 (Corollary 8.4. of [4]):
1∏
i ∣�i∣2

≤ p★e ≤
1

∣�max∣2
,

where the �is are the unstable eigenvalues (including those
with multiplicity multiple times) of A and �max is the one
with the largest magnitude.

Therefore, the core question in this area boils down to
understanding the gap between 1∏

i ∣�i∣2
and 1

∣�max∣2 .

4Since this assumption is trivially necessary, this is assumed to be true
thoughout the paper unless it’s mentioned otherwise.
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In [1], Mo and Sinopoli found two interesting cases that
give further insight into this question. The first is when
A is diagonalizable and all eigenvalues of A have distinct
magnitudes — then the critical erasure probability is 1

∣�max∣2
just it would be in the formulation of [3]. The second case is

when A =

[
2 0
0 −2

]
and C =

[
1 1

]
— the critical erasure

probability is 1∏
i ∣�i∣2

= 1
24 . This second case showed that

the gap is real and requiring packets to be about a scalar
observation can have serious consequences.

In this paper, we introduce the concept of an eigenvalue
cycle to formalize the insight of Mo and Sinopoli and
characterize the critical erasure probability based on it. As
a corollary, we show that in the absence of eigenvalue
cycles the critical value becomes 1

∣�max∣2 . Furthermore, we
show that simply by introducing nonuniform sampling at the
physical sensor, the eigenvalue cycles can be broken and the
critical erasure probability becomes effectively 1

∣�max∣2 .
The basic idea is to consider intermittent observability as

an extension of observability. The condition for observability
is that for all s ∈ ℂ[

sI−A
C

]
is full rank.

Moreover, without loss of generality we can assume that
A is in Jordan form. With this additional assumption, the
observability condition can be further simplified.

Theorem 3 ([5]): The system (A,C) with a Jordan ma-
trix A is observable iff for the Jordan blocks with the same
eigenvalue, the column vectors of C that correspond to the
first columns of these Jordan blocks are linearly independent.

For example, let

A =

⎡⎢⎢⎣
2 1 0 0
0 2 0 0
0 0 2 0
0 0 0 3

⎤⎥⎥⎦ ,C =
[
c1 c2 c3 c4

]
.

Then, (A,C) is observable if both
[
c1 c3

]
and

[
c4
]

are
full rank. This characterization reminds us of a divide-and-
conquer approach — first divide the observability problem
into smaller problems according to the identical eigenvalues,
check whether the smaller sub-problems are observable, and
finally the answer for the original observability question
is yes iff all the sub-problems’ answers are positive. This
divide-and-conquer approach informs our characterization
of intermittent observability. To use divide-and-conquer, we
have to answer the following three questions:
(a) What are the minimal irreducible sub-problems?
(b) How can we solve each sub-problem?
(c) How can we combine the answers of the sub-problems?
The next section gives the intuitive characterization of inter-
mittent observability by resolving these questions.

Roughly speaking, the intermittent observability problem
can be divided along Jordan block lines into smaller sub-
problems as long as the ratio of eigenvalues from different
sub-problems is not a root of unity. Therefore, all ratios

of the eigenvalues belonging the smallest sub-problems are
roots of unity. As the system evolves, these roots of unity
show periodic behaviors, and we can find the critical erasure
probability for each sub-problem by inspecting the periodic
behavior and seeing how this thickens the relevant tail
probabilities. Finally, the intermittent observability of the
original system can be shown to be equivalent to that of
the hardest-to-estimate sub-problem.

II. EIGENVALUE CYCLES AND THE CRITICAL ERASURE
PROBABILITY

We begin with the formal definition of a cycle.
Definition 1: A multiset (a set that allows repetitions of

its elements) {a1, a2, ⋅ ⋅ ⋅ , al} is called a cycle with length
l and period p if

(
ai
aj

)p
= 1 for all i, j ∈ {1, 2, ⋅ ⋅ ⋅ , l}

and some p ∈ ℕ. Following convention, p is denoted5 as
min

{
n ∈ ℕ :

(
ai
aj

)n
= 1,∀i, j ∈ {1, 2, ⋅ ⋅ ⋅ , l}

}
.

For example, {a} is a cycle with length 1 and period 1
by itself. {ej!, ej(!+ 2�

6 )} is a cycle with length 2 and
period 6. {ej , ej

√
2} and {1, 2} are not cycles. One trivially

necessary condition for a1, a2 to belong to the same cycle is
∣a1∣ = ∣a2∣. It can be also shown that cycles are closed under
overlapping unions, meaning that if {a1, a2} and {a2, a3} are
cycles, {a1, a2, a3} is also a cycle.

Now, we can define an eigenvalue cycle. By changing co-
ordinates, the system equation (1) can always be equivalently
written with a Jordan matrix A. Even though the MMSE’s
value can also change by such a coordinate change, the
condition for it to be bounded remains the same. Therefore,
we can assume that A is a Jordan matrix without loss of
generality. Then, the matrix A and C can be written as the
following form:

A = diag{A(1,1),A(1,2), ⋅ ⋅ ⋅ ,A(k,lk)}
C =

[
C(1,1) C(1,2) ⋅ ⋅ ⋅ C(k,lk)

]
where

A(i,j) is a Jordan block matrix with an eigenvalue �i,j
{�i,1, ⋅ ⋅ ⋅ , �i,li} is a cycle with length li and period pi
For i ∕= i′, {�i,j , �i′,j′} is not a cycle
C(i,j) is a l × dimA(i,j) matrix. (3)

Since cycles are closed under overlapping unions, the eigen-
values of A can be uniquely partitioned into maximal cycles,
{�i,1, ⋅ ⋅ ⋅ , �i,li}. We call these cycles eigenvalue cycles and
we say A has no eigenvalue cycle if all of its eigenvalue
cycles are period 1.
Denote

Ai = diag{�i,1, ⋅ ⋅ ⋅ , �i,li}
Ci =

[
C(i,1)1

⋅ ⋅ ⋅ C(i,li)1

]
where C(i,j)1

implies the first column of C(i,j).

Let l′i be the minimum cardinality among the sets S′ ⊆
{0, 1, ⋅ ⋅ ⋅ , pi− 1} whose resulting S := {0, 1, ⋅ ⋅ ⋅ , pi− 1} ∖

5We use 0
0
= 1, 1

0
= ∞, 1∞ = ∞ and 1

∞ = 0.
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S′ = {s1, s2, ⋅ ⋅ ⋅ , s∣S∣} makes⎡⎢⎢⎢⎣
CiAi

s1

CiAi
s2

...
CiAi

s∣S∣

⎤⎥⎥⎥⎦
be rank deficient, i.e. the rank is strictly less than li.
Then, the critical erasure probability is given as the following
main theorem of the paper.

Theorem 4: The critical erasure probability of (A,C) is
1

max
i
∣�i,1∣

2
pi
l′
i

.

Proof: See [6].
Here, we can notice that there is no assumption about
stability or observability of the system. Let’s first run a
“reality check” on the theorem by looking at stable modes
and unobservable modes. If ∣�i,1∣ < 1, 1

∣�i,1∣
2
pi
l′
i

> 1.

Therefore, the stable modes do not contribute to the
characterization of the critical erasure probability. If
(Ai,Ci) are unobservable, l′i = 0. So, 1

∣�i,1∣2
pi
0

= 0 if

∣�i,1∣ ≥ 1 and 1

∣�i,1∣2
pi
0

= ∞ if ∣�i,1∣ < 1. Therefore, if

the unobservable modes are stable they do not affect the
intermittent observability of the system and if they are not
the system is not intermittent observable even if pe = 0.

Even though in general l′i does not admit a closed form,
it is computable for special cases.

Corollary 1: Let (A,C) be observable and A have no
eigenvalue cycles (i.e.

(
�i
�j

)n
∕= 1 for all �i ∕= �j and

n ∈ ℕ). Then, the critical erasure probability of intermittent
Kalman filtering is 1

∣�max∣2 .
Proof: Since A has no eigenvalue cycles, pi equal

to 1 for all i and Ai are diagonal matrices. Moreover, by
the observability condition and Theorem 3, Ci is full-rank.
Thus, l′i = 1 for all i and by Theorem 4 the critical erasure
probability is 1

maxi ∣�i,1∣2 = 1
∣�max∣2 .

For a more precise understanding of the critical erasure
probability, we will focus on the case of a row vector C —
i.e. single-output systems. Heuristically, a row vector C is
the worst among C matrices since a vector observation is
clearly better than a scalar observation.

Furthermore, we will also restrict the periods of the
all eigenvalue cycles of A to be primes6. The technical
reason for this restriction is that prime periods give us
a useful invariance property of sub-eigenvalue cycles. Let
{�1, �2, ⋅ ⋅ ⋅ , �l} be an eigenvalue cycle with a prime period
p′. Then, all subsets of {�1, �2, ⋅ ⋅ ⋅ , �l} with distinct ele-
ments are eigenvalue cycles with the same period p′. This
invariance property need not hold for cycles with composite
periods.

Corollary 2: Let (A,C) be observable, C be a row vec-
tor, and A have only prime-period eigenvalue cycles. Then,
the critical erasure probability is 1

max
i
∣�i,1∣

2pi
pi−li+1

.

6For convenience, we include 1 as a prime number here.

Proof: The proof follows from Theorem 4 and the
following fact shown in [7]. Let p be a prime, a1, ⋅ ⋅ ⋅ , an
be pairwise incongruent mod p and b1, ⋅ ⋅ ⋅ , bn be pairwise
incongruent mod p. Then,⎡⎢⎢⎢⎢⎣

ej
a1b1
p ej

a1b2
p ⋅ ⋅ ⋅ ej

a1bn
p

ej
a2b1
p ej

a2b2
p ⋅ ⋅ ⋅ ej

a2bn
p

...
...

. . .
...

ej
anb1
p ej

anb2
p ⋅ ⋅ ⋅ ej

anbn
p

⎤⎥⎥⎥⎥⎦
is full rank.

Since the full proof of Theorem 4 is too long to be
conveyed here, we here briefly explain the key ideas based on
three properties of the critical erasure probability that answer
the three questions raised in the previous section. The basic
idea of the proof is to look at the reverse process — just as
it was done in [1]. For example, consider a scalar system{

x[n+ 1] = 2x[n] + w[n]
y[n] = �[n]x[n]

.

Let n−S be the most recent non-erased observation at time
n, i.e. S := inf{k ≥ 0 : �[n − k] = 1}. The stopping time
S is a geometric random variable, so if we use the estimator
x̂[n] = 2Sy[n − S] = 2Sx[n − S] the estimation error is
upper bounded by

E
[
(x[n]− x̂[n])2

]
≤ �2

22 − 1

(( ∞∑
i=0

(1− pe)(pe22)i
)
− 1

)
The right-hand side is finite if pe < 1

22 , which gives a
sufficiency proof. For necessity, a similar analysis can be
done using the fact that the driving noise w[n − S + 1] is
independent of the non-erased observations present up to the
time n. This scalar example reveals that the most important
quantity is the p.m.f. tail of S, exp lim sups→∞ lnℙ{S = s},
which is pe in this case.

(1) Power property: The power property answers the
question (b) of the previous section. Consider the example
of [1]. ⎧⎨⎩ x[n+ 1] =

[
2 0
0 −2

]
x[n] +w[n]

y[n] = �[n]
[
1 1

]
x[n]

.

If we write the observability matrix, we immediately notice
cyclic behavior:

C =
[
1 1

]
CA−1 =

[
1
2 − 1

2

]
CA−2 =

[
1
4

1
4

]
CA−3 =

[
1
8 − 1

8

]
⋅ ⋅ ⋅

Notice that C,CA−2,CA−4, ⋅ ⋅ ⋅ are linearly dependent
and CA−1,CA−3,CA−5, ⋅ ⋅ ⋅ are linearly dependent. As
observed in [1], we therefore need both even and odd time
observations to estimate the states. Therefore, the stopping
time S until we get enough observations to estimate the
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current states is inf{k ≥ 0 : k ≥ k1, k ≥ k2, �[n − k1] =
1, �[n−k2] = 1, k1 ∕= k2( mod 2)}. Now, the p.m.f. tail of S
becomes exp lim sups→∞ lnℙ{S = s} = p

1
2
e . The condition

for bounded mean-squared error is thus p
1
2
e < 1

22 , which is
pe <

1
22⋅2 . This gives sufficiency. For necessity, denote the

stopping time S′ to be inf{k ≥ 0 : �[n−k] = 1, k is even}.
Then, the p.m.f. tail of S′ is also p

1
2
e . w[n − S′ + 2] can

be decomposed to w[n − S′ + 2] =

[
1
1

]
w1[n − S′ + 2] +[

1
−1

]
w2[n− S′ + 2]. Using the fact that w2[n− S′ + 2] is

independent of all non-erased observations up to time n, we
can similarly prove necessity.

To generalize this idea, we have to use the idea of large
deviations [8] which is equivalent to a union bound for
simple cases. The idea goes as follows.

Consider test channels that are erasure-type channels
which would make the observability Gramian rank-deficient.
For the previous example, these would be the channel that
erases every odd-time observations, the channel that erases
every even-time observations and the channel that erase all
observations. In the characterization, the set S′ is a proxy
for these test channels.

Measure the distance from the true channel to the test
channels. In our case, the true channel is the channel without
any restriction and the distance measure is the Hamming
distance. For the test channels considered above, the distance
to the odd-time-erasure channel is 1, the even-time-erasure
channel is 1 and the all-erasure channel is 2.

Then, the large deviation principle says that the perfor-
mance is decided by the minimum-distance test channel.
For the example, the odd-time or even-time erasure channel
whose distances are 1 will govern the performance. This
minimum distance is denoted as l′i in the characterization.

So the effect of the eigenvalue cycle is to thicken the tail
of the stopping time until you get enough observations to
estimate the states. Analytically, the effect is equivalent to
taking a proper power to the pe and hence the name “power
property.”

(2) Max combining : This answers the question (c) i.e. how
we go from a single eigenvalue cycle to multiple eigenvalue
cycles. Consider the following example with two eigenvalue
cycles:⎧⎨⎩

⎡⎣x1[n+ 1]
x2[n+ 1]
x3[n+ 1]

⎤⎦ =

⎡⎣3 0 0
0 2 0
0 0 −2

⎤⎦⎡⎣x1[n]x2[n]
x3[n]

⎤⎦+w[n]

y[n] = �[n]
[
1 1 1

]
x[n]

. (4)

Let S1 := {k ≥ 0 : �[n − k] = 1}, S2 := {k > S1 :
�[n − k] = 1} and S3 := {k > S2 : �[n − k] = 1}.
Then, one can easily check that the p.m.f. tail of s3
is pe, i.e. exp lim sups→∞ lnℙ{S3 = s} = pe. Since
we have three observations at time n − S1, n − S2

and n − S3, by the pigeon-hole principle at least two
among them have to be congruent mod 2. Without loss
of generality, let S1 and S2 be even numbers. Then,

A−S1

⎡⎣x1[n]x2[n]
x3[n]

⎤⎦ =

⎡⎣3−S1 0 0
0 2−S1 0
0 0 2−S1

⎤⎦⎡⎣x1[n]x2[n]
x3[n]

⎤⎦ =[
3−S1 0
0 2−S1

] [
x1[n]

x2[n] + x3[n]

]
and likewise

A−S2

⎡⎣x1[n]x2[n]
x3[n]

⎤⎦ =

[
3−S2 0
0 2−S2

] [
x1[n]

x2[n] + x3[n]

]
.

Therefore, instantaneously at time n − S1 and n − S2

the system equation (4) behaves like⎧⎨⎩

[
x1[n+ 1]

x2[n+ 1] + x3[n+ 1]

]
=

[
3 0
0 2

] [
x1[n]

x2[n] + x3[n]

]
+w′[n]

y[n] = �[n]
[
1 1

]
x[n]

, which has no eigenvalue cycles. It is known in [1] that
this new system is intermittent observable if pe < 1

32 which
is equivalent condition to the case when we only have the
state x1[n]. When pe <

1
32 we can estimate x1[n] within

a bounded error. By considering the residual estimation
error x1[n] − x̂1[n] as an additional observation noise, we
can estimate x2[n] and x3[n] without worrying about the
existence of x1[n]. This idea is known as successive decoding
in information theory [9].

Therefore, once we have Corollary 1, we can solve prob-
lems with multiple eigenvalue cycles one by one without
worrying about the existence of the other eigenvalue cy-
cles and the performance is bottlenecked by the hardest-to-
estimate eigenvalue cycle. In this example, the intermittent
observability condition is pe < 1

max{32,22⋅2} =
1
16 . Necessity

can easily be proved by a genie argument, i.e. we can give
all states except the ones that correspond to the bottleneck
eigenvalue cycle as side information to the estimator.

Therefore, the critical erasure probability of A with
multiple eigenvalue cycles is decided by the bottleneck
eigenvalue cycle.

(3) Separability of Eigenvalue Cycles: The remaining
question is what are the minimal irreducible sub-problems,
whose answer can be expected to be eigenvalue cycles
from the discussion up to now. While discussing the max-
combining property, we saw that if systems without eigen-
value cycles can be divided into scalar sub-systems, the result
can be leveraged to general systems. In other words, we
can separate a linear system into sub-systems where each
sub-system has a single eigenvalue cycle. Thus, the question
pins down to systems with no eigenvalue cycles, which is
Corollary 1. In fact, a special case of Corollary 1 is shown
in [1] when the magnitudes of the eigenvalues of a diagonal
matrix A are distinct. The main technical insight for this
case is that when ∣a∣ > ∣b∣, for every k ∈ ℝ we can find

n ∈ ℕ such that
(
∣a∣
∣b∣

)n′
> k for all n′ ≥ n.

The complete proof of Corollary 1 can be done in two
steps. First, just relax the distinct-eigenvalue-magnitude con-
dition to no eigenvalue cycle condition, but keep the system
matrix diagonal. This step can be done using Weyl’s crite-
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rion [10], which gives a necessary and sufficient condition
for a sequence to behave like a uniform distribution on the

interval [0, 1]. For example, let A =

[
ej 0

0 ej
√
2

]
. Then An

is equal to
[
ejn 0

0 ej
√
2n

]
. By Weyl’s criterion (ejn, ej

√
2n)

behaves like a sample from (ej�1 , ej�2) where �1 and �2
are independent random variables uniformly distributed on
[0, 2�]. Thus, we can conclude that (ejn, ej

√
2n) do not

behave in a periodic way. In fact, the effect of the hypo-
thetical random variables (ej�1 , ej�2) is quite similar to the
actually randomly-dithered nonuniform sampling discussed
in the next section.

The next step is to generalize from a diagonal matrix to an
arbitrary Jordan matrix. A non-trivial Jordan block introduces
polynomial terms in n to the observability Gramian. Based
on this observation, in [6] we reduce the Jordan block
problem to facts like “x2 cannot be written as a linear
combination of 1 and x,” which are trivially true.

III. INTERMITTENT KALMAN FILTERING WITH
NONUNIFORM SAMPLING

In the previous section, we argued that the cyclic behavior
caused by eigenvalue cycles is the only factor that prevents
us from having the critical erasure probability be 1

∣�max∣2 .
Based on this understanding, we can look for a way to avoid
this troublesome phenomenon. Here, nonuniform sampling
is proposed as a simple way of breaking eigenvalue cycles
and achieving the critical value 1

∣�max∣2 .

As an intuitive example, consider A =

[
1 0
0 −1

]
. Then,

A =

[
1 0
0 −1

]
,A2 =

[
1 0
0 1

]
,A3 =

[
1 0
0 −1

]
, ⋅ ⋅ ⋅ .

What the eigenvalue cycle is capturing is that half of
A,A2,A3, ⋅ ⋅ ⋅ are identical. Therefore, the question is how
we can make every matrix in A,A2,A3, ⋅ ⋅ ⋅ distinct. To sim-
plify the question, consider the sequence of −1, 1,−1, 1, ⋅ ⋅ ⋅
which corresponds to (2, 2) elements of A,A2,A3, ⋅ ⋅ ⋅ .

Rewrite this sequence −1, 1,−1, 1, ⋅ ⋅ ⋅ as
(ej�)1, (ej�)2, (ej�)3, (ej�)4, ⋅ ⋅ ⋅ and introduce a jitter
ti to each sampling time. The resulting sequence becomes
(ej�)1+t1 , (ej�)2+t2 , (ej�)3+t3 , (ej�)4+t4 , ⋅ ⋅ ⋅ and if tis are
uniformly distributed i.i.d. random variables on [0, T ] each
element in the sequence is distinct almost surely as long as
T > 0.

Operationally, this idea can be implemented as follows:
at design-time, the sensor and the estimator agree on the
nonuniform sampling pattern which is a realization of
i.i.d. random variables whose distribution is uniform on
[0, T ](T > 0). Whenever the sensor samples the system, it
jitters its sampling time according to this nonuniform pattern.
Knowing the sampling time jitter, the sampled continuous-
time system looks like a discrete time-varying system to
the estimator. The joint Gaussianity between the observation
and the state is preserved, and furthermore, Kalman filters
are optimal even for time-varying systems! This intermittent
Kalman filtering problem with nonuniform samples has the

critical erasure probability 1
∣�max∣2 almost surely. Therefore,

an eigenvalue cycle is breakable by nonuniform sampling.
One may be bothered by the probabilistic argument on

the nonuniform sampling pattern. However, this probabilistic
proof is an indirect argument for the existence of an appro-
priate deterministic nonuniform sampling pattern, which is
similar to how the existence of capacity achieving codes is
proved in information theory [11].

To write this more formally, consider a continuous-time
dynamic system. A typical model for a linear continuous-
time system is an Ornstein-Uhlenbeck Process [12],

dxc(t) = Acxc(t)dt+BcdWc(t) (5)

where t ≥ 0, xc ∈ ℂm and Wc(t) is a g-dimensional Wiener
process. The matrices Ac and Bc are complex matrices with
proper sizes.
The observation process yc(t) is modeled by

yc(t) = Ccxc(t) +DcdVc(t) (6)

where t ≥ 0, yc ∈ ℂl and Vc(t) is an ℎ-dimensional Wiener
process. The matrices Cc and Dc are complex matrices with
proper sizes.

Let’s say we want to sample the system with interval I .
A common way to model sampling of the continuous-time
process is by introducing an integration filter at the sensor,
i.e. for the uniform sampling case, the nth sample y[n] is

y[n] =

∫ nI

(n−1)I
yc(t)dt (7)

where the integral is an Ito’s integral [12].
Nonuniform sampling can be thought of in two ways with

respect to the sensor’s integrator: (1) The integration intervals
are of non-uniform length but the starting time of the integra-
tion stays uniform. (2) The starting times of the integration
are non-uniform but we keep the integration intervals of
uniform length. Since the analysis and performance is similar
in both cases, we will focus on the latter case. To take the
nth sample of the system, the sensor integrates yc(t) from
(n− 1)I − tn to nI − tn:

yo[n] =

∫ nI−tn

(n−1)I−tn
yc(t)dt.

=

(∫ I

0

Cce
−Ac(I−t)dt

)
︸ ︷︷ ︸

:=C

xc(nI − tn)

−
∫ nI−tn

(n−1)I−tn

∫ nI−tn

t

Cce
Ac(t−t′)BcdWc(t

′)dt

+

∫ nI−tn

(n−1)I−tn
DcdVc(t). (8)

since the solution of (5) is

xc(t) = eActxc(0) +

∫ t

0

eAc(t−t′)BcdWc(t
′). (9)

Denote v[n] as the sum of the second and third term of
(8). Here, we can notice that v[n]s can be correlated due to

3696



possible overlapping in the integration intervals. Finally, the
received observation at the estimator can be written as

y[n] = �[n]yo[n] = �[n] (Cxc(nI − tn) + v[n]) . (10)

Since the observability of a continuous time system does not
necessarily imply the observability of the sampled system,
the observability condition of (Ac,C) is required, which is
a necessary condition for (Ac,Cc) to be observable. Now,
we can present the main theorem of this section.

Theorem 5: Let tn be i.i.d. random variables uniformly
distributed on [0, T ](T > 0) and the system (Ac,Bc,C)
is controllable and observable. The system is almost surely
intermittent observable if and only if Pe < 1

∣e2�maxI ∣ .
Proof: See [6].

Remark 1: Since exp ((eigenvalue of Ac)I) corresponds to
the eigenvalue of the sampled discrete time system, the crit-
ical value of Theorem 5 is equivalent to that of Corollary 1.
The nonuniform sampling allows us to no longer care if
eigenvalue cycles could exist for the original continuous-time
system.
Remark 2: The assumption that tns are identically and
uniformly distributed is not minimal and can be relaxed as
following: tns are independent random variables and there
exists a, c such that ℙ{∣tn∣ ≥ a} = 0 and ℙ{tn ∈ B} ≤
cℒ(B) for all B ∈ B and n ∈ ℕ where B implies Borel
�-algebra and ℒ implies Lebesgue measure.

Nonuniform sampling is the right way of breaking eigen-
value cycles from a practical point of view. So the critical
erasure probability of 1

∣�max∣2 can be achieved not only
by using the computationally challenging estimation-before-
packetization strategy of [3], but also by the simple mem-
oryless approach of dithered sampling before packetization.
And so, even if the sensors were themselves distributed, the
critical erasure probability with nonuniform sampling is still
critical value optimal in a sense that they can achieve the
same critical erasure probability to the sensors with causal
or noncausal information about the erasure pattern or with
any complexity.

IV. DISCUSSION

The intermittent Kalman filtering problem was first moti-
vated from control over communication channels. Therefore,
the common belief about the problem is that it falls into
the intersection of control and communication. However, if
the plant is unstable the transmission power of the sensor
diverges to infinity if it is really going to pack an ever
increasing number of bits in there. Therefore, it is hard to
say that intermittent Kalman filtering really has a strong
connection to communication theory. The results of this
paper argue instead that the intersection of control and
signal processing — especially sampling theory — is the
right conceptual category for intermittent Kalman filtering. It
should thus be interesting to explore the connection between
the result of this paper with the classical results of sampling
theory.

Arguably, the closest problem to intermittent Kalman
filtering is that of observability after sampling. As we men-
tioned earlier, the observability of (Ac,Cc) in (5) and (6)
does not implies the observability of (Ac,C) in (5) and (8).
The well-known sufficient condition is:

Theorem 6 (Theorem 6.9. of [5]): Suppose (Ac,Cc) is
observable. A sufficient condition for its discretized sys-
tem with sampling interval I to be observable is that
∣ℑ(�i−�j)I∣

2� /∈ ℕ whenever ℜ(�i − �j) = 0.
Since the eigenvalue of the sampled system is given

as exp(�iI), Corollary 1 can be written as the following
corollary for a sampled system.

Corollary 3: Suppose (Ac,Cc) is observable. A suffi-
cient condition for its discretized system with sampling
interval I to have 1

∣e2�maxI ∣ as a critical erasure probability

is that ∣ℑ(�i−�j)I∣2� /∈ ℚ whenever ℜ(�i − �j) = 0.
The idea of breaking cyclic behavior using non-uniform

sampling is also shown in the context of sampling multiband
signals [13]. The lower bound on the sampling rate is known
as the Lebesgue measure of the spectral support of the
signal sampled. To achieve this lower bound for a general
multiband signal, a nonuniform sampling pattern has to
be used. Moreover, nonuniform sampling is also intimately
connected to the “incoherence” conditions necessary for the
currently hot field of compressed sensing [14].
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