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Abstract— This paper considers Bayesian data fusion with
categorical ‘soft sensor’ information, such as human input
in cooperative multi-agent search applications. Previous work
studied variational Bayesian (VB) hybrid data fusion, which
produces optimistic posterior covariance estimates and requires
simple Gaussian priors with softmax likelihoods. Here, a
new hybrid fusion procedure, known as variational Bayesian
importance sampling (VBIS), is introduced to combine the
strengths of VB and fast Monte Carlo methods to produce more
reliable Gaussian posterior approximations for Gaussian priors
and softmax likelihoods. VBIS is then generalized to problems
involving complex Gaussian mixture priors and multimodal
softmax observation models to obtain reliable Gaussian mixture
posterior approximations. The utility and accuracy of the VBIS
fusion method is demonstrated on a multitarget search problem
for a real cooperative human-automaton team.

I. INTRODUCTION

Control and estimation problems involving cooperative

teams of multiple heterogeneous agents have received much

attention in the past decade, due to their wide applicability

to areas such as defense [1] and search and rescue [2]. While

control and sensing capabilities for autonomous unmanned

vehicles are always improving for such applications, human

agents still serve key roles both as supervisory operators and

as information-sharing agents [3]. Although human informa-

tion provision is often geared towards classifying objects and

abstract behaviors, less appreciated is the fact that humans

can provide ‘soft’ information about continuous quantities of

interest. Though not as precise as conventional ‘hard’ sensor

information, soft information has been shown to be useful

for real-world data fusion problems such as target tracking

[4] and robot localization [5].

Refs. [3], [6], [7] explored incorporation of human infor-

mation sources in the context of surveillance and search-and-

rescue applications. However, few formal methods have been

proposed for ‘low-level’ human information fusion in the

Bayesian framework, which has become increasingly popular

for such applications. Ref. [3] developed a Bayesian method

for fusing a human’s continuous range/bearing estimates to

tracked objects by modeling the ‘human sensor’ via linear

regression models. Ref. [7] considered grid-based Bayesian

fusion of human detection likelihoods for a distributed 2D

search problem, where human field of view is modeled

as a soft binary sensor likelihood. While humans tend to

categorize continuous data as a convenient means for sharing

and processing complex information, efficient Bayesian soft
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information fusion remains challenging, given the potentially

complex dependencies between continuous states and non-

binary categorical observations. Some approximations for

hybrid fusion problems are considered in [8], although these

have some drawbacks that limit general applicability.

This paper describes how to efficiently fuse contextual

multi-categorical information about continuous states in a

formal Bayesian framework that is applicable to general

fusion scenarios. There are three contributions. Firstly, a

new variational Bayesian importance sampling (VBIS) pro-

cedure is presented for obtaining reliable hybrid data fusion

posteriors in the baseline case of Gaussian priors with

softmax observation likelihoods, which was studied in [8].

Secondly, VBIS is extended to the more general case of

Gaussian mixture priors and multimodal softmax observation

models. This leads to a Gaussian mixture respresentation for

fusion updates that is ideal for complex recursive Bayesian

estimation scenarios. Finally, the utility and accuracy of

the VBIS fusion method is demonstrated through a multi-

target search experiment with a real cooperative human-robot

team. Comparisons to other methods for categorical human

information fusion show that VBIS provides a more reliable

representation of complex hybrid fusion posteriors.

II. HYBRID BAYESIAN FUSION FOR

CONTINUOUS STATES AND CATEGORICAL DATA

A. General hybrid Bayesian fusion formulation

Suppose that X ∈ R
n is a random state variable with

prior pdf p(X) and that D is an m-valued discrete random

variable representing a categorical observation of X with

likelihood function P (D = j|X), where j ∈ {1, ...,m} and
∑m

j=1 P (D = j|X = x) = 1 for any realization X = x.

To perform hybrid data fusion and update the uncertainty

in X given a new observation D = j, the posterior pdf

p(X|D = j) can be found via Bayes’ rule,

p(X|D = j) =
p(X,D = j)

P (D = j)
=

p(X)P (D = j|X)
∫

p(X)P (D = j|X)dX
.

(1)

In the context of heterogeneous multisensor fusion with

human agents, X can be any set of continuous variables

of variable of interest (e.g. the 3D location of an object). D

models a human agent’s soft categorical observation of X

such as ‘The object is nearby Building A’, where ‘nearby’

can be modeled as an element of some mutually exclusive set

of contextual soft distance measures to which X maps (e.g.

D ∈ {‘Next To’, ‘Nearby’, ‘Far From’, ‘Very Far From’}
as a function of the object’s distance to Building A).
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B. VB Fusion with Gaussian priors with softmax likelihoods

Assume that X has a Gaussian prior p(X) = N (µ,Σ)
with mean µ ∈ R

n and covariance Σ ∈ R
n×n. Furthermore,

assume the likelihood function P (D = j|X = x) is

described by the softmax function,

P (D = j|X = x) =
ew

T
j x+bj

∑m

k=1 e
wT

k
x+bk

, (2)

where wk ∈ R
n is a vector weight and bk is a scalar bias

for discrete class labels j, k ∈ {1, ...,m}. P (D|X) can be

identified from training data via standard learning algorithms

[9], while p(X) can be treated either as an initial belief or

as the output of another Bayesian estimator (e.g. an EKF for

continuous sensor data fusion [10]). Substituting p(X) and

(2) into (1) yields the exact posterior

p(X|D = j) =

1

C

∣

∣2πΣ−1
∣

∣ e−
1

2
(x−µ)TΣ−1(x−µ) ew

T
j x+bj

∑m

c=1 e
wT

c x+bc
. (3)

This posterior is not closed-form, since C = P (D = j) =
∫

p(X)P (D = j|X)dX is analytically intractable. To cope

with this problem, [8] exploits the fact that p(X|D = j) is

unimodal and can be well-approximated by a Gaussian,

p(X|D = j) ≈ p̂(X|D = j) =
p̂(X,D = j)

Ĉ
= N (µ̂, Σ̂),

(4)

where, from (1),

p(X,D = j) ≈ p̂(X,D = j) = p(X) f(D = j,X, α, ξ)

(5)

C ≈ Ĉ =

∫

p̂(X,D = j) dX = P̂ (D = j). (6)

Here, the softmax function (2) is replaced by an unnor-

malized Gaussian lower bound f(D = j,X, α, ξ) derived

from [11], so that the joint pdf is approximated by an

unnormalized (but analytically integrable) Gaussian in (5).

This is known as a variational Bayes (VB) approximation,

since the size/shape variables α and ξ are selected to

maximize Ĉ in (6) as a lower bound to C. The unknown

coupled parameters ξ, α, µ̂ and Σ̂ are estimated through a

closed-form expectation maximization (EM) algorithm that

converges monotonically to a unique solution. See [8] for

complete details on the VB algorithm.

As shown in [8] and in Section III-A here, VB fusion

provides good (though slightly biased) µ̂ estimates and

optimistic Σ̂ estimates, as is typical of VB approximations

[9]. While reliability in µ̂ provides robustness to ‘surprising

observations’ or incorrect prior information, optimism in

Σ̂ can lead to severe estimation inconsistencies due to

overconfidence [10]. Furthermore, the assumption of Gaus-

sian priors with softmax likelihoods restricts VB fusion

to cases where the posterior is expected to be unimodal

and well-approximated by a Gaussian. However, in practical

hybrid fusion applications, multimodal posteriors can arise

from non-Gaussian priors or complex categorical observation

likelihoods for which (2) is inadequate. These issues are

addressed in the next section.

III. VARIATIONAL BAYESIAN IMPORTANCE

SAMPLING FOR HYBRID DATA FUSION

This section presents the new variational Bayesian im-

portance sampling (VBIS) algorithm, which produces more

reliable estimates for the hybrid fusion approximation (4)

for Gaussian state priors and softmax likelihoods. VBIS is

then generalized to other hybrid fusion problems involving

more complex Gaussian mixture (GM) state priors and

multimodal softmax (MMS) observation likelihoods. This

leads to approximate hybrid fusion posteriors in the form

of GM models, which are well-suited to applications with

nonlinear/non-Gaussian process and observation models.

A. VBIS for Gaussian priors with softmax likelihoods

The VBIS approximation strategically combines VB fu-

sion’s reliability in µ̂ with the flexibility of Monte Carlo

importance sampling (IS) [12]. This leads to fast and reliable

estimates in both (µ̂, Σ̂) for (4), since IS can estimate any

statistical moment of (3) if enough samples are drawn from

an ‘importance distribution’ q(X,D = j) that is ‘close’ to

(3). As the example below shows, IS is unreliable if q is

chosen poorly, e.g. if q = p(X) is always used when the

prior information is inconsistent with observations. Hence,

by first using µ̂ from VB to define a suitable q that is close

to (3), IS can then be used to accurately re-estimate µ̂ and

estimate Σ̂. The detailed procedure for VBIS is as follows:

1) given p(X) and P (D = j|X), estimate µ̂ using VB

(Sec. II-B and ref. [8])

2) set the importance sampling distribution to be

q(X,D = j) = N (µ̂,Σ), (7)

where Σ is the covariance matrix of p(X)
3) draw Ns samples {xi}

Ns

i=1 from q(X,D = j)
4) compute importance weights Wi for each sample xi,

Wi ∝
p(X = xi)P (D = j|X = xi)

q(X = xi, D = j)
, (8)

and normalize so that
∑Ns

i=1 Wi = 1
5) re-estimate µ̂ and the posterior covariance Σ̂,

µ̂ =

Ns
∑

i=1

Wixi, Σ̂ =

Ns
∑

i=1

Wi(xix
T
i )− µ̂µ̂T (9)

In theory, q can be any pdf which is easy to sample and

ensures proper coverage of (3) in high density areas. Eq.

(7) is thus justified, since: (i) µ̂ ensures that q is near a

region of high probability mass, and (ii) it is expected that

(Σ − Σ̂) is positive definite, as conditioning the joint pdf

(which is unimodal in X) on D = j reduces the uncertainty

in the (unimodal) posterior pdf [10]. Figure 1 demonstrates

VBIS on two example 1D hybrid fusion scenarios, where

p(X) and D agree well in (a) but disagree strongly in (b).

Fusion results for VBIS (green, Ns = 500), stand-alone

VB (red) and likelihood weighted IS (LWIS) (blue, Ns =
500) are shown for comparison to the true posterior (pink,

numerical integration). LWIS (used in ‘boostrap’ particle

filters [12]) uses q = p(X) in (7), so (8) becomes Wi ∝
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Fig. 1. 1D fusion example: the position X of an object has prior p(X) =
N (µ, σ) (gray) with (µ, σ2) shown at the top. The softmax likelihood
P (D|X) has 5 discrete class labels describing the range/bearing of the
object relative to x = 0; the likelihood contours for each class are shown
as dashed lines and the observation in each case is shown at the top. Note
that pdf plots are scaled for clarity.

P (D = j|X). In each case, µ̂V B has a small bias and

σ̂2
V B is clearly optimistic, while VBIS produces a better

Gaussian approximation to the true posterior. LWIS peforms

erratically, as it is sensitive to the agreement between p(X)
and D. The VBIS computation time (10 ms in Matlab)

is close to stand-alone VB, while LWIS is faster (1 ms).

Repeating LWIS in case (b) with Ns = 14, 000 samples

gives 10 ms computation time and still less accurate results

than VBIS, with (µ̂LWIS , σ̂
2
LWIS)=(1.2895, 0.6390).

B. VBIS for GM prior and MMS likelihood

1) GM pdfs and MMS models: Let p(X) =
∑M

z=1 cz · N (µz,Σz) be an M -term GM prior with

component weights cz (such that
∑M

z=1 cz = 1), component

means µz and component covariances Σz , ∀ z ∈ {1, ..,M}.

GMs are highly useful for dynamic estimation in multiple

dimensions, as they can provide compact approximations

to arbitrarily complex pdfs and enable closed-form

predictions/updates in many systems with nonlinear/non-

Gaussian dynamics and observation models [13].

As discussed in [14], the MMS model generalizes (2).

MMS marginalizes over a set of softmax-distributed ‘sub-

classes’ in the discrete random variable R, whose realizations

r ∈ {1, ..., S} are each deterministically associated with a

single class j ∈ {1, ...,m} of D. Let σ(j) be the set of sj
subclasses belonging to class D = j. If P (R = r|X) follows

(2) and P (D = j|R = r) = I(r ∈ σ(j)) (i.e. the indicator

function), then the law of total probability gives for D = j

P (D = j|X) =

S
∑

r=1

P (R = r|X)P (D = j|R = r)

=
∑

r∈σ(j)

P (R = r|X) =

∑

r∈σ(j) e
wT

q x+bq

∑S

g=1 e
wT

g x+bg
(10)

Figure 2 shows the class probabilities (dashed lines) for

an MMS model derived from the softmax model of Figure

1, where the class labels ‘Next To’, ‘Nearby’, and ‘Far

Away’ in Figure 2 describe non-convex categories of a range-

only observation (i.e. if the classes in Figure 1 represent

subclasses for the classes of Figure 2, then σ(‘Next To’) =

{’Next To’}, σ(‘Nearby’) = {’Near East’,’Near West’} and

σ(‘Far From’) = {’Far East’,’Far West’}). See [14] for

details on learning MMS models from data.

2) Bayesian data fusion: To find the desired posterior

p(X|D = j), the discrete random variables Z and R, which

take values z ∈ {1, ...,M} and r ∈ σ(j), respectively, will be

used to indicate realizations for latent GM components and

MMS subclasses (where P (Z = z) = cz and P (R = r|X)
follows (2)). It can be shown that the joint pdf here is

p(D,X,Z,R) = P (D|R)P (R|X)p(X|Z)P (Z). (11)

Using the law of total probability, the posterior is

p(X|D = j) =
∑

Z=z,R=r

p(X|D = j, z, r)P (D = j, z, r)

(12)

For each pairing of Z = z and R = r, consider the first

summand term in (12); from Bayes’ rule, (11) is

p(X|D = j, z, r) =
P (D = j|r)P (r|X)p(X|z)P (z)

∫

P (D = j|r)P (r|X)p(X|z)P (z)dX
.

Canceling P (z) and P (D = j|r), we have

p(X|D = j, z, r) =
P (r|X)p(X|z)

∫

P (r|X)p(X|z)dX
=

P (r|X)p(X|z)

P (r|z)
,

(13)

which is the posterior of X conditioned on mixing com-

ponent z and subclass r ∈ σ(j). The numerator of (13)

is described by the product of a Gaussian p(X|Z = z) =
N (µz,Σz) and a softmax likelihood P (R = r|X). Hence,

for each prior component z ∈ {1, ...,M} and MMS subclass

observation r ∈ σ(j), (13) can be well-approximated by a

Gaussian N (µ̂zr, Σ̂zr) as in (4) using VBIS.

Next, consider the term P (D = j, r, z) in (12), where for

each fixed pairing of z and r,

P (D = j, r, z) =

∫

p(X|z)P (r|X)P (D = j|r)P (z)dX,

= P (z)

∫

p(X|z)P (r|X)P (D = j|r)dX,

= P (z)

∫

p(X|z)P (r|X)dX, (14)

where P (z) = cz and the last line follows from P (D =
j|r) = 1 for r ∈ σ(j), by definition of the MMS model. Note

that
∫

p(X|z)P (r|X)dX = E [P (r|X)]p(X|z) = P (r|z)
is the expected softmax probability of subclass r under

component z; this can be directly approximated by

P (r|z) ≈ P̂ (r|z) =
1

Na

Na
∑

r=1

P (R = r|X = xr), (15)

where {xr}
Na

r=1 is a set of Na samples taken directly from the

GM prior component N (µz,Σz). Hence, P (D = j, r, z) ≈
cz · P̂ (r|z), and (12) can be approximated as

p̂(X|D = j) =
∑

z,r

βzr · N (µ̂zr, Σ̂zr), (16)
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Fig. 2. 1D example for fusing a ‘surprising’ observation of D =
‘Far From’ with MMS likelihood (dashed lines) and a GM prior (gray)
with 4 components [cz , µz ,Σz ]: [0.9,0.1,0.7], [0.02,-0.1,0.7], [0.01,-0.7,1],
[0.01,0.7,1]. The uncondensed 12-component posterior GM approximations
using VBIS (green, with Ns = Na = 500) and GSPF (blue, with
Ns = 1800 to achieve the same computation time as VBIS) are plotted,
showing that VBIS produces a better approximation to the true posterior
(pink) than GSPF.

which is an (M · sj)-component GM with mixing weights

βzq ∝ cz · P̂ (r|z).
Eq. (16) is closely related to the output of a modified Gaus-

sian sum particle filter (GSPF) [13], which performs GM-

based state estimation using a parallel bank of particle filters.

However, VBIS attempts to find an importance density q for

each term of (16) that is more efficient than the component

prior p(X|z), which the typical bootstrap GSPF (referred

to hereafter as ‘GSPF’) uses instead to perform term-wise

LWIS updates. When the prior and true posterior are similar

(i.e. uninformative measurement updates), GSPF and VBIS

fusion produce similar results (GSPF is somewhat faster

since it does not require VB iterations). However, as shown in

the 1D fusion example for a GM prior and MMS likelihood

in Figure 2, GSPF is not robust to ‘surprising’ measurements.

Note that, like the GSPF, the number of terms in (16) grow

over time if sj > 1 or if M in p(X) grows from dynamic

state transitions. Standard GM compression methods (e.g.

[15]) can counter this while minimizing information loss

according to a suitable metric.

IV. COOPERATIVE SEARCH APPLICATION

Motivated by the studies of [2], [3], [6], this section

describes the application of the VBIS fusion method to

a cooperative mission involving a real human-robot team

searching for five hidden stationary targets. The goal is

for a single human agent to assist a single autonomous

mobile robot in correctly locating and identifying all targets

as quickly as possible. The robot plans and navigates its

own paths based on probabilistic target information, but has

limited visual target detection capabilities. The human aids

the robot by sharing new information (e.g. from visual or

aural inspection of the search area) and confirming target

detections, where the number of targets is known a priori.

A. Experimental setup

Figure 3 (a) illustrates the physical setup for the target

search over a 5 m x 10.5 m indoor area, featuring four

1 m long and four 2 m long obstacle walls. The walls

(a) (b)

(c) (d)

Fig. 3. (a) Field setup with walls and human computer station, (b)
Pioneer 3-DX robot with sensing and computing hardware, (c) human-robot
interaction GUI for sending human observations, (d) snapshot of combined
GM pdf over field map during mission.

are placed such that the human (who remains seated off

field at a computer) can only see a small portion of the

search area by directly. The five targets were static orange

traffic cones that were randomly placed behind walls. Each

target location Xu ∈ R
2, u ∈ {1, ..., 5} is unknown to

the human-robot team. As in [2], pdfs are used by the

robot to autonomously plan search paths so that it can

visually detect all targets without any direct human control

inputs. Separate GM priors p(Xu) are assumed for each u

at mission start, where M = 15 components are used and

each µu
z ∈ U([0, 5]× [−1.5, 1.5]) with Σu

z = 3I . The initial

priors are highly uncertain and possibly inconsistent with the

true locations of some targets, so the robot updates the pdfs

by fusing two information sources: (1) Vk, the set of all

binary readings from an onboard visual target detector up to

time k, and (2) Hk, the set of all categorical target location

observations provided by the human up to time k. Section

IV-B details the information fusion process. As this work

focuses on the data fusion problem, a simple sub-optimal

greedy search strategy is used with the updated pdfs.

Figure 3 (b) shows the Pioneer 3-DX autonomous mobile

robot used in the study. It uses Vicon motion-capture markers

for accurate pose estimation, a laser range finder for obstacle

avoidance and target localization, and an onboard camera

with software that detects cones up to 1 m with a 42.5 deg

field of view. The robot moves at a constant speed of 0.3

m/s and uses a D∗ algorithm to autonomously plan search

paths based on the updated combined target GM pdf,

p(Xcomb,k) =
∑

u∈Uk

1

|Uk|
· p(Xu|V

k,Hk), (17)

where Uk is the set of undetected targets at time k. The

robot discretizes (17) and selects the non-obstacle grid cell

with the highest pdf value as its next goal point. The robot
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automatically replans and follows a new path if it either

reaches a goal point or a receives a new human observation.

The robot also streams camera images to the human at 1 Hz

and pauses to report target detections, which are verified by

the human. False alarms are logged to prevent reacquisition,

while true detections result in the removal of the GM for

target u from (17). The human communicates with the robot

via the GUI shown in Fig. 3 (c) and can also see an updated

2D surface plot of (17) during the mission (Fig. 3 (d)). The

human and robot share a common fixed map of the search

area to give consistent contextual information for fusion.

B. Online fusion updates for GM pdfs

From Bayes’ rule, the target u pdf given new vision

observations Ck and human observations Dk at time k is

p(Xu|V
k,Hk) ∝ p(Xu|V

k−1,Hk−1)P (Ck|Xu)P (Dk|Xu),

where p(Xu|V
k−1,Hk−1) is the static target posterior from

step k − 1, which equals p(Xu) at k = 1. Bayes’ rule also

divides this into sequential fusion updates for Ck and Dk,

p(Xu|V
k,Hk−1) ∝ p(Xu|V

k−1,Hk−1)P (Ck|Xu), (18)

p(Xu|V
k,Hk) ∝ p(Xu|V

k,Hk−1)P (Dk|Xu). (19)

Eq. (18) is skipped for false detections, which are assumed to

be filtered out perfectly by the human. Eq. (19) is skipped

at time k if Dk is empty. P (Ck|Xu) is given by the 2D

MMS model shown in the top row of Figure 4 (a), which

models visual detection probability as a function of robot

position and camera field of view. Since the robot’s slow

motion means that prior and posterior GM pdfs are similar

between frequent ‘no detection’ readings, the update in (18)

runs at 2 Hz using GSPF with 1000 samples per component

update (this gives nearly identical results to the somewhat

slower VBIS method).

Each human observation Dk is selected from a collection

of mutually exclusive categorical descriptions of Xu with

MMS likelihoods P (Dk|Xu). Human observations are sent

using the 3-field message structure ‘(Something/Nothing) is

(Preposition) (Location)’, where field entries are set via

menus in the GUI. The first field allows the human to provide

either positive or negative soft information. The second field

determines whether an observation is relative to one of the

walls in the search area or the robot’s current location.

The final field entry comes from either a set of relative

ranges {‘Next To’, ‘Nearby’, ‘Far’} or a set of wall-relative

location descriptions {‘Front Of’, ‘Behind’, ‘Inside’}. Each

set is described by a separate MMS model (learned offline)

whose origin can be shifted/rotated to match the Location

coordinates. The bottom row of Figure 4 (b) shows a typical

MMS model for ‘Something Nearby the Robot’. Since incon-

sistent information in p(Xu) can make Dk seem ‘surprising’,

(19) is performed with VBIS, where ambiguities from the use

of ‘Something’/‘Nothing’ descriptors are handled via naive

probabilistic data association. Following updates via (18)

and (19), each target GM is condensed to 15 components

via Salmond’s method [15], which preserves the overall GM

mean and covariance.

(a) (b)

Fig. 4. (a) Example Gaussian target location prior, (b) Top row: MMS
camera detection model, and 3 component posterior GM pdf from GSPF
after fusing ‘no detection’ report from vision sensor with prior in (a). Bottom

row: MMS human observation model for D=‘Target is Nearby robot’, and
8 component posterior GM pdf from VBIS after fusion with prior in (a).

C. Results

Three search missions of 20 minute nominal length were

conducted with different target locations and priors. In the

first two trials, the human-robot team found all 5 targets in

under 15 minutes. In the third trial, 4 targets were found in 15

minutes and the remaining target was found after 21 minutes

due to difficulties with obstacle navigation. The best baseline

greedy search under the same prior conditions without human

information fusion (but with human target confirmation)

found 2 targets in 15 minutes and 3 targets after 20 minutes

(an added 3 minutes yielded no new detections). An average

of 61 human messages were sent per trial, with 74 messages

sent in the last trial. This reflects the fact that the impact

of new positive human information was downweighted by

probabilistic data association, so that the human had to

adjust inconsistent prior information about target locations

by repeatedly sending positive messages to ‘convince’ the

robot about new information. For instance, Figure 5 shows

snapshots of (17) from the first trial as a sequence of human

messages shifted the GM peaks to the back of Wall 2, where

a target was successfully found by the robot (this target was

undetected in the baseline trial without human fusion, as the

pdf behind Wall 2 remained very small). Hence, even with

imperfect priors, a naive greedy search strategy, limited soft

observations in Vk and Hk, soft human information fusion

was quite beneficial.

To assess the accuracy of the VBIS for fusing Hk

alongside GSPF fusion of Vk, the logged fusion pdfs were

compared to offline pdfs obtained by using GSPF to fuse both

Hk and Vk. Using an offline grid-based estimate with 0.1 m

cell resolution as the ‘ground truth’ fusion pdf at each time

step, the Kullback-Leibler divergences (KLDs) for the VBIS

and GSPF pdfs with respect to the truth were computed at

each time step for the first trial. The KLD between two pdfs

g(X) and h(X) at any time step is

KL(g||h) =

∫

X

g(X) log
g(X)

h(X)
dX, (20)

where g(X) is the true posterior. The KLD can be interpreted
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(a) (b)

(c) (d)

Fig. 5. Combined target pdf shifting behind Wall 2 for sequence of human
message updates: (a) pdf at k = 556 secs, (b) after 7 human messages, (c)
after 4 more messages, (d) after target 3 found behind Wall 2.

as a ‘distance measure’ between two pdfs, where h is a good

approximation to g if (20) is near zero. The KLDs for (17)

over time are shown in Figure 6 (a) (log values shown). It

can be seen that the results using VBIS for Hk fusion are

generally closer to the truth than the GSPF fusion results.

Note that the use of finite GMs to approximate g(X) is

expected to produce non-zero KLDs, since GMs can add

extra probability mass back into tails where g(X) is actually

much smaller (especially after Salmond merging). Figures

6 (b)-(d) show individual target pdf KLDs for targets 2,

4, and 5 (log values shown), which are often much larger

with GSPF-only fusion than with VBIS. Closer inspection

revealed that the GSPF-only fusion pdfs sometimes dropped

GM components that corresponded to significant modes of

the true fusion pdfs and is thus heavily penalized in (20).

On the other hand, VBIS fusion retains all modes of the true

posterior following fusion of Hk, although some regions of

Xu are underweighted relative to truth (likely as the result

of Salmond merging). Note that since the logged data was

collected in closed-loop with VBIS for fusing Hk, the GSPF-

only pdfs sometimes recover from mode losses accidentally,

causing severe fluctuations in the corresponding KLDs.

V. CONCLUSIONS

The VBIS method was presented for hybrid Bayesian

fusion of soft categorical observations of continuous states.

VBIS was developed for the baseline case of Gaussian priors

with softmax likelihoods and then extended to the more

general case of Gaussian mixture priors with multimodal

softmax likelihoods. An experimental multitarget search mis-

sion involving a real human-robot team demonstrated the

reliability and usefulness of the proposed fusion approach.

Future work will study the extension to decentralized GM

fusion for more complex human-robot team architectures.
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Fig. 6. (a) Log KLDs with respect to grid-based true posterior pdf for VBIS
(solid) and GSPF (dashed) GM estimates of total target search distribution
vs. time. (b)-(d) Log KLDs for targets 2, 4 and 5 vs. time.
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