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Abstract— Stationary measurement updates offer the possi-
bility of containing errors in velocity, biases and attitude even
during periods of GPS unavailability, given the information that
the rover is not moving. Automated detection of appropriate
instances of stationarity is possible, given a recently proposed
frequency domain method based on IMU data.

In this paper we focus on analytical and numerical evaluation
of observability of error states of an INS aided with stationary
updates. The null space of the continuous time observability
gramian is evaluated for various motion scenarios typically
occurring in a land vehicle.

I. INTRODUCTION

IMU based dead-reckoning is a well known localization

approach. Inertial sensor measurements are affected by non-

zero, slowly changing errors herein referred to as sensor

biases. Due to the presence of these biases, localization errors

in a dead-reckoning INS can grow to the meter level in tens

of seconds. Sensor biases are nuisance parameters and should

be estimated to improve localization performance. Hence,

aiding measurements like GPS, are usually integrated with an

inertial system to estimate these bias as a portion of the error

state vector. But in situations like an urban canyon, where the

line of sight to satellites is intermittent, GPS measurements

are not available reliably, or are affected by large multipath

errors causing INS errors to diverge quickly, motivating the

need for an alternative type of updates. Several authors have

suggested stationary updates as one such alternative aiding

technique [2], [4], [7], [12], [13], [14], [17] etc.

Stationary updates are pseudo-measurements that con-

strain the velocity and angular rotation rate of the rover with

respect to earth to zero. If it is given that the rover is sta-

tionary, then stationary updates correct errors in velocity and

gyroscope biases. In [15], the authors proposed a frequency

domain approach using IMU data to detect the stationarity

condition. The focus in this paper is on theoretical evaluation

of observability in an inertial navigation system aided by

stationary updates.

Observability of INS error states using GPS under various

maneuvering scenarios is well understood [1], [3], [8], [9],

[16], but such an analysis is absent in the literature for an INS

aided by stationary updates. This paper derives the observ-

ability conditions for a stationary-aided INS, under situations
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where the rover is in motion and stationary during different

time intervals. There are three main motion scenarios that

occur frequently on land vehicles. They are: (i) Stationary

rover, (ii) Rover decelerating to a stop (ii) Rover starting

and ending in stationarity. In subsequent sections, these

motion scenarios are rigorously defined and the observability

gramian is analyzed.

The structure of the paper is as follows: Section II deals

with the background by providing notation and sensor mod-

eling. It also derives the continuous time state transition

matrix for an error state INS. Section III defines various

motion scenarios and analyzes the observability gramian. It

also derives a basis for the unobservable subspace wherever

applicable. Section IV discusses the observability results

from a state estimation view point and provides simulation

results supporting the theoretical conclusions of Section III.

Section V concludes the paper.

A. Notation

Let the symbols b, n, e and i in either the superscript

or subscript denote the body, navigation, Earth Centered

Earth Fixed (ECEF) and inertial frames respectively. The

navigation frame is a tangent plane with known position

and orientation relative to the ECEF frame. The symbol ax

expresses the vector x in the a frame. The symbol cωab

denotes the angular rate of rotation of frame b relative to

frame a as represented in the c frame. Let a and b frames be

such that their origins coincide and their relative orientations

be known. If av denotes a free vector v in the a frame,

then the rotation matrix b
aR is used to transform it to the

b frame as bv = b
aR

av. For any vector v, the symbol

[v×] denotes the matrix cross product form for v such that

v × u = [v×]u. The symbols x̂, x̃ denote an estimate and

measurement of x respectively. The estimation error δx is

defined as δx = x − x̂. The symbol cẋ denotes the time

derivative of cx in the c frame.

II. BACKGROUND

Let the navigation state of the rover be defined as x̄⊤ =
[

np⊤

nb
nv⊤

nb Θ
⊤

]

, where npnb ∈ R
3

(

nvnb ∈ R
3
)

denotes the position (velocity) of the body frame in the

navigation frame and the Euler angles Θ denote the attitude

of the body frame relative to the navigation frame.

A. Sensor modeling

The IMU is equipped with six inertial sensors: 3 ac-

celerometers and 3 gyroscopes. The sensitive axis of the

sensors are aligned along the standard basis of the b frame.
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The strapdown inertial sensor measurements in the body

frame are modeled in continuous time as

bỹ = by + bb+ n

where by⊤ =
[

bf⊤ bωib
⊤

]

and

bf = ba+ b
nR

ng.

The vector by ∈ R
6 is the signal of interest corrupted

by a slowly changing bias bb⊤ =
[

bba
⊤ bbg

⊤

]

and

measurement noise n. The symbol ba denotes the body

frame acceleration of the rover. The symbol ng is the gravity

vector in the navigation frame, ng⊤ =
[

0 0 ge
]

, ge ≈
−9.78 m/s/s. Since the sensor biases are slowly changing,

for short periods of time (e.g. ∼ 10s), they are essentially

constant. Hence we assume the IMU bias to be modeled as

bḃ = 0.

To estimate the biases, for improved navigation performance,

we append the bias states to the navigation state to define

the augmented state vector as

x⊤ =
[

x̄⊤ bb⊤
]

. (1)

B. Error state vector

The differential equations that describe the evolution of

(1) are nonlinear (see eqns. 11.38-11.40 in [3]). All practical

real-time systems estimate the error in (1). The error state

dynamic system can be linearized and hence can be estimated

(assuming certain assumptions holds) using fast algorithms

like the Extended Kalman Filter. Denote the INS error state

vector as δx⊤ =
[

nδp⊤

b
nδv⊤

b
nρ⊤ bδb⊤g

bδb⊤a
]

consisting of errors in position, velocity, small angle rotation,

gyroscope bias and accelerometer bias. The small angle

rotation nρ denotes the transformation from the estimated

rotation to the actual rotation from the body to the navigation

frame, via I + [nρ×], given by

n
bR = (I + [nρ×]) nb R̂.

The linearized error state differential equations are given

by [3]

nδṗb = nδvb (2)
nδv̇b = − [nf×] nρ+ n

bR
bδba (3)

nρ̇ = n
bR

bδbg (4)
bδḃa = 0 (5)
bδḃg = 0 (6)

where the additive noises have been ignored since they are

irrelevant to observability analysis.

C. State transition matrix

The set of differential equations given by (2 − 6) can be

solved in closed form. Let t0 ≥ 0 be the initial time. The

differential equations in (2 − 6) can be written as a linear

function of δx for all t > t0 as

δẋ(t) = A(t)δx(t) (7)

where

A(t) =













0 I 0 0 0

0 0 − [nf×] 0
n
bR

0 0 0
n
bR 0

0 0 0 0 0

0 0 0 0 0













. (8)

Let Φ(t, t0) be the state transition matrix corresponding to

the dynamic model in (7). The state transition matrix satisfies

Φ̇(t, t0) = A(t)Φ(t, t0) (9)

for all t > t0. Since A is an upper triangular matrix, it is

possible to solve (9) in closed form as

Φ(t, t0) =













I (t− t0)I Pt T t Qt

0 I −St Mt Rt

0 0 I Rt 0

0 0 0 I 0

0 0 0 0 I













(10)

where

Rt =
t
∫

t0

n
b(τ)Rdτ St =

t
∫

t0

[nf(τ)×]dτ

Pt = −
t
∫

t0

Ssds Qt =
t
∫

t0

Rsds

Mt = −
t
∫

t0

[nf(s)×]Rsds T t =
t
∫

t0

Mrdr

D. Measurement model

When the vehicle is detected to be stationary, we create

the following pseudo-measurements:

1) Zero velocity update: The measurement is nṽb = 0.

The measurement residual is computed as nδvb =
−nv̂b and modeled as

nδvb = Hvδx

where Hv =
[

0 I 0 0 0
]

.

2) Zero angular rate update: The measurement is bω̃nb =
0. The measurement residual is derived as

bδωnb = bωnb −
bω̂nb

= bωib −
bωin − bω̂ib +

bω̂in

= bδωib −
bδωin (11)

where bδωin = [beR̂
eωie×]bnR̂

nρ and

bδωib = −bδbg (12)

The term bδωin is ignored because
eωie

⊤ =
[

0 0 7.29× 10−5
]

rad/s is smaller

than the gyroscope measurement noise power spectral

density for Micro-Electro-Mechanical Systems

(MEMS) based instruments (for e.g. 180 deg/hr/Hz
1

2 ).

Substituting (12) into (11) we derive

bδωnb = Hωδx

where Hω =
[

0 0 0 −I 0
]

.
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III. OBSERVABILITY ANALYSIS

The state at time t0, denoted by δx(t0) is observable from

measurements δy(t) = Hδx(t) for time t ≥ t0, if and only

if the observability gramian, given by

O =

t
∫

t0

Φ(t, τ)⊤H⊤HΦ(t, τ)dτ (13)

is non-singular [10]. Further (13) is non-singular if and only

if

HΦ(t, τ)x(τ) = 0 ⇒ x(τ) = 0. (14)

for all τ ∈ [t0, t]
Proposition 3.1: A vector x ∈ null (HΦ(t, τ)) for all

τ ∈ (t0, t) if and only if x ∈ null (O).
Proof: (⇒) Assume that there exists a vector x such

that for all τ ∈ (t0, t), x ∈ null (HΦ(t, τ)). Then

Ox =

t
∫

t0

Φ(t, τ)⊤H⊤HΦ(t, τ)xdτ = 0

Hence x ∈ null(O).
(⇐) On the other hand, if x ∈ null(O), then x⊤Ox = 0.

We can rewrite x⊤Ox as

x⊤Ox =

t
∫

t0

x⊤
Φ(t, τ)⊤H⊤HΦ(t, τ)xdτ

=

t
∫

t0

||HΦ(t, τ)x||2dτ (15)

= 0.

From (15) we conclude HΦ(t, τ)x = 0 for all τ ∈ D,

where D is dense subset of (t0, t). But since HΦx is

continuous in t its behavior on (t0, t) is fully described by its

behavior on D. Therefore HΦ(t, τ)x = 0 for all τ ∈ (t0, t).
Thus x ∈ null(HΦ(t, τ)) for all τ ∈ (t0, t).

In the next subsection we describe various motion scenar-

ios under which observability conditions are analyzed.

A. Motion scenarios

Without loss of generality, we assume t0 = 0 in all

subsequent analysis. We define the total time of interest as

U = [0, t] over which the inertial measurements bf and bωib

are defined. Let M ⊆ U be the times when the rover is in

motion and S = U \ M be the times when the rover is

stationary. Assume that the rover is equipped with stationary

updates for all τ ∈ S. If the rover is a land vehicle then as

long as there is no wheel slip, it can accelerate only along

the vehicle forward axis, denoted by bd
⊤
=

[

1 0 0
]

.

The following motion scenarios are defined:

1) Stationary rover: In this case the rover is stationary for

all t ∈ U , hence S = U and M = ∅. The specific force

in the navigation frame is given by

nf = ng

and the rotation n
bR is time invariant for all τ ∈ U .

2) Rover decelerating to a stop: Let the rover be in motion

in M = [0, t1), where t1 > 0 is known. Hence S =
U \M = [t1, t]. The specific force in the navigation

frame is given by

nf =

{

κ(τ) n
bR

bd+ ng τ ∈M
ng τ ∈ S

(16)

where κ is a smooth real valued function whose

support lies in M . The rotation n
bR is time invariant

in S and possibly time varying in M .

3) Rover starting and ending in stationarity: Let t1, t2
satisfy 0 < t1 < t2 < t. Assume that the rover was

stationary in S1 = [0, t1], S2 = [t2, t] and in motion in

M = U \(S1∪S2). The specific force in the navigation

frame is given by

nf =

{

κ(τ) n
bR

bd+ ng τ ∈M
ng τ ∈ S1 ∪ S2

.

(17)

We can further divide this scenario into two sub-cases

based on rotation in M as follows:

a) If there is no rotation for all τ ∈ M then n
bR is

time invariant for all τ ∈ U .

b) If the rover undergoes rotation in M then n
bR is

time varying and its behavior is governed by

n
b Ṙ = n

bR
[

bωnb×
]

.

Usually the vehicle can have significant rotation

only along one axis (i.e. yaw rate), hence bωnb

is along a single direction.

In Section III-B, we derive the right null space of HΦ(t, τ)
under various motion and aiding scenarios. Once the null

space of HΦ(t, τ) is determined, we can use Proposition

3.1 to conclude the same for O.

B. Observability using Stationary updates

In this subsection we derive the observability conditions

for the INS error states using stationary updates. Errors in

positions are not observable using stationary updates and

hence the unobservable subspace is at least 3 dimensional.

For this reason, we remove position error states from the

original error state vector δx. In all subsequent analysis in

this subsection, the reduced state vector, state transformation

and measurement projection matrix are given by

δx⊤

m =
[

nδv⊤

b
nρ⊤ bδb⊤g

bδb⊤a
]

Φm(t, τ) =









I −Sτ Mτ Rτ

0 I Rτ 0

0 0 I 0

0 0 0 I









(18)

Hm =

[

I 0 0 0

0 0 −I 0

]

(19)

where τ ∈ U . Observability of error states is discussed for

the motion scenarios outlined in Section III-A:
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1) Stationary rover: This scenario is a standard case often

discussed in literature [3], [6], [8], [9] etc.

Proposition 3.2: If stationary updates are available for all

τ ∈ S = U , then there exists a 3 dimensional unobservable

subspace spanned by

[

0
⊤ e⊤i 0

⊤ −e⊤i [
ng×]nbR

]⊤
(20)

where ei for 1 ≤ i ≤ 3 is a basis for R3.

Proof: Under the conditions of the proposition the

modified state transition, Φm(τ, 0) in (10) can be simplified

as

Φm(τ, 0) =









I −τ [ng×] − τ2

2 [ng×]nbR τnbR

0 I n
bRτ 0

0 0 I 0

0 0 0 I









.

(21)

Using (19) and (21) we derive

HmΦm(τ, 0) =

[

I −[ng×]τ − 1
2 [

ng×]nbRτ
2 n

bRτ

0 0 −I 0

]

.

(22)

Let v⊤

1 =
[

u⊤

11 u⊤

12 u⊤

13 u⊤

14

]

be an element of the

right null space of (22) for all τ ∈ S. Using HmΦmv1 = 0

we derive

u13 = 0 (23)

u11 − τ [ng×]u12 + τ n
bRu14 = 0. (24)

Substituting τ = 0 into (24) we derive

u11 = 0. (25)

Differentiating (24), we derive

u14 = b
nR[ng×]u12 (26)

for all τ ∈ (0, t). Using (23), (25) and (26) we derive a

basis of unobservable subspace as (20).

It is known that, when the rover is stationary with GPS

position updates for all τ ∈ S, we have a 4 dimensional

unobservable subspace spanned by

[

0
⊤

0
⊤ bg⊤

0
⊤

0
⊤ e⊤i 0

⊤ −e⊤i [
ng×]nbR

]⊤

. (27)

Using Proposition 3.2, we see that with the addition of

stationary updates, errors in the 4 dimensional subspace

spanned by (27) are driven to a 3 dimensional unobservable

subspace spanned by (20).

2) Rover decelerating to a stop: The following proposi-

tion is proved:

Proposition 3.3: Let the motion conditions be as de-

scribed in Item 2, Section III-A. If the rover is equipped with

stationary updates for all τ ∈ S, there exists a 3 dimensional

unobservable subspace spanned by

[

e⊤i m
⊤(t1) e⊤i 0

⊤ −e⊤i [
ng×]n

b(t1)
R

]

(28)

where

m(t1) =

t1
∫

0

{

κ [nbR
bd×] + [ng×]

−n
bR

b(t1)
n R[ng×]

}

ds. (29)

Proof: Let v⊤

2 =
[

u⊤

21 u⊤

22 u⊤

23 u⊤

24

]

be an

element of the right null space of HmΦm(τ, 0) in S.

Equating HmΦmv2(τ, 0) = 0 we derive

u23 = 0 (30)

u21 −

τ
∫

0

[nf×]u22ds+

τ
∫

0

n
bRu24ds = 0 (31)

for all τ ∈ S. Differentiating (31) with respect to τ we derive

−[nf(τ)×]u22 +
n
b(τ)Ru24 = 0 (32)

for all τ ∈ (t1, t). We can rewrite (31) as

u21 −

t1
∫

0

[nf×]u22ds+

t1
∫

0

n
bRu24ds

+

τ
∫

t1

(−[nf×]u22 +
n
bRu24) ds = 0. (33)

Noting that τ > t1 we substitute (32) into (33) to derive

u21 −

t1
∫

0

[nf×]u22ds+

t1
∫

0

n
bRu24ds = 0. (34)

Since nf(τ) = ng and n
b(τ)R = n

b(t1)
R for all τ ∈ S we

rewrite (32) as

u24 = b(t1)
n R[ng×]u22 (35)

Substituting (35) and (16) into (34) we derive

u21 = m(t1)u22 (36)

where m(t1) is given by (29). From (30), (35) and (36) a

basis for the unobservable subspace is computed as (28).
Note that Section III-B.1 is a special case of Section III-

B.2. This is observed by setting κ = 0 (i.e. Stationary for

all τ ∈ U ) in (16). The basis derived in (20) can also be

derived by setting κ = 0 in (28).
3) Rover starting and ending stationary: Let v⊤

3 =
[

u⊤

31 u⊤

32 u⊤

33 u⊤

34

]

be an element of the right null

space of HmΦm(τ, 0) for all τ ∈ S1 ∪ S2. By Proposition

3.2, if we are equipped with stationary updates in S1, then

the unobservable subspace is given by (20), hence

u31 = 0 (37)

u33 = 0 (38)

u34 = b(t1)
n R[ng×]u32. (39)

For all τ ∈ S2 equating HmΦm(τ, 0)v3 = 0 we derive

τ
∫

0

[nf×]u32 −
n
bR u34ds = 0. (40)
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Differentiating (40) we derive

u34 = b(t2)
n R[ng×]u32 (41)

for all τ ∈ (t2, t). Substituting (39) and (41) into (40) we

derive
t2
∫

t1

[nf×]u32 −
n
bR u34ds = 0. (42)

Lemma 3.4: As nvb = 0 for all τ ∈ S1 ∪ S2,
t2
∫

t1

κ(τ) n
bR

bd dτ = 0.

Proof: By assumption we know that

nvb(t2) = 0. (43)

Further, for all τ ∈ U we derive

nv̇b(τ) = κ(τ) n
bR

bd (44)

Using (44) we derive

nvb(t2) =

t2
∫

0

nv̇bdτ =

t2
∫

t1

κ(τ) n
bR

bd dτ. (45)

The change in limits is because nv̇b = 0 for all τ ∈ S1.

Using (43) and (45), the desired result is derived.

Re-writing (42) we derive

t2
∫

t1

−[u32×]
(

κ(τ) n
bR

bd+ ng
)

− n
bR u34ds = 0. (46)

Using Lemma 3.4 and (46) we derive

t2
∫

t1

[ng×]u32 −
n
bR u34ds = 0. (47)

The following proposition derives a basis for unobservable

subspace for item 3a, Section III-A:

Proposition 3.5: If bωnb(τ) = 0 for all τ ∈M , then there

exists a 3 dimensional unobservable subspace spanned by

[

0
⊤ e⊤i 0

⊤ −e⊤i [
ng×]nbR

]⊤
(48)

where ei for 1 ≤ i ≤ 3 is a basis for R3.

Proof: Using (47) we derive

(t2 − t1)[
ng×]u32 − (t2 − t1)

n
bRu34 = 0 (49)

Since t2 − t1 > 0, eqns. (49), (37) and (38) gives us the

required basis for the unobservable subspace.

The following proposition derives a basis for unobservable

subspace for item 3b, Section III-A:

Proposition 3.6: If the rover undergoes rotation along a

single axis, bω, for τ ∈M , then the unobservable subspace

is 1 dimensional spanned by

[

0
⊤ ng⊤

0
⊤

0
⊤

]⊤

(50)

Proof: From (39) and (41) we derive

u34 =
b(t2)
b(t1)

Ru34 (51)

Since we have rotation only along bω, we conclude

u34 = p bω (52)

where p is a constant. Note that, for all τ ∈M

n
b(τ)R =

τ
∫

t1

n
b Ṙds =

τ
∫

t1

n
bR[bω×]dr (53)

Substituting (53) and (52) into (47) we derive

(t2 − t1)[
ng×]u32 = p

t2
∫

t1

s
∫

t1

n
bR[bω×]bωdrds = 0. (54)

Since t2 − t1 > 0, using (54) we conclude

u32 = q ng (55)

where q is a constant. Substituting (55) into (39) we derive

u34 = 0. (56)

From (37), (38), (55) and (56) we derive the unobservable

subspace to be (50).
As a corollary to Proposition 3.6, if we have velocity

measurements (e.g. from GPS) in an arbitrarily small open

subset of M then the unobservable subspace is trivial as long

as the pitch (θ) of the rover is not ±π
2 for any τ ∈ M . It

can be proved as follows:

Corollary 3.7: In addition to the conditions in Proposition

3.6, if θ 6= ±π
2 for all τ ∈ M and velocity measurements

are available in an arbitrary open neighborhood Ug ⊂ M ,

then the unobservable subspace is trivial.

Proof: For all τ ∈ Ug , equating HmΦmv3 = 0 we

derive
τ
∫

0

[nf×]u32 −
n
bR u34ds = 0. (57)

Substituting (56) and (55) into (57) we derive

q

τ
∫

t0

κ[nd×]ngds = 0 (58)

where the limits are changed as nf = ng for all τ ∈ S1.

Since κ 6= 0 in M and θ 6= ±π
2 (i.e.nd and ng cannot be

collinear), we conclude q = 0. Substituting q = 0 into (55),
we see that the unobservable subspace is trivial.

IV. NUMERICAL ANALYSIS

This section numerically evaluates the observability of

error states from a state estimation viewpoint. Rewriting

(2− 6) after including process noise terms as

nδv̇b = −
[

nf̂×
]

nρ+ n
b R̂

bδba +
n
b R̂ na (59)

nρ̇ = n
b R̂

bδbg +
n
b R̂ ng (60)

bδḃa = nba (61)
bδḃg = nbg (62)

where for reasons stated earlier nδṗb has been ignored.

Let N⊤ =
[

n⊤

a n⊤

a n⊤

ba
n⊤

bg

]

denote the process
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noise vector where na, ng denote the accelerometer and

gyroscope measurement noise and nba , nbg denote the

bias random walk parameters. Let Q = Cov(N) be as-

sumed to be a block diagonal with block diag(Q) =
[

Iσ2
a Iσ2

g Iσ2
ba

Iσ2
bg

]

. Similarly the measurement

residual equations are modeled as

δy = Hδx+ n

where δy⊤ =
[

nδv⊤

b
nδω⊤

nb

]

, H⊤ =
[

H⊤

v H⊤

ω

]

and n⊤ =
[

n⊤

v n⊤

ω

]

denotes additive white Gaussian

measurement noise. It is assumed that n ∼ N (0,R) with

block diag(R) =
[

Iσ2
v Iσ2

ω

]

. The variance of the zero

velocity update is selected as σ2
v = 10−4(m/s)2. The variance

of the zero angular rate update is selected as σ2
ω = 1 ×

10−6(rad/s)2. In the numerical analysis that follows, we use

the decrease in parts of the covariance matrix P to indicate

which portions of the error state become observable.

For the purpose of simulation we set U = [0, 30] s. For

motion scenarios described in Section III-A, the set S is

described in the following table:

Motion scenario S, seconds Legend

1 S = U Blue

2 S = [0, 15] Red

3a (bωnb = 0) S1 = [0, 10], S2 = [20, 30] Black

3b (bωnb 6= 0) S1 = [0, 10], S2 = [20, 30] Magenta

The inertial measurements were integrated in discrete

time at 100Hz. We assume we have stationary updates
nṽb,

bω̃nb at 1Hz for all discrete times τk ∈ S. We

implemented a discrete time fixed-point smoother to com-

pute E{x(0)|nṽb(τk),
bω̃nb(τk), ∀τk ∈ S} [5], [11]. The

error standard deviation of the smoothed estimates is plot-

ted as a time series in Figures 1-5. For all motion sce-

narios, the standard deviation of the smoothed estimates

of the initial conditions is plotted only at times when

measurement updates are available, for example in Figure

2, the magenta plot is absent during times (10, 20) be-

cause there are no stationary updates in motion Scenario

3b at that time. It was assumed that the initial orienta-

tion of the rover is such that n
b(0)R̂ = I . The initial

uncertainty was selected as block diag(Cov{δxδx⊤}) =
[

Iσ2
p Iσ2

v Iσ2
ρ Iσ2

g Iσ2
f

]

where σp = 1m, σv =
0.1m/s, σρ = 10deg, σg = 10−5deg/s, and σf = 10−3m/s/s.

Fig. 1 shows the uncertainty in the smoothed estimate of

error in initial velocity. Since the observability conditions

for errors in velocity in motion scenarios 1, 3a and 3b
are the same, the blue, black and magenta plots overlap

wherever defined. The red plot (Scenario 2) does not begin

to decrease until t = 15, when stationary measurements

become available. Even for t > 15, the standard deviation

does not decrease to the same level as the other scenarios.

This is because, even for t > 15, the initial velocity is not

observable; instead, the error state vector has converged to

an new unobservable subspace. The lack of observability

in Scenario 2 is discussed in Proposition 3.3 which shows

that the unobservable space includes a linear combination of

Fig. 1. Uncertainty in nδv̂⊤

b
(0) = [δvn δve δvd] using all measurements

in S.
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Fig. 2. Uncertainty in nρ̂⊤(0) = [ρn ρe ρd] using all measurements in
S.

velocity and yaw. The physical interpretation of this result,

in this example, is that the knowledge that the vehicle is

stationary for t > 15 and the inertial measurements for

t ∈ [0, 15] does not uniquely identify the initial velocity,

because the yaw angle is unknown. Therefore, the direction

of the initial velocity cannot be determined from the available

data.

Fig. 2 shows the uncertainty in the smoothed estimate

of nρ(0) using stationary measurements up to time t. In

the interval t ∈ [0, 10] s, there is no difference between

Scenarios 1, 3a and 3b. Hence the blue, black and magenta

plots overlap in this time interval. Proposition 3.6 predicts

that rotation along a single direction (yaw in this case) during

M causes the first two components of the attitude error to
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Fig. 3. Uncertainty in yaw direction after using stationary measurements
in S is depicted by the solid magenta curve. In addition, if GNSS velocity
measurements at introduced at three time instants in M, then the resultant
uncertainty curve is shown by the green curve.

become observable. This is confirmed by the decrease in the

first two components of the magenta plot compared to the

black plot (Scenario 3a), after the rover enters stationary at

time 20 s. Propositions 3.2, 3.3, 3.5 and 3.6 predict that

initial errors in yaw direction are not observable. This is

confirmed by the third subplot of Fig. 2, as the uncertainty

in all scenarios stays constant.

On the other hand, Corollary 3.7 proves that the initial

uncertainty in the yaw estimate is observable if velocity

measurements are available during some Ug ∈ M . This is

supported by Fig. 3. The magenta plot shows the uncertainty

in motion Scenario 4, which is the same as the magenta plot

in subplot 3 of Fig. 2. The green plot shows the uncertainty

in the initial yaw estimate when velocity aiding is available

at 3 time instants in M. The measurement standard deviation

for the GPS velocity estimates is 2 cm/s.

Fig. 4 shows the uncertainty in the smoothed estimate in

initial gyroscope bias. All motion scenarios have the same

gyro bias observability characteristics and hence all plots

converge to the same value.

Fig. 5 shows the uncertainty in the smoothed estimate

of initial accelerometer bias. It is seen that the black and

blue plots overlap since the observability characteristics in

Scenario 1 and 3a are similar. Since the roll (φ), pitch (θ)
and yaw (ψ) were all initialized to zero, i.e. φ = θ = ψ = 0,

the error in the third component of accelerometer bias is

always observable as the error is along ng (ref. eqn. (20),
(28), (48), (50)). It is interesting to note that, in motion

Scenario 3b (magenta plot), the uncertainty in accelerometer

bias in the first two directions decrease at time 20, when the

rover enters stationary after undertaking a rotation. Hence

the magenta plot confirms the results in Proposition 3.6 that

errors in accelerometer biases are observable if we have

rotation in one direction.

Fig. 4. Uncertainty in bb̂g(0) = [bpg b
q
g brg ] using all measurements in

S.

Fig. 5. Uncertainty in bb̂a(0) = [bxa b
y
a bza] using all measurements in

S.

V. CONCLUSIONS

This paper analyzed the observability characteristics of

stationary updates for typical maneuvers on a land vehicle

(e.g. stationary rover, rover stopping at a traffic light, rover

error state initialization by accelerating from rest and then

stopping). The paper derived a basis for the unobservable

subspace of the INS error state whenever applicable. The

paper also shows simulation results that verify the theoretical

conclusions in the paper. The results show the benefits of

“stationary updates” when they can be reliably detected.
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