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Abstract— This paper proposes a methodology–based on convex nav-

igation functions– for three-axis attitude reorientation for a rigid body

spacecraft in presence of multiple constraints. In this direction, two

types of attitude constrained zones are first defined, namely, the attitude

forbidden and mandatory zones. The paper then utilizes a convex

parameterization of forbidden and mandatory zones for constructing a

logarithmic barrier potential function that is subsequently used for the

synthesis of the attitude control laws. The feasible controller– which

uses the feedback of the unit quaternions in the context of the proposed

methodology– is then implemented using a modified integrator back-

stepping method in order to compromise the actuator saturations.

The paper concludes with a set of simulation results in order to

evaluate the effectiveness, and demonstrate the viability, of the proposed

methodology.

I. INTRODUCTION

One of the key technologies for spacecraft autonomy is the

execution of large angle reorientations in presence of constraints.

For example, spacecraft involved in science missions are often

equipped with sensitive payloads, such as infrared telescopes or

interferometers, that require re-targeting while avoiding direct expo-

sure to the sunlight or other bright objects. Planning a re-orientation

in presence of attitude constraints is of paramount importance in

such science applications; it also poses a particularly challenging

computational task for the spacecraft guidance, navigation, and

control subsystem. This is mainly due to the fact that removing

the constrained zones from the rotational configuration space of

the spacecraft results in a nonconvex region. The spacecraft reori-

entation problem in the absence of attitude constraints has been

comprehensively addressed in the literature; see for example [8],

[14]. On the contrary, the attitude reorientation problem in presence

of attitude constraints has been examined in only a few research

works. For example, McInnes considered and implemented maneu-

ver planning in presence of attitude constraints via an artificial

potential function in [1], [3]. However, due to the use of Euler

angles in McInnes’ works, the possibility of having singularities

during reorientation maneuvers could not be ruled out. Another

set of approaches to constrained attitude control which rely on

geometric relations between direction of instrument’s boresight and

the bright celestial object to be avoided, has been introduced by

Spindler[4], Hablani[5], and Frakes et al.[6]. In these works, a

feasible attitude trajectory is determined prior to the reorientation

maneuver. However, these approaches have the disadvantage of not

being extendible to more complex situations, involving multiple

celestial constraints often encountered in actual space missions.

Over the last decade, alternative approaches using randomized

algorithms have been proposed by Frazzoli[7], Kornfeld[11], and

Cui[9]. The randomization-based approaches have an advantage in

terms of their ability in handling distinct classes of constraints,

with provable–albeit probabilistic–convergence properties. The ran-

domized algorithms, however, have limitations in terms of their

on-board implementation and might result in execution times that,
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depending on the types of constraints and initial and final attitudes,

can be of exponential order. In this paper, we develop a potential

function based method that builds on the recent convex parameter-

ization of attitude constraint in quaternion space proposed by Kim

and Mesbahi [12], [13], which in turn builds on the constraints

representation discussed in [10]. The advantage of the proposed

approach hinges upon the fact that the logarithmic barrier potential

function used for constructing the corresponding control law is

smooth and strictly convex. This in turn implies that the proposed

methodology can handle large number of forbidden and mandatory

zones simultaneously, while guaranteeing computational tractability

and convergence. Then, a feedback controller is implemented based

on the convex logarithmic barrier potential function. The modified

back-steeping method has been used to derive the controller follow-

ing the negative gradient of the proposed convex potential while

attenuating the excess and sharp controls originally embedded in

the regular back-stepping method.

The rest of the paper is organized as follows. §II reviews the

mathematical models of rigid-body kinematics and dynamics using

quaternions. In §III, we proceed to define and parameterize two

classes of attitude constraints for constructing a logarithmic barrier

potential function. A control design technique for the constrained

attitude maneuver is then presented in §IV. This is subsequently

followed by simulation results for various scenarios in §V. Conclu-

sions and possible future extensions of this work are detailed in

§VI.

II. BACKGROUND

The attitude dynamics of a rigid body spacecraft with fully

actuated body-fixed torquing devices can be described by the

following system of kinematic and dynamic equations [2],

q̇(t) =
1

2
q(t)⊗ ω̃(t), (1)

J~̇ω(t) = R(~ω) J~ω(t) + ~u(t), (2)

where q(t) is the unit quaternion representing the attitude of the

rigid body, ω̃(t) = [~ωT 0]T4×1, and ~ω(t) ∈ R
3 denotes the angular

velocity of the spacecraft in the body frame, J = Diag(J1, J2, J3)
denotes the body frame aligned inertia matrix of the spacecraft,

~u(t) ∈ R
3 represents the control torque about the body axes, and

R(~ω) denotes the cross product operator in matrix form associated

with ~ω. A unit quaternion representing a rigid body attitude is

defined as q = [~qT q0]
T ∈ R

4, where ~q = n̂ sin(φ
2
) ∈ R

3 denotes

the “vector part” of the quaternion and q0 = cos(φ
2
) ∈ R denotes

the “scalar part” of the quaternion q, with n̂ and φ referring to,

respectively, the Euler axis and the rotation angle about this axis

corresponding to the rigid body orientation. The unit quaternion is

globally non-singular but possesses a sign obscureness, which stems

from the fact that −q represents the same rotation as q. We avoid

the situation that the sign of the quaternion changes instantaneously

by keeping its value satisfying its kinematic equation. In Eq. (1), as
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Fig. 1. An attitude forbidden zone
associated with an instrument bore-
sight vector ~y2.

Fig. 2. An attitude mandatory zone
associated with an instrument bore-
sight vector ~y1.

well as in subsequent sections, the product “⊗” refers to quaternion

multiplication defined by

α⊗ β =
[ α0

~β + β0~α+ ~α× ~β

α0β0 − ~αT ~β

]
,

where ~α, ~β, α0, and β0 are, respectively, the vector and scalar

parts of unit quaternions α and β. Another quaternion operation is

the “quaternion transpose” defined as q⋆ = [ −~qT q0 ]T which

facilitates the judicious definition for “attitude error” between two

orientations in unit quaternions α, β via α⋆ ⊗β. In what follows,

we will assume that all external disturbances on the spacecraft are

negligible.

III. PROBLEM STATEMENT

In this section, we first define three types of attitude constraint

zones that will be the focus of our discussion in this paper.

1. Attitude Forbidden Zone: A set of spacecraft orientations, such

as the set of attitudes that lead sensitive on-board instruments have

direct exposure to a given celestial objects such as the sun, is

considered as an attitude forbidden zone. Multiple constraint zones

can be specified with respect to a single instrument boresight vector.

2. Attitude Mandatory Zone: The set of spacecraft orientations,

such as the set of attitudes that lead certain on-board instruments

point toward specified objects, e.g., pointing a high gain antenna

to a ground station, is considered as an attitude mandatory zone.

The attitude mandatory zones for each instrument should be non-

conflicting.

3. Attitude Permissible Zone: The set of spacecraft orientation is

considered to be in the attitude permissible zone when it is at the

intersection of the complements of attitude forbidden zones on one

hand, and the attitude mandatory zones, on the other.

Using unit quaternion representation for spacecraft orientation,

the above three constraint zones can be parameterized in the form

of quadratic inequalities shown below; for more details see [12].

Proposition 1: Let the unit quaternion q ∈ Uq describe the

attitude of the spacecraft whose boresight vector ~yj for the jth

instrument, e.g., a telescope, lies outside of the attitude forbidden

zone, i.e., β2 > θ2 in Fig.1. Then the subset QFj
⊆ Uq satisfying

the above condition can be represented as,

QFj
= { q ⊆ Uq | qTM j

i (θi)q < 0}, (3)

with

M j
i (θi) =

[ Aj
i bji

bjTi dji

]
, (4)

where Aj
i = ~xi ~yj

T + ~yj~x
T
i −

(
~xT
i ~yj + cos θi

)
I3, bji = ~xi × ~yj ,

and dji = ~xT
i ~yj − cos θi, with i = 1, 2, · · ·n, j = 1, 2, · · ·m.

The notation used above needs further elaboration. The index

n represents the number of constraint zones associated with the

jth on-board instrument; the index m on the other hand, is the

total number of instruments. Moreover, ~xi denotes the unit vector

(specified in the inertial frame) for the ith constrained object to

be avoided, while ~yj indicates the unit vector (in the body frame)

representing the boresight direction of the jth sensitive equipment

on the spacecraft. The angle θi is the angle about the direction of the

ith constrained object specified by ~xi. Without loss of generality,

the domain of the angle θi, for all i, is restricted to be (0, π]. We

note that the attitude forbidden zone is generally defined not only

with respect to the number of sensitive instrument on-board m, but

also with respect to the number of constrained objects n.

Proposition 2: The set QM ⊆ Uq representing possible attitude

of the spacecraft, about which the boresight vector of an on-board

instrument, e.g., an antenna, lies inside the attitude mandatory zone,

i.e., βM < θM in Fig. 2, can be represented as,

QM = { q ∈ Uq | qTMM (θM )q > 0 }, (5)

where MM (θM ) and θM are defined analogously to Proposition

1; the latter is the angle with respect to the boresight vector of

an on-board instrument that should stay in the attitude mandatory

zone.

Note that we have considered the case where only one attitude

mandatory zone is present; this is without loss of generality, as if

multiple mandatory zones are present, then only the set defined by

their intersection can be considered.

Let us now provide a representation for the Attitude Permissible

Zone. The subset QP , parameterizing the attitude of the spacecraft

satisfying the attitude mandatory zones, as well as avoiding the

attitude forbidden zones, is given by,

Qp =
{
q ∈ Uq | − q

TM j
i q > 0 and q

TMMq > 0
}

for i = 1, 2, . . . n, j = 1, 2, . . .m.

Fig. 3 shows three types of attitude zones represented on the

celestial sphere defined for two instruments boresight vectors.

A. Logarithmic barrier potential

We now discuss observations that will be subsequently used for

the convex parameterization of the forbidden and mandatory zones

and their embedding in a potential function.

Proposition 3: Let M(θ) be the matrix used to represent the

attitude forbidden zones in Eq. (4). Then for all θi ∈ (0, π] and

q ⊆ Uq , one has

−2 < λmin(M(θ)) ≤ q
TM(θ))q ≤ λmax(M(θ)) < 2. (6)

Proof: From Eq. (4), the symmetric matrix M(θ) can be

written as

M(θ) = P (θ)− cos θiI4 (7)

where

P (θ) =

[
~xi~y

T + ~y~xT
i − (~xT

i ~y)I3 ~xi × ~y(
~xi × ~y

)T

~xT
i ~y

]
.

Since vectors xi and y are unit vectors, PTP = I4. Thus,

Pv = λpv, P
TPv = λpPv,

(
I4 − λ2

pI4

)
v = 0,

where λp is an eigenvalue of P and v is the corresponding

eigenvector. The eigenvalues of P , on the other hand, are given

as λp = −1, −1, 1, 1. Note that from Eq. (7), eigenvalues of
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strictly convex functions is strictly convex, it suffices to analyze

one of the terms in more detail. In this venue, consider the term,

Vq(q) = ‖q∗

r ⊗ q − q
I
‖
2
(∑

i

−k log(
qT M̃ j

i q − β1

2
)
)

for some index j. Now, the gradient of Vq is calculated as

∇V q =
∂

∂q
‖q⋆

r ⊗ q − qI‖
2
(∑

i

−k log(
qT M̃

j
i q − β1

2
)
)

+ ‖q⋆
r ⊗ q − qI‖

2
(∑

i

−2k

qT M̃
j
i q − β1

qT M̃
j
i

)
.

From the fact that ∂
∂q

(‖q⋆
r ⊗ q − q

I
‖2) = −2qT

r ,
∂2

∂q2 (‖q
⋆
r ⊗ q − q

I
‖2) = 04×4, and ‖q⋆

r ⊗ q − q
I
‖2 = 2− 2qT

r q,

the Hessian ∇2Vq is given as

∇2Vq =
∑

i

{
4k

qT M̃
j
i q − β1

qrq
T M̃

j
i +

4k

qT M̃
j
i q − β1

M̃
j
i qq

T
r

+
(
2− 2qT

r q
) 4k
(
qT M̃

j
i q − β1

)2
(
qT M̃

j
i

)T
qT M̃

j
i

−
(
2− 2qT

r q
) 2k

qT M̃
j
i q − β1

M̃
j
i

}
.

Multiplying the last identity by qT and q from left and right now
yields

qT∇2Vqq =
∑

i

γ
{(

qT M̃
j
i q − 3β1

)
qT
r q + (qT M̃

j
i q + β1)

}
,

where γ =
4kqγM̃

j
i
q

(qT M̃
j
i
q−β1)2

, which is always a positive value as

qT M̃ j
i q+ β1 > 0 for all q ∈ Dq and β1 > 0. The above equation

is a linear function of qT
r q. Since qT

r q ∈ [−1, 1], one has

−q
T M̃ j

i q − β1 < q
T M̃ j

i q − 3β1 < q
T M̃ j

i q + β1.

Hence the Hessian of Vq is positive definite and Vq is smooth and

strictly convex.

IV. CONTROLLER DESIGN

In this section, we derive a control law based on the logarithmic

barrier potential function–now used as a Lyapunov function– de-

fined in previous section. This will be achieved by observing that

the spacecraft dynamics described by Eqs. (1)-(2) has a “cascaded”

structure, thus making it suitable for control design based on the

back-stepping method [15]. However, one of main drawback of

a conventional back-stepping method is an embedded excessive

control in the initial part of control signal and sluggish motion

in the later part, that are not desirable in practical applications. In

this direction, we adopt the modified back-stepping method [16]

and propose an improved nonlinear error generation in the context

of constrained attitude maneuver. First note that by letting

q̇(t) = −∇V q(q),

we have

V̇q =
∂Vq

∂q
·
∂q

∂t
= ∇Vq

T · q̇ = −‖∇V q‖
2 < 0,

for all q 6= qr , fulfilling the condition by Vq for being a strong

Lyapunov function for the dynamics described by Eqs. (1)-(2) with

respect to the equilibrium qr . In Eq. (1), we can consider ω̃ as a

“virtual” control input, making the system (1) asymptotically stable.

In this direction, using quaternion identities we obtain

ω̃c = −2q⋆ ⊗∇V q. (11)

Note that ω̃c has the form of quaternion with the last element

always zero as ω̃c = [ ~ωT
c 0 ]T . Denote the error between ω̃

and its desired value ω̃c as,

z̃ = ω̃ − ω̃c = ω̃ + 2q⋆ ⊗∇V q, (12)

where z̃ = [ ~zT 0 ]T . This error function z̃ acts as a feed-

forward term and causes excessive control inputs in the initial part

of the trajectory where the error magnitudes are the largest. Hence,

we propose an improved error generation via as

z̃ = α arctanβ(ω̃ − ω̃c) (13)

= α arctanβ(ω̃ + 2q⋆ ⊗∇V q)

where α and β are shaping parameters [16]. We can now obtain

an equation for ω̃ in z̃ as

ω̃ =
1

β
tan

( 1

α
z̃
)
− 2q⋆ ⊗∇V q. (14)

Next, by plugging ω̃ into Eq. (1), we obtain the equation in terms

of the error z̃:

q̇ =
1

2
q ⊗

( 1

β
tan

( 1

α
z̃
))

−∇V q. (15)

In addition, the time derivative of the vector part of Eq. (13) along

with Eq. (2) is given by

J~̇z = J
d

dt
α arctanβ

(
~ω − ~ωc

)

= C1

(
R(ω) J~ω(t) + ~u(t)− ~̇Jωc

)
, (16)

where C1 = αβ
[
I3+β2Diag(~ω−~ωc)

2
]
−1

. In order to find an input

~u(t) which stabilizes the system (15)-(16), we define an augmented

candidate Lyapunov function as

V (q, z) = Vq +
1

2
~zTJ~z. (17)

Taking the derivative of V (17) along the trajectories of Eqs. (15)-
(16), we obtain,

V̇ = ∇V T
q (

1

2
q ⊗ z̃)− ‖∇V q‖

2 + ~zTC1(R(ω) J~ω(t) + ~u(t)− ~̇Jωc).

(18)

By rearranging the term ∇V T
q (

1
2
q ⊗ z̃) and using quaternion

identities, Eq. (18) now yields,

V̇ = ~zT
(1
2
q0∇

−→
Vq +

1

2

−−→
∇Vq × ~q −

1

2
∇Vq0~q + C1[R(ω) J~ω(t)

+ ~u(t)− ~̇Jωc]
)
− ‖∇V q‖

2 , (19)

where ∇V q = [ −−→
∇Vq

T

∇Vq0
]T . Thereby by choosing the

actuator torque as,

~u(t) = ~̇Jωc −R(ω) J~ω(t)− C−1
1

[1
2
q0
−−→
∇Vq

−
1

2

−−→
∇Vq × ~q +

1

2
∇Vq0~q − ~z

]
, (20)

one has

V̇ = −‖∇V q‖
2 − ~zT~z ≤ 0,

guaranteeing that the overall system is asymptotically stable. From

Eq. (13), on the other hand, we note that

~z = α arctanβ
(
~ω − 2∇Vq0~q + 2q0

−−→
∇Vq − 2~q ×

−−→
∇Vq

)
, (21)

Now, rewriting the actuator torque ~u in ~ω using the quaternion

identities, we obtain,

~u(~ω) = ~̇Jωc −R(ω) J~ω +
1

2
C2

−−−−−−→
∇V

⋆
q ⊗ q − ~z, (22)
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(a) (b)

Fig. 4. Trajectory in the celestial attitude forbidden zone(a), and reorien-
tation in the mandatory and forbidden zones(b).

where
−−−−−−→
∇V ⋆

q ⊗ q, consistent with the convention used in the paper,

is the vector part of ∇V ⋆
q ⊗q, and C2 = (1/αβ)[I3+β2Diag(~ω−

~ωc)
2].

The next step pertains to computing the term ~̇ωc which appears

in the control law Eq. (22). This term is the time derivative of Eq.

(11), which should be computed directly when the control law is

implemented. In the meantime, the time derivative of the vector

part of ω̃c can be given as,

~̇ωc =
∂

∂t

(
2∇Vq0~q − 2q0

−−→
∇Vq + 2~q ×

−−→
∇Vq

)

= −2(
−−−−−−−−−−−−−−−−−−−→
q̇
⋆ ⊗∇V q + q

⋆ ⊗∇2
V qq̇). (23)

V. SIMULATION RESULTS

In this section, we present simulation results for two types of

attitude constrained scenarios. In simulations, it has been assumed

that the spacecraft carries a light sensitive instrument with a fixed

boresight in the spacecraft body axes, directed along the Z axis.

Moreover, it is assumed that a high gain antenna has been mounted

on the spacecraft such that its boresight is directed along the Y axis.

We note that the parameters ki in Eq. (8) influence the convergence

rate of the algorithm as the corresponding logarithmic terms rapidly

increase as the norm ‖q∗

r ⊗ q − q
I
‖2 associated with an attraction

to the destination attitude decreases. From the simulations presented

here, the values of ki’s are chosen around 0.005 for each constraint,

while assuming the spacecraft’s moments of inertia as,

J =




694 0 0
0 572 0
0 0 360


 (kg·m2).

In general, larger values of ki prolong the convergence to the

destination attitude particularly when the desired attitude is in close

proximity of the boundary of the constraint set.

Case 1: We consider the case in which the spacecraft is re-targeting

its telescope from a randomly chosen initial attitude to a randomly

chosen desired attitude, where both attitudes lie in the attitude

permissible zone, satisfying the following inequalities for all i,

q
T
0 M

1
i q0 < M0 and q

T
r M

1
i qr < 0,

where q0, qr are an initial attitude and a desired attitude in

unit quaternions, respectively. Also, we assume that there are four

attitude forbidden zones in the spacecraft rotational configuration

space. These zones are randomly chosen with the provision of not

overlapping with each other. In Table I, the initial and desired

spacecraft attitudes are given in unit quaternions as well as the

Initial Attitude (Case I) Desired Attitude

[-0.188 -0.735 -0.450 -0.471] [-0.59 0.67 0.21 -0.38]

Constraint object Angle Type

[0.174, -0.934, -0.034] 40 deg Forbidden

[0, 0.7071 0.7071] 40 deg Forbidden

[-0.853, 0.436, -0.286] 30 deg Forbidden

[-0.122 -0.140 -0.983] 20 deg Forbidden

Initial Attitude (Case II) Desired Attitude

[0.714 0.637 -0.13 0.26] [-0.23 0.008 0.491 -0.84]

Constraint object Angle Type

[0 -1 0] 40 deg Forbidden

[0 0.8192 0.5736] 40 deg Forbidden

[-0.8138 0.5483 -0.1926] 70 deg Mandatory

[-0.122 -0.1397 -0.9827] 20 deg Forbidden

TABLE I

SIMULATION PARAMETERS

(a)

(b)

Fig. 5. Simulation trajectories on the 2-D cylindrical projection space

normalized position vectors, indicating four constrained sets (for-

bidden zones), all expressed with respect to the inertial frame. The

simulation scenario has been conducted on these stationary initial

attitudes. The potential function for this case is given as,

Vq(q) = ‖q⋆
r ⊗ q − qI‖

2
[( 4∑

i=1

−k1 log(−
qTM1

i q

2
)
)]

,

where M1
i depends on the ith boresight vector indicating the

constraint set. Fig. 4-a traces the pointing direction of the light

sensitive instrument on the celestial sphere as well as the initial

attitude (‘◦’ mark) and the desired attitude (‘×’ mark), while Fig.

5-a depicts the same trajectory as cylindrical projections of the

corresponding celestial spheres. As shown in Fig. 6-a, the required

final states are achieved asymptotically.

Case 2: In this case, we examine a reorientation maneuver for

keeping a fixed boresight vector, e.g., an antenna, within a certain

angle in order to continuously communicate with the ground station
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Fig. 6. Simulation results–Quaternion trajectories, control inputs, and
angular velocities over time (sec)

while the spacecraft is re-targeting its light sensitive instrument

avoiding multiple bright objects or constrained zones. In this case,

the feasible spacecraft attitude for reorientation can be represented

using a combination of attitude mandatory zone and attitude for-

bidden zones. For this scenario, we have assumed that the antenna

has been aligned along the Z-axis that the sensitive instrument

has been aligned along the Y -axis, such that they their respective

boresight vectors are perpendicular to each other; see Fig. 3. For

the spacecraft reorientation to be feasible, the initial attitude q0

and desired attitude qr should stay in the attitude permissible zone,

where the following inequalities are satisfied,

q
T
0 MM (θM )q0 > 0 and q

T
0 M

j
i q0 < 0, ∀ i, j,

and

q
T
r MM (θM )qT

r > 0 and q
T
r M

j
i q

T
r < 0, ∀ i, j.

The corresponding potential function is given as

V (q) = ‖q⋆
r ⊗ q − qI‖

2
[( 3∑

i=1

−k1 log(−
qTM1

i q

2
)
)

− k2 log(
qTMMq

2
)
]
,

where M1, M2, and, M3 are associated with the three attitude

forbidden zones and MM corresponds to the attitude mandatory

zone. Fig. 4-a and 5-b demonstrate a reorientation maneuver while

keeping the antenna’s boresight vector within 70 deg permissible

cone. The simulation parameters for this scenario are given in Table

I. Fig. 6-b shows the quaternions trajectories, control inputs along

the three independent spacecraft axes, as well as the spacecraft

angular velocity, respectively.

VI. CONCLUSION

In this paper, an autonomous maneuver planning method for three

axes attitude reorientation in presence of multiple types of attitude

constraints has been proposed. This has been achieved via a loga-

rithmic barrier potential that is built on the convex parameterization

of attitude constraint sets in the quaternion space. Based on such

a potential function, we then proceeded to embed a cascade form

of spacecraft dynamics and kinematics that enabled us to obtain a

controller by nonlinear back-stepping method. The main advantage

of the proposed algorithm is its global convergence properties

as well as its tractability and scalability for being implemented

for distinct classes of attitude constraints. Since this approach is

analytical and solvable with a minimum computational capability, it

is attractive for on-board computation for slew maneuver planning.
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